blob: 9dfee6ef24bfd916fed3cb7aa41fd34215aba108 [file] [log] [blame]
Matteo Franchin43ec8732014-03-31 15:00:14 +01001/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/* This file contains codegen for the Thumb2 ISA. */
18
19#include "arm64_lir.h"
20#include "codegen_arm64.h"
21#include "dex/quick/mir_to_lir-inl.h"
22#include "entrypoints/quick/quick_entrypoints.h"
23
24namespace art {
25
26/*
27 * The sparse table in the literal pool is an array of <key,displacement>
28 * pairs. For each set, we'll load them as a pair using ldmia.
29 * This means that the register number of the temp we use for the key
30 * must be lower than the reg for the displacement.
31 *
32 * The test loop will look something like:
33 *
34 * adr r_base, <table>
35 * ldr r_val, [rARM_SP, v_reg_off]
36 * mov r_idx, #table_size
37 * lp:
38 * ldmia r_base!, {r_key, r_disp}
39 * sub r_idx, #1
40 * cmp r_val, r_key
41 * ifeq
42 * add rARM_PC, r_disp ; This is the branch from which we compute displacement
43 * cbnz r_idx, lp
44 */
45void Arm64Mir2Lir::GenSparseSwitch(MIR* mir, uint32_t table_offset,
46 RegLocation rl_src) {
47 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
48 if (cu_->verbose) {
49 DumpSparseSwitchTable(table);
50 }
51 // Add the table to the list - we'll process it later
52 SwitchTable *tab_rec =
53 static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
54 tab_rec->table = table;
55 tab_rec->vaddr = current_dalvik_offset_;
56 uint32_t size = table[1];
57 tab_rec->targets = static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*), kArenaAllocLIR));
58 switch_tables_.Insert(tab_rec);
59
60 // Get the switch value
61 rl_src = LoadValue(rl_src, kCoreReg);
62 RegStorage r_base = AllocTemp();
63 /* Allocate key and disp temps */
64 RegStorage r_key = AllocTemp();
65 RegStorage r_disp = AllocTemp();
66 // Make sure r_key's register number is less than r_disp's number for ldmia
67 if (r_key.GetReg() > r_disp.GetReg()) {
68 RegStorage tmp = r_disp;
69 r_disp = r_key;
70 r_key = tmp;
71 }
72 // Materialize a pointer to the switch table
73 NewLIR3(kThumb2Adr, r_base.GetReg(), 0, WrapPointer(tab_rec));
74 // Set up r_idx
75 RegStorage r_idx = AllocTemp();
76 LoadConstant(r_idx, size);
77 // Establish loop branch target
78 LIR* target = NewLIR0(kPseudoTargetLabel);
79 // Load next key/disp
80 NewLIR2(kThumb2LdmiaWB, r_base.GetReg(), (1 << r_key.GetRegNum()) | (1 << r_disp.GetRegNum()));
81 OpRegReg(kOpCmp, r_key, rl_src.reg);
82 // Go if match. NOTE: No instruction set switch here - must stay Thumb2
83 LIR* it = OpIT(kCondEq, "");
84 LIR* switch_branch = NewLIR1(kThumb2AddPCR, r_disp.GetReg());
85 OpEndIT(it);
86 tab_rec->anchor = switch_branch;
