blob: e57c0c03e570dd548bc799cf5fd2820aef21788b [file] [log] [blame]
Elliott Hughes5ea047b2011-09-13 14:38:18 -07001/*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Brian Carlstromfc0e3212013-07-17 14:40:12 -070017#ifndef ART_RUNTIME_ATOMIC_H_
18#define ART_RUNTIME_ATOMIC_H_
Elliott Hughes5ea047b2011-09-13 14:38:18 -070019
Elliott Hughes7c6169d2012-05-02 16:11:48 -070020#include <stdint.h>
Ian Rogers3e5cf302014-05-20 16:40:37 -070021#include <atomic>
Ian Rogers3e5cf302014-05-20 16:40:37 -070022#include <limits>
Ian Rogersb122a4b2013-11-19 18:00:50 -080023#include <vector>
Elliott Hughes7c6169d2012-05-02 16:11:48 -070024
Ian Rogersa9844542014-04-21 17:01:02 -070025#include "base/logging.h"
Elliott Hughes76160052012-12-12 16:31:20 -080026#include "base/macros.h"
Elliott Hughes5ea047b2011-09-13 14:38:18 -070027
28namespace art {
29
Ian Rogersb122a4b2013-11-19 18:00:50 -080030class Mutex;
31
Hans Boehm30359612014-05-21 17:46:23 -070032// QuasiAtomic encapsulates two separate facilities that we are
33// trying to move away from: "quasiatomic" 64 bit operations
34// and custom memory fences. For the time being, they remain
35// exposed. Clients should be converted to use either class Atomic
36// below whenever possible, and should eventually use C++11 atomics.
37// The two facilities that do not have a good C++11 analog are
38// ThreadFenceForConstructor and Atomic::*JavaData.
39//
Elliott Hughes7c6169d2012-05-02 16:11:48 -070040// NOTE: Two "quasiatomic" operations on the exact same memory address
41// are guaranteed to operate atomically with respect to each other,
42// but no guarantees are made about quasiatomic operations mixed with
43// non-quasiatomic operations on the same address, nor about
44// quasiatomic operations that are performed on partially-overlapping
45// memory.
Elliott Hughes7c6169d2012-05-02 16:11:48 -070046class QuasiAtomic {
Ian Rogers936b37f2014-02-14 00:52:24 -080047#if defined(__mips__) && !defined(__LP64__)
Ian Rogersb122a4b2013-11-19 18:00:50 -080048 static constexpr bool kNeedSwapMutexes = true;
49#else
50 static constexpr bool kNeedSwapMutexes = false;
51#endif
52
Elliott Hughes7c6169d2012-05-02 16:11:48 -070053 public:
54 static void Startup();
Elliott Hughes5ea047b2011-09-13 14:38:18 -070055
Elliott Hughes7c6169d2012-05-02 16:11:48 -070056 static void Shutdown();
Elliott Hughes5ea047b2011-09-13 14:38:18 -070057
Ian Rogers9adbff52013-01-23 18:19:03 -080058 // Reads the 64-bit value at "addr" without tearing.
Ian Rogersb122a4b2013-11-19 18:00:50 -080059 static int64_t Read64(volatile const int64_t* addr) {
60 if (!kNeedSwapMutexes) {
Ian Rogersa9844542014-04-21 17:01:02 -070061 int64_t value;
62#if defined(__LP64__)
63 value = *addr;
64#else
65#if defined(__arm__)
66#if defined(__ARM_FEATURE_LPAE)
67 // With LPAE support (such as Cortex-A15) then ldrd is defined not to tear.
68 __asm__ __volatile__("@ QuasiAtomic::Read64\n"
69 "ldrd %0, %H0, %1"
70 : "=r" (value)
71 : "m" (*addr));
72#else
73 // Exclusive loads are defined not to tear, clearing the exclusive state isn't necessary.
