blob: 13590b70a95969b7d33993cf9ff4c5240d65d6ca [file] [log] [blame]
Ian Rogers2dd0e2c2013-01-24 12:42:14 -08001/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_SRC_GC_CARDTABLE_INL_H_
18#define ART_SRC_GC_CARDTABLE_INL_H_
19
20#include "base/logging.h"
21#include "card_table.h"
22#include "cutils/atomic-inline.h"
23#include "space_bitmap.h"
24#include "utils.h"
25
26namespace art {
27
28static inline bool byte_cas(byte old_value, byte new_value, byte* address) {
29 // Little endian means most significant byte is on the left.
30 const size_t shift = reinterpret_cast<uintptr_t>(address) % sizeof(uintptr_t);
31 // Align the address down.
32 address -= shift;
33 int32_t* word_address = reinterpret_cast<int32_t*>(address);
34 // Word with the byte we are trying to cas cleared.
35 const int32_t cur_word = *word_address & ~(0xFF << shift);
36 const int32_t old_word = cur_word | (static_cast<int32_t>(old_value) << shift);
37 const int32_t new_word = cur_word | (static_cast<int32_t>(new_value) << shift);
38 bool success = android_atomic_cas(old_word, new_word, word_address) == 0;
39 return success;
40}
41
42template <typename Visitor, typename FingerVisitor>
43inline void CardTable::Scan(SpaceBitmap* bitmap, byte* scan_begin, byte* scan_end,
44 const Visitor& visitor, const FingerVisitor& finger_visitor,
45 const byte minimum_age) const {
46 DCHECK(bitmap->HasAddress(scan_begin));
47 DCHECK(bitmap->HasAddress(scan_end - 1)); // scan_end is the byte after the last byte we scan.
48 byte* card_cur = CardFromAddr(scan_begin);
49 byte* card_end = CardFromAddr(scan_end);
50 CheckCardValid(card_cur);
51 CheckCardValid(card_end);
52
53 // Handle any unaligned cards at the start.
54 while (!IsAligned<sizeof(word)>(card_cur) && card_cur < card_end) {
55 if (*card_cur >= minimum_age) {
56 uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(card_cur));
57 uintptr_t end = start + kCardSize;
58 bitmap->VisitMarkedRange(start, end, visitor, finger_visitor);
59 }
60 ++card_cur;
61 }
62
63 byte* aligned_end = card_end -
64 (reinterpret_cast<uintptr_t>(card_end) & (sizeof(uintptr_t) - 1));
65
66 // Now we have the words, we can send these to be processed in parallel.
67 uintptr_t* word_cur = reinterpret_cast<uintptr_t*>(card_cur);
68 uintptr_t* word_end = reinterpret_cast<uintptr_t*>(aligned_end);
69
70 // TODO: Parallelize
71 while (word_cur < word_end) {
72 // Find the first dirty card.
73 while (*word_cur == 0 && word_cur < word_end) {
74 word_cur++;
75 }
76 if (word_cur >= word_end) {
77 break;
78 }
79 uintptr_t start_word = *word_cur;
80 for (size_t i = 0; i < sizeof(uintptr_t); ++i) {
81 if ((start_word & 0xFF) >= minimum_age) {
82 byte* card = reinterpret_cast<byte*>(word_cur) + i;
83 const byte card_byte = *card;
84 DCHECK(card_byte == (start_word & 0xFF) || card_byte == kCardDirty)
85 << "card " << static_cast<size_t>(card_byte) << " word " << (start_word & 0xFF);
86 uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(card));
87 uintptr_t end = start + kCardSize;
88 bitmap->VisitMarkedRange(start, end, visitor, finger_visitor);
89 }
90 start_word >>= 8;
91 }
92 ++word_cur;
93 }
94
95 // Handle any unaligned cards at the end.
96 card_cur = reinterpret_cast<byte*>(word_end);
97 while (card_cur < card_end) {
98 if (*card_cur >= minimum_age) {
99 uintptr_t start = reinterpret_cast<uintptr_t>(AddrFromCard(card_cur));
100 uintptr_t end = start + kCardSize;
101 bitmap->VisitMarkedRange(start, end, visitor, finger_visitor);
102 }
103 ++card_cur;
104 }
105}
106
107/*
108 * Visitor is expected to take in a card and return the new value. When a value is modified, the
109 * modify visitor is called.