87 // Needs to use setflags encoding here
88 OpRegRegImm(kOpSub, r_idx, r_idx, 1); // For value == 1, this should set flags.
89 DCHECK(last_lir_insn_->u.m.def_mask & ENCODE_CCODE);
90 OpCondBranch(kCondNe, target);
91}
92
93
94void Arm64Mir2Lir::GenPackedSwitch(MIR* mir, uint32_t table_offset,
95 RegLocation rl_src) {
96 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
97 if (cu_->verbose) {
98 DumpPackedSwitchTable(table);
99 }
100 // Add the table to the list - we'll process it later
101 SwitchTable *tab_rec =
102 static_cast<SwitchTable*>(arena_->Alloc(sizeof(SwitchTable), kArenaAllocData));
103 tab_rec->table = table;
104 tab_rec->vaddr = current_dalvik_offset_;
105 uint32_t size = table[1];
106 tab_rec->targets =
107 static_cast<LIR**>(arena_->Alloc(size * sizeof(LIR*), kArenaAllocLIR));
108 switch_tables_.Insert(tab_rec);
109
110 // Get the switch value
111 rl_src = LoadValue(rl_src, kCoreReg);
112 RegStorage table_base = AllocTemp();
113 // Materialize a pointer to the switch table
114 NewLIR3(kThumb2Adr, table_base.GetReg(), 0, WrapPointer(tab_rec));
115 int low_key = s4FromSwitchData(&table[2]);
116 RegStorage keyReg;
117 // Remove the bias, if necessary
118 if (low_key == 0) {
119 keyReg = rl_src.reg;
120 } else {
121 keyReg = AllocTemp();
122 OpRegRegImm(kOpSub, keyReg, rl_src.reg, low_key);
123 }
124 // Bounds check - if < 0 or >= size continue following switch
125 OpRegImm(kOpCmp, keyReg, size-1);
126 LIR* branch_over = OpCondBranch(kCondHi, NULL);
127
128 // Load the displacement from the switch table
129 RegStorage disp_reg = AllocTemp();
130 LoadBaseIndexed(table_base, keyReg, disp_reg, 2, k32);
131
132 // ..and go! NOTE: No instruction set switch here - must stay Thumb2
133 LIR* switch_branch = NewLIR1(kThumb2AddPCR, disp_reg.GetReg());
134 tab_rec->anchor = switch_branch;
135
136 /* branch_over target here */
137 LIR* target = NewLIR0(kPseudoTargetLabel);
138 branch_over->target = target;
139}
140
141/*
142 * Array data table format:
143 * ushort ident = 0x0300 magic value
144 * ushort width width of each element in the table
145 * uint size number of elements in the table
146 * ubyte data[size*width] table of data values (may contain a single-byte
147 * padding at the end)
148 *
149 * Total size is 4+(width * size + 1)/2 16-bit code units.
150 */
151void Arm64Mir2Lir::GenFillArrayData(uint32_t table_offset, RegLocation rl_src) {
152 const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
153 // Add the table to the list - we'll process it later
154 FillArrayData *tab_rec =
155 static_cast<FillArrayData*>(arena_->Alloc(sizeof(FillArrayData), kArenaAllocData));
156 tab_rec->table = table;
157 tab_rec->vaddr = current_dalvik_offset_;
158 uint16_t width = tab_rec->table[1];
159 uint32_t size = tab_rec->table[2] | ((static_cast<uint32_t>(tab_rec->table[3])) << 16);
160 tab_rec->size = (size * width) + 8;
161
162 fill_array_data_.Insert(tab_rec);
163
164 // Making a call - use explicit registers
165 FlushAllRegs(); /* Everything to home location */
166 LoadValueDirectFixed(rl_src, rs_r0);
167 LoadWordDisp(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pHandleFillArrayData).Int32Value(),
168 rs_rARM_LR);
169 // Materialize a pointer to the fill data image
170 NewLIR3(kThumb2Adr, rs_r1.GetReg(), 0, WrapPointer(tab_rec));
171 ClobberCallerSave();
172 LIR* call_inst = OpReg(kOpBlx, rs_rARM_LR);
173 MarkSafepointPC(call_inst);
174}
175
176/*
177 * Handle unlocked -> thin locked transition inline or else call out to quick entrypoint. For more
178 * details see monitor.cc.
179 */
180void Arm64Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
181 FlushAllRegs();
182 // FIXME: need separate LoadValues for object references.
183 LoadValueDirectFixed(rl_src, rs_r0); // Get obj
184 LockCallTemps(); // Prepare for explicit register usage
185 constexpr bool kArchVariantHasGoodBranchPredictor = false; // TODO: true if cortex-A15.
186 if (kArchVariantHasGoodBranchPredictor) {
187 LIR* null_check_branch = nullptr;
188 if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) {
189 null_check_branch = nullptr; // No null check.
190 } else {
191 // If the null-check fails its handled by the slow-path to reduce exception related meta-data.
192 if (Runtime::Current()->ExplicitNullChecks()) {
193 null_check_branch = OpCmpImmBranch(kCondEq, rs_r0, 0, NULL);
194 }
195 }
196 Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2);
197 NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(),
198 mirror::Object::MonitorOffset().Int32Value() >> 2);
199 MarkPossibleNullPointerException(opt_flags);
200 LIR* not_unlocked_branch = OpCmpImmBranch(kCondNe, rs_r1, 0, NULL);
201 NewLIR4(kThumb2Strex, rs_r1.GetReg(), rs_r2.GetReg(), rs_r0.GetReg(),
202 mirror::Object::MonitorOffset().Int32Value() >> 2);
203 LIR* lock_success_branch = OpCmpImmBranch(kCondEq, rs_r1, 0, NULL);
204
205
206 LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
207 not_unlocked_branch->target = slow_path_target;
208 if (null_check_branch != nullptr) {
209 null_check_branch->target = slow_path_target;
210 }
211 // TODO: move to a slow path.