74 __asm__ __volatile__("@ QuasiAtomic::Read64\n"
75 "ldrexd %0, %H0, %1"
76 : "=r" (value)
77 : "Q" (*addr));
78#endif
79#elif defined(__i386__)
80 __asm__ __volatile__(
81 "movq %1, %0\n"
82 : "=x" (value)
83 : "m" (*addr));
84#else
85 LOG(FATAL) << "Unsupported architecture";
86#endif
87#endif // defined(__LP64__)
88 return value;
Ian Rogersb122a4b2013-11-19 18:00:50 -080089 } else {
90 return SwapMutexRead64(addr);
91 }
92 }
Elliott Hughes7c6169d2012-05-02 16:11:48 -070093
Ian Rogers9adbff52013-01-23 18:19:03 -080094 // Writes to the 64-bit value at "addr" without tearing.
Ian Rogersa9844542014-04-21 17:01:02 -070095 static void Write64(volatile int64_t* addr, int64_t value) {
Ian Rogersb122a4b2013-11-19 18:00:50 -080096 if (!kNeedSwapMutexes) {
Ian Rogersa9844542014-04-21 17:01:02 -070097#if defined(__LP64__)
98 *addr = value;
99#else
100#if defined(__arm__)
101#if defined(__ARM_FEATURE_LPAE)
102 // If we know that ARM architecture has LPAE (such as Cortex-A15) strd is defined not to tear.
103 __asm__ __volatile__("@ QuasiAtomic::Write64\n"
104 "strd %1, %H1, %0"
105 : "=m"(*addr)
106 : "r" (value));
107#else
108 // The write is done as a swap so that the cache-line is in the exclusive state for the store.
109 int64_t prev;
110 int status;
111 do {
112 __asm__ __volatile__("@ QuasiAtomic::Write64\n"
113 "ldrexd %0, %H0, %2\n"
114 "strexd %1, %3, %H3, %2"
115 : "=&r" (prev), "=&r" (status), "+Q"(*addr)
116 : "r" (value)
117 : "cc");
118 } while (UNLIKELY(status != 0));
119#endif
120#elif defined(__i386__)
121 __asm__ __volatile__(
122 "movq %1, %0"
123 : "=m" (*addr)
124 : "x" (value));
125#else
126 LOG(FATAL) << "Unsupported architecture";
127#endif
128#endif // defined(__LP64__)
Ian Rogersb122a4b2013-11-19 18:00:50 -0800129 } else {
Ian Rogersa9844542014-04-21 17:01:02 -0700130 SwapMutexWrite64(addr, value);
Ian Rogersb122a4b2013-11-19 18:00:50 -0800131 }
132 }
Ian Rogers9adbff52013-01-23 18:19:03 -0800133
134 // Atomically compare the value at "addr" to "old_value", if equal replace it with "new_value"
135 // and return true. Otherwise, don't swap, and return false.
Hans Boehm30359612014-05-21 17:46:23 -0700136 // This is fully ordered, i.e. it has C++11 memory_order_seq_cst
137 // semantics (assuming all other accesses use a mutex if this one does).
138 // This has "strong" semantics; if it fails then it is guaranteed that
139 // at some point during the execution of Cas64, *addr was not equal to
140 // old_value.
Ian Rogersb122a4b2013-11-19 18:00:50 -0800141 static bool Cas64(int64_t old_value, int64_t new_value, volatile int64_t* addr) {
142 if (!kNeedSwapMutexes) {
143 return __sync_bool_compare_and_swap(addr, old_value, new_value);
144 } else {
145 return SwapMutexCas64(old_value, new_value, addr);
146 }
147 }
Ian Rogers9adbff52013-01-23 18:19:03 -0800148
149 // Does the architecture provide reasonable atomic long operations or do we fall back on mutexes?