110 * visitor: The visitor which modifies the cards. Returns the new value for a card given an old
111 * value.
112 * modified: Whenever the visitor modifies a card, this visitor is called on the card. Enables
113 * us to know which cards got cleared.
114 */
115template <typename Visitor, typename ModifiedVisitor>
116inline void CardTable::ModifyCardsAtomic(byte* scan_begin, byte* scan_end, const Visitor& visitor,
117 const ModifiedVisitor& modified) {
118 byte* card_cur = CardFromAddr(scan_begin);
119 byte* card_end = CardFromAddr(scan_end);
120 CheckCardValid(card_cur);
121 CheckCardValid(card_end);
122
123 // Handle any unaligned cards at the start.
124 while (!IsAligned<sizeof(word)>(card_cur) && card_cur < card_end) {
125 byte expected, new_value;
126 do {
127 expected = *card_cur;
128 new_value = visitor(expected);
129 } while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_cur)));
130 if (expected != new_value) {
131 modified(card_cur, expected, new_value);
132 }
133 ++card_cur;
134 }
135
136 // Handle unaligned cards at the end.
137 while (!IsAligned<sizeof(word)>(card_end) && card_end > card_cur) {
138 --card_end;
139 byte expected, new_value;
140 do {
141 expected = *card_end;
142 new_value = visitor(expected);
143 } while (expected != new_value && UNLIKELY(!byte_cas(expected, new_value, card_end)));
144 if (expected != new_value) {
145 modified(card_cur, expected, new_value);
146 }
147 }
148
149 // Now we have the words, we can process words in parallel.
150 uintptr_t* word_cur = reinterpret_cast<uintptr_t*>(card_cur);
151 uintptr_t* word_end = reinterpret_cast<uintptr_t*>(card_end);
152 uintptr_t expected_word;
153 uintptr_t new_word;
154
155 // TODO: Parallelize.
156 while (word_cur < word_end) {
157 while ((expected_word = *word_cur) != 0) {
158 new_word =
159 (visitor((expected_word >> 0) & 0xFF) << 0) |
160 (visitor((expected_word >> 8) & 0xFF) << 8) |
161 (visitor((expected_word >> 16) & 0xFF) << 16) |
162 (visitor((expected_word >> 24) & 0xFF) << 24);
163 if (new_word == expected_word) {
164 // No need to do a cas.
165 break;
166 }
167 if (LIKELY(android_atomic_cas(expected_word, new_word,
168 reinterpret_cast<int32_t*>(word_cur)) == 0)) {
169 for (size_t i = 0; i < sizeof(uintptr_t); ++i) {
170 const byte expected_byte = (expected_word >> (8 * i)) & 0xFF;
171 const byte new_byte = (new_word >> (8 * i)) & 0xFF;
172 if (expected_byte != new_byte) {
173 modified(reinterpret_cast<byte*>(word_cur) + i, expected_byte, new_byte);
174 }
175 }
176 break;
177 }
178 }
179 ++word_cur;
180 }
181}
182
183inline void* CardTable::AddrFromCard(const byte *card_addr) const {
184 DCHECK(IsValidCard(card_addr))
185 << " card_addr: " << reinterpret_cast<const void*>(card_addr)
186 << " begin: " << reinterpret_cast<void*>(mem_map_->Begin() + offset_)
187 << " end: " << reinterpret_cast<void*>(mem_map_->End());
188 uintptr_t offset = card_addr - biased_begin_;
189 return reinterpret_cast<void*>(offset << kCardShift);
190}
191
192inline byte* CardTable::CardFromAddr(const void *addr) const {
193 byte *card_addr = biased_begin_ + (reinterpret_cast<uintptr_t>(addr) >> kCardShift);
194 // Sanity check the caller was asking for address covered by the card table
195 DCHECK(IsValidCard(card_addr)) << "addr: " << addr
196 << " card_addr: " << reinterpret_cast<void*>(card_addr);
197 return card_addr;
198}
199
200inline void CardTable::CheckCardValid(byte* card) const {
201 DCHECK(IsValidCard(card))
202 << " card_addr: " << reinterpret_cast<const void*>(card)
203 << " begin: " << reinterpret_cast<void*>(mem_map_->Begin() + offset_)
204 << " end: " << reinterpret_cast<void*>(mem_map_->End());
205}
206
207} // namespace art
208
209#endif // ART_SRC_GC_CARDTABLE_INL_H_