212 // Go expensive route - artLockObjectFromCode(obj);
213 LoadWordDisp(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pLockObject).Int32Value(), rs_rARM_LR);
214 ClobberCallerSave();
215 LIR* call_inst = OpReg(kOpBlx, rs_rARM_LR);
216 MarkSafepointPC(call_inst);
217
218 LIR* success_target = NewLIR0(kPseudoTargetLabel);
219 lock_success_branch->target = success_target;
220 GenMemBarrier(kLoadLoad);
221 } else {
222 // Explicit null-check as slow-path is entered using an IT.
223 GenNullCheck(rs_r0, opt_flags);
224 Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2);
225 NewLIR3(kThumb2Ldrex, rs_r1.GetReg(), rs_r0.GetReg(),
226 mirror::Object::MonitorOffset().Int32Value() >> 2);
227 MarkPossibleNullPointerException(opt_flags);
228 OpRegImm(kOpCmp, rs_r1, 0);
229 LIR* it = OpIT(kCondEq, "");
230 NewLIR4(kThumb2Strex/*eq*/, rs_r1.GetReg(), rs_r2.GetReg(), rs_r0.GetReg(),
231 mirror::Object::MonitorOffset().Int32Value() >> 2);
232 OpEndIT(it);
233 OpRegImm(kOpCmp, rs_r1, 0);
234 it = OpIT(kCondNe, "T");
235 // Go expensive route - artLockObjectFromCode(self, obj);
236 LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pLockObject).Int32Value(),
237 rs_rARM_LR);
238 ClobberCallerSave();
239 LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR);
240 OpEndIT(it);
241 MarkSafepointPC(call_inst);
242 GenMemBarrier(kLoadLoad);
243 }
244}
245
246/*
247 * Handle thin locked -> unlocked transition inline or else call out to quick entrypoint. For more
248 * details see monitor.cc. Note the code below doesn't use ldrex/strex as the code holds the lock
249 * and can only give away ownership if its suspended.
250 */
251void Arm64Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
252 FlushAllRegs();
253 LoadValueDirectFixed(rl_src, rs_r0); // Get obj
254 LockCallTemps(); // Prepare for explicit register usage
255 LIR* null_check_branch = nullptr;
256 Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2);
257 constexpr bool kArchVariantHasGoodBranchPredictor = false; // TODO: true if cortex-A15.
258 if (kArchVariantHasGoodBranchPredictor) {
259 if ((opt_flags & MIR_IGNORE_NULL_CHECK) && !(cu_->disable_opt & (1 << kNullCheckElimination))) {
260 null_check_branch = nullptr; // No null check.
261 } else {
262 // If the null-check fails its handled by the slow-path to reduce exception related meta-data.
263 if (Runtime::Current()->ExplicitNullChecks()) {
264 null_check_branch = OpCmpImmBranch(kCondEq, rs_r0, 0, NULL);
265 }
266 }
267 Load32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1);
268 MarkPossibleNullPointerException(opt_flags);
269 LoadConstantNoClobber(rs_r3, 0);
270 LIR* slow_unlock_branch = OpCmpBranch(kCondNe, rs_r1, rs_r2, NULL);
271 Store32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r3);
272 LIR* unlock_success_branch = OpUnconditionalBranch(NULL);
273
274 LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
275 slow_unlock_branch->target = slow_path_target;
276 if (null_check_branch != nullptr) {
277 null_check_branch->target = slow_path_target;
278 }
279 // TODO: move to a slow path.
280 // Go expensive route - artUnlockObjectFromCode(obj);
281 LoadWordDisp(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(), rs_rARM_LR);
282 ClobberCallerSave();
283 LIR* call_inst = OpReg(kOpBlx, rs_rARM_LR);
284 MarkSafepointPC(call_inst);
285
286 LIR* success_target = NewLIR0(kPseudoTargetLabel);
287 unlock_success_branch->target = success_target;
288 GenMemBarrier(kStoreLoad);
289 } else {
290 // Explicit null-check as slow-path is entered using an IT.
291 GenNullCheck(rs_r0, opt_flags);
292 Load32Disp(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r1); // Get lock
293 MarkPossibleNullPointerException(opt_flags);
294 Load32Disp(rs_rARM_SELF, Thread::ThinLockIdOffset<4>().Int32Value(), rs_r2);
295 LoadConstantNoClobber(rs_r3, 0);
296 // Is lock unheld on lock or held by us (==thread_id) on unlock?