Ian Rogersb122a4b2013-11-19 18:00:50 -0800150 static bool LongAtomicsUseMutexes() {
Ian Rogers63c5dd02014-05-19 22:55:00 -0700151 return kNeedSwapMutexes;
Ian Rogersb122a4b2013-11-19 18:00:50 -0800152 }
153
Hans Boehma1ec0652014-06-06 17:13:03 -0700154 static void ThreadFenceAcquire() {
Hans Boehm30359612014-05-21 17:46:23 -0700155 std::atomic_thread_fence(std::memory_order_acquire);
156 }
157
Hans Boehma1ec0652014-06-06 17:13:03 -0700158 static void ThreadFenceRelease() {
Hans Boehm30359612014-05-21 17:46:23 -0700159 std::atomic_thread_fence(std::memory_order_release);
160 }
161
162 static void ThreadFenceForConstructor() {
163 #if defined(__aarch64__)
164 __asm__ __volatile__("dmb ishst" : : : "memory");
165 #else
166 std::atomic_thread_fence(std::memory_order_release);
167 #endif
168 }
169
170 static void ThreadFenceSequentiallyConsistent() {
171 std::atomic_thread_fence(std::memory_order_seq_cst);
172 }
173
Elliott Hughes7c6169d2012-05-02 16:11:48 -0700174 private:
Ian Rogersb122a4b2013-11-19 18:00:50 -0800175 static Mutex* GetSwapMutex(const volatile int64_t* addr);
176 static int64_t SwapMutexRead64(volatile const int64_t* addr);
177 static void SwapMutexWrite64(volatile int64_t* addr, int64_t val);
178 static bool SwapMutexCas64(int64_t old_value, int64_t new_value, volatile int64_t* addr);
179
180 // We stripe across a bunch of different mutexes to reduce contention.
181 static constexpr size_t kSwapMutexCount = 32;
182 static std::vector<Mutex*>* gSwapMutexes;
183
Elliott Hughes7c6169d2012-05-02 16:11:48 -0700184 DISALLOW_COPY_AND_ASSIGN(QuasiAtomic);
185};
Elliott Hughes5ea047b2011-09-13 14:38:18 -0700186
Hans Boehm30359612014-05-21 17:46:23 -0700187template<typename T>
Dan Albertaab0f862014-08-11 16:38:02 -0700188class PACKED(sizeof(T)) Atomic : public std::atomic<T> {
Hans Boehm30359612014-05-21 17:46:23 -0700189 public:
Dan Albert6a3f8d92014-08-12 11:48:34 -0700190 Atomic<T>() : std::atomic<T>(0) { }
Hans Boehm30359612014-05-21 17:46:23 -0700191
192 explicit Atomic<T>(T value) : std::atomic<T>(value) { }
193
194 // Load from memory without ordering or synchronization constraints.
195 T LoadRelaxed() const {
196 return this->load(std::memory_order_relaxed);
197 }
198
199 // Word tearing allowed, but may race.
200 // TODO: Optimize?
201 // There has been some discussion of eventually disallowing word
202 // tearing for Java data loads.
203 T LoadJavaData() const {
204 return this->load(std::memory_order_relaxed);
205 }
206
207 // Load from memory with a total ordering.
208 // Corresponds exactly to a Java volatile load.
209 T LoadSequentiallyConsistent() const {
210 return this->load(std::memory_order_seq_cst);
211 }
212
213 // Store to memory without ordering or synchronization constraints.
214 void StoreRelaxed(T desired) {
215 this->store(desired, std::memory_order_relaxed);
216 }
217
218 // Word tearing allowed, but may race.
219 void StoreJavaData(T desired) {
220 this->store(desired, std::memory_order_relaxed);
221 }
222
223 // Store to memory with release ordering.
224 void StoreRelease(T desired) {
225 this->store(desired, std::memory_order_release);
226 }
227
228 // Store to memory with a total ordering.
229 void StoreSequentiallyConsistent(T desired) {
230 this->store(desired, std::memory_order_seq_cst);
231 }
232
233 // Atomically replace the value with desired value if it matches the expected value.
234 // Participates in total ordering of atomic operations.
235 bool CompareExchangeStrongSequentiallyConsistent(T expected_value, T desired_value) {
236 return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_seq_cst);
237 }
238
239 // The same, except it may fail spuriously.
240 bool CompareExchangeWeakSequentiallyConsistent(T expected_value, T desired_value) {
241 return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_seq_cst);
242 }
243
244 // Atomically replace the value with desired value if it matches the expected value. Doesn't
245 // imply ordering or synchronization constraints.
246 bool CompareExchangeStrongRelaxed(T expected_value, T desired_value) {
247 return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_relaxed);
248 }
249
250 // The same, except it may fail spuriously.
251 bool CompareExchangeWeakRelaxed(T expected_value, T desired_value) {
252 return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_relaxed);
253 }
254
255 // Atomically replace the value with desired value if it matches the expected value. Prior writes
256 // made to other memory locations by the thread that did the release become visible in this
257 // thread.
258 bool CompareExchangeWeakAcquire(T expected_value, T desired_value) {
259 return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_acquire);
260 }
261
262 // Atomically replace the value with desired value if it matches the expected value. prior writes
263 // to other memory locations become visible to the threads that do a consume or an acquire on the
264 // same location.
265 bool CompareExchangeWeakRelease(T expected_value, T desired_value) {
266 return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_release);
267 }
268
269 T FetchAndAddSequentiallyConsistent(const T value) {
270 return this->fetch_add(value, std::memory_order_seq_cst); // Return old_value.
271 }
272
273 T FetchAndSubSequentiallyConsistent(const T value) {
274 return this->fetch_sub(value, std::memory_order_seq_cst); // Return old value.
275 }
276
Ian Rogers8c1b5f72014-07-09 22:02:36 -0700277 T FetchAndOrSequentiallyConsistent(const T value) {
278 return this->fetch_or(value, std::memory_order_seq_cst); // Return old_value.
279 }
280
281 T FetchAndAndSequentiallyConsistent(const T value) {
282 return this->fetch_and(value, std::memory_order_seq_cst); // Return old_value.
283 }
284
Hans Boehm30359612014-05-21 17:46:23 -0700285 volatile T* Address() {
286 return reinterpret_cast<T*>(this);
287 }
288
289 static T MaxValue() {
290 return std::numeric_limits<T>::max();
291 }
Hans Boehm30359612014-05-21 17:46:23 -0700292};
293
Hans Boehm30359612014-05-21 17:46:23 -0700294typedef Atomic<int32_t> AtomicInteger;
295
296COMPILE_ASSERT(sizeof(AtomicInteger) == sizeof(int32_t), weird_atomic_int_size);
297COMPILE_ASSERT(alignof(AtomicInteger) == alignof(int32_t),
298 atomic_int_alignment_differs_from_that_of_underlying_type);
Hans Boehma1ec0652014-06-06 17:13:03 -0700299COMPILE_ASSERT(sizeof(Atomic<int64_t>) == sizeof(int64_t), weird_atomic_int64_size);
Dan Albertaab0f862014-08-11 16:38:02 -0700300
301// Assert the alignment of 64-bit integers is 64-bit. This isn't true on certain 32-bit
302// architectures (e.g. x86-32) but we know that 64-bit integers here are arranged to be 8-byte
303// aligned.
Hans Boehm2f4a2ed2014-06-06 18:17:43 -0700304#if defined(__LP64__)
305 COMPILE_ASSERT(alignof(Atomic<int64_t>) == alignof(int64_t),
306 atomic_int64_alignment_differs_from_that_of_underlying_type);
307#endif
Ian Rogers3e5cf302014-05-20 16:40:37 -0700308
Elliott Hughes5ea047b2011-09-13 14:38:18 -0700309} // namespace art
310
Brian Carlstromfc0e3212013-07-17 14:40:12 -0700311#endif // ART_RUNTIME_ATOMIC_H_