297 OpRegReg(kOpCmp, rs_r1, rs_r2);
298 LIR* it = OpIT(kCondEq, "EE");
299 Store32Disp/*eq*/(rs_r0, mirror::Object::MonitorOffset().Int32Value(), rs_r3);
300 // Go expensive route - UnlockObjectFromCode(obj);
301 LoadWordDisp/*ne*/(rs_rARM_SELF, QUICK_ENTRYPOINT_OFFSET(4, pUnlockObject).Int32Value(),
302 rs_rARM_LR);
303 ClobberCallerSave();
304 LIR* call_inst = OpReg(kOpBlx/*ne*/, rs_rARM_LR);
305 OpEndIT(it);
306 MarkSafepointPC(call_inst);
307 GenMemBarrier(kStoreLoad);
308 }
309}
310
311void Arm64Mir2Lir::GenMoveException(RegLocation rl_dest) {
312 int ex_offset = Thread::ExceptionOffset<4>().Int32Value();
313 RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
314 RegStorage reset_reg = AllocTemp();
315 Load32Disp(rs_rARM_SELF, ex_offset, rl_result.reg);
316 LoadConstant(reset_reg, 0);
317 Store32Disp(rs_rARM_SELF, ex_offset, reset_reg);
318 FreeTemp(reset_reg);
319 StoreValue(rl_dest, rl_result);
320}
321
322/*
323 * Mark garbage collection card. Skip if the value we're storing is null.
324 */
325void Arm64Mir2Lir::MarkGCCard(RegStorage val_reg, RegStorage tgt_addr_reg) {
326 RegStorage reg_card_base = AllocTemp();
327 RegStorage reg_card_no = AllocTemp();
328 LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, NULL);
329 LoadWordDisp(rs_rARM_SELF, Thread::CardTableOffset<4>().Int32Value(), reg_card_base);
330 OpRegRegImm(kOpLsr, reg_card_no, tgt_addr_reg, gc::accounting::CardTable::kCardShift);
331 StoreBaseIndexed(reg_card_base, reg_card_no, reg_card_base, 0, kUnsignedByte);
332 LIR* target = NewLIR0(kPseudoTargetLabel);
333 branch_over->target = target;
334 FreeTemp(reg_card_base);
335 FreeTemp(reg_card_no);
336}
337
338void Arm64Mir2Lir::GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) {
339 int spill_count = num_core_spills_ + num_fp_spills_;
340 /*
341 * On entry, r0, r1, r2 & r3 are live. Let the register allocation
342 * mechanism know so it doesn't try to use any of them when
343 * expanding the frame or flushing. This leaves the utility
344 * code with a single temp: r12. This should be enough.
345 */
346 LockTemp(rs_r0);
347 LockTemp(rs_r1);
348 LockTemp(rs_r2);
349 LockTemp(rs_r3);
350
351 /*
352 * We can safely skip the stack overflow check if we're
353 * a leaf *and* our frame size < fudge factor.
354 */
355 bool skip_overflow_check = (mir_graph_->MethodIsLeaf() &&
356 (static_cast<size_t>(frame_size_) <
357 Thread::kStackOverflowReservedBytes));
358 NewLIR0(kPseudoMethodEntry);
359 if (!skip_overflow_check) {
360 if (Runtime::Current()->ExplicitStackOverflowChecks()) {
361 /* Load stack limit */
362 Load32Disp(rs_rARM_SELF, Thread::StackEndOffset<4>().Int32Value(), rs_r12);
363 }
364 }
365 /* Spill core callee saves */
366 NewLIR1(kThumb2Push, core_spill_mask_);
367 /* Need to spill any FP regs? */
368 if (num_fp_spills_) {
369 /*
370 * NOTE: fp spills are a little different from core spills in that
371 * they are pushed as a contiguous block. When promoting from
372 * the fp set, we must allocate all singles from s16..highest-promoted
373 */
374 NewLIR1(kThumb2VPushCS, num_fp_spills_);
375 }
376
377 const int spill_size = spill_count * 4;
378 const int frame_size_without_spills = frame_size_ - spill_size;
379 if (!skip_overflow_check) {
380 if (Runtime::Current()->ExplicitStackOverflowChecks()) {
381 class StackOverflowSlowPath : public LIRSlowPath {
382 public:
383 StackOverflowSlowPath(Mir2Lir* m2l, LIR* branch, bool restore_lr, size_t sp_displace)
384 : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, nullptr), restore_lr_(restore_lr),
385 sp_displace_(sp_displace) {
386 }
387 void Compile() OVERRIDE {
388 m2l_->ResetRegPool();
389 m2l_->ResetDefTracking();
390 GenerateTargetLabel(kPseudoThrowTarget);
391 if (restore_lr_) {
392 m2l_->LoadWordDisp(rs_rARM_SP, sp_displace_ - 4, rs_rARM_LR);
393 }
394 m2l_->OpRegImm(kOpAdd, rs_rARM_SP, sp_displace_);
395 m2l_->ClobberCallerSave();
396 ThreadOffset<4> func_offset = QUICK_ENTRYPOINT_OFFSET(4, pThrowStackOverflow);
397 // Load the entrypoint directly into the pc instead of doing a load + branch. Assumes
398 // codegen and target are in thumb2 mode.
399 // NOTE: native pointer.
400 m2l_->LoadWordDisp(rs_rARM_SELF, func_offset.Int32Value(), rs_rARM_PC);
401 }
402
403 private:
404 const bool restore_lr_;
405 const size_t sp_displace_;
406 };
407 if (static_cast<size_t>(frame_size_) > Thread::kStackOverflowReservedUsableBytes) {
408 OpRegRegImm(kOpSub, rs_rARM_LR, rs_rARM_SP, frame_size_without_spills);
409 LIR* branch = OpCmpBranch(kCondUlt, rs_rARM_LR, rs_r12, nullptr);
410 // Need to restore LR since we used it as a temp.
411 AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, true, spill_size));
412 OpRegCopy(rs_rARM_SP, rs_rARM_LR); // Establish stack
413 } else {
414 // If the frame is small enough we are guaranteed to have enough space that remains to
415 // handle signals on the user stack.
416 OpRegRegImm(kOpSub, rs_rARM_SP, rs_rARM_SP, frame_size_without_spills);
417 LIR* branch = OpCmpBranch(kCondUlt, rs_rARM_SP, rs_r12, nullptr);
418 AddSlowPath(new(arena_)StackOverflowSlowPath(this, branch, false, frame_size_));
419 }
420 } else {
421 // Implicit stack overflow check.
422 // Generate a load from [sp, #-overflowsize]. If this is in the stack
423 // redzone we will get a segmentation fault.
424 //
425 // Caveat coder: if someone changes the kStackOverflowReservedBytes value
426 // we need to make sure that it's loadable in an immediate field of
427 // a sub instruction. Otherwise we will get a temp allocation and the
428 // code size will increase.
429 OpRegRegImm(kOpSub, rs_r12, rs_rARM_SP, Thread::kStackOverflowReservedBytes);
430 Load32Disp(rs_r12, 0, rs_r12);
431 MarkPossibleStackOverflowException();
432 OpRegImm(kOpSub, rs_rARM_SP, frame_size_without_spills);
433 }
434 } else {
435 OpRegImm(kOpSub, rs_rARM_SP, frame_size_without_spills);
436 }
437
438 FlushIns(ArgLocs, rl_method);
439
440 FreeTemp(rs_r0);
441 FreeTemp(rs_r1);
442 FreeTemp(rs_r2);
443 FreeTemp(rs_r3);
444}
445
446void Arm64Mir2Lir::GenExitSequence() {
447 int spill_count = num_core_spills_ + num_fp_spills_;
448 /*
449 * In the exit path, r0/r1 are live - make sure they aren't
450 * allocated by the register utilities as temps.
451 */
452 LockTemp(rs_r0);
453 LockTemp(rs_r1);
454
455 NewLIR0(kPseudoMethodExit);
456 OpRegImm(kOpAdd, rs_rARM_SP, frame_size_ - (spill_count * 4));
457 /* Need to restore any FP callee saves? */
458 if (num_fp_spills_) {
459 NewLIR1(kThumb2VPopCS, num_fp_spills_);
460 }
461 if (core_spill_mask_ & (1 << rs_rARM_LR.GetRegNum())) {
462 /* Unspill rARM_LR to rARM_PC */
463 core_spill_mask_ &= ~(1 << rs_rARM_LR.GetRegNum());
464 core_spill_mask_ |= (1 << rs_rARM_PC.GetRegNum());
465 }
466 NewLIR1(kThumb2Pop, core_spill_mask_);
467 if (!(core_spill_mask_ & (1 << rs_rARM_PC.GetRegNum()))) {
468 /* We didn't pop to rARM_PC, so must do a bv rARM_LR */
469 NewLIR1(kThumbBx, rs_rARM_LR.GetReg());
470 }
471}
472
473void Arm64Mir2Lir::GenSpecialExitSequence() {
474 NewLIR1(kThumbBx, rs_rARM_LR.GetReg());
475}
476
477} // namespace art