blob: 66ffac5b7d1bedb15b9f2177a50126cad04b0274 [file] [log] [blame]
Alexandre Rames22aa54b2016-10-18 09:32:29 +01001/*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_OPTIMIZING_SCHEDULER_H_
18#define ART_COMPILER_OPTIMIZING_SCHEDULER_H_
19
20#include <fstream>
21
22#include "base/time_utils.h"
Andreas Gampe8cf9cb32017-07-19 09:28:38 -070023#include "code_generator.h"
Alexandre Rames22aa54b2016-10-18 09:32:29 +010024#include "driver/compiler_driver.h"
xueliang.zhong2a3471f2017-05-08 18:36:40 +010025#include "load_store_analysis.h"
Alexandre Rames22aa54b2016-10-18 09:32:29 +010026#include "nodes.h"
27#include "optimization.h"
28
29namespace art {
30
31// General description of instruction scheduling.
32//
33// This pass tries to improve the quality of the generated code by reordering
34// instructions in the graph to avoid execution delays caused by execution
35// dependencies.
36// Currently, scheduling is performed at the block level, so no `HInstruction`
37// ever leaves its block in this pass.
38//
39// The scheduling process iterates through blocks in the graph. For blocks that
40// we can and want to schedule:
41// 1) Build a dependency graph for instructions.
42// It includes data dependencies (inputs/uses), but also environment
43// dependencies and side-effect dependencies.
44// 2) Schedule the dependency graph.
45// This is a topological sort of the dependency graph, using heuristics to
46// decide what node to scheduler first when there are multiple candidates.
47//
48// A few factors impacting the quality of the scheduling are:
49// - The heuristics used to decide what node to schedule in the topological sort
50// when there are multiple valid candidates. There is a wide range of
51// complexity possible here, going from a simple model only considering
52// latencies, to a super detailed CPU pipeline model.
53// - Fewer dependencies in the dependency graph give more freedom for the
54// scheduling heuristics. For example de-aliasing can allow possibilities for
55// reordering of memory accesses.
56// - The level of abstraction of the IR. It is easier to evaluate scheduling for
57// IRs that translate to a single assembly instruction than for IRs
58// that generate multiple assembly instructions or generate different code
59// depending on properties of the IR.
60// - Scheduling is performed before register allocation, it is not aware of the
61// impact of moving instructions on register allocation.
62//
63//
64// The scheduling code uses the terms predecessors, successors, and dependencies.
65// This can be confusing at times, so here are clarifications.
66// These terms are used from the point of view of the program dependency graph. So
67// the inputs of an instruction are part of its dependencies, and hence part its
68// predecessors. So the uses of an instruction are (part of) its successors.
69// (Side-effect dependencies can yield predecessors or successors that are not
70// inputs or uses.)
71//
72// Here is a trivial example. For the Java code:
73//
74// int a = 1 + 2;
75//
76// we would have the instructions
77//
78// i1 HIntConstant 1
79// i2 HIntConstant 2
80// i3 HAdd [i1,i2]
81//
82// `i1` and `i2` are predecessors of `i3`.
83// `i3` is a successor of `i1` and a successor of `i2`.
84// In a scheduling graph for this code we would have three nodes `n1`, `n2`,
85// and `n3` (respectively for instructions `i1`, `i1`, and `i3`).
86// Conceptually the program dependency graph for this would contain two edges
87//
88// n1 -> n3
89// n2 -> n3
90//
91// Since we schedule backwards (starting from the last instruction in each basic
92// block), the implementation of nodes keeps a list of pointers their
93// predecessors. So `n3` would keep pointers to its predecessors `n1` and `n2`.
94//
95// Node dependencies are also referred to from the program dependency graph
96// point of view: we say that node `B` immediately depends on `A` if there is an
97// edge from `A` to `B` in the program dependency graph. `A` is a predecessor of
98// `B`, `B` is a successor of `A`. In the example above `n3` depends on `n1` and
99// `n2`.
100// Since nodes in the scheduling graph keep a list of their predecessors, node
101// `B` will have a pointer to its predecessor `A`.
102// As we schedule backwards, `B` will be selected for scheduling before `A` is.
103//
104// So the scheduling for the example above could happen as follow
105//
106// |---------------------------+------------------------|
107// | candidates for scheduling | instructions scheduled |
108// | --------------------------+------------------------|
109//
110// The only node without successors is `n3`, so it is the only initial
111// candidate.
112//
113// | n3 | (none) |
114//
115// We schedule `n3` as the last (and only) instruction. All its predecessors
116// that do not have any unscheduled successors become candidate. That is, `n1`
117// and `n2` become candidates.
118//
119// | n1, n2 | n3 |
120//
121// One of the candidates is selected. In practice this is where scheduling
122// heuristics kick in, to decide which of the candidates should be selected.
123// In this example, let it be `n1`. It is scheduled before previously scheduled
124// nodes (in program order). There are no other nodes to add to the list of
125// candidates.
126//
127// | n2 | n1 |
128// | | n3 |
129//
130// The only candidate available for scheduling is `n2`. Schedule it before
131// (in program order) the previously scheduled nodes.
132//
133// | (none) | n2 |
134// | | n1 |
135// | | n3 |
136// |---------------------------+------------------------|
137//
138// So finally the instructions will be executed in the order `i2`, `i1`, and `i3`.
139// In this trivial example, it does not matter which of `i1` and `i2` is
140// scheduled first since they are constants. However the same process would
141// apply if `i1` and `i2` were actual operations (for example `HMul` and `HDiv`).
142
143// Set to true to have instruction scheduling dump scheduling graphs to the file
144// `scheduling_graphs.dot`. See `SchedulingGraph::DumpAsDotGraph()`.
145static constexpr bool kDumpDotSchedulingGraphs = false;
146
147// Typically used as a default instruction latency.
148static constexpr uint32_t kGenericInstructionLatency = 1;
149
150class HScheduler;
151
152/**
153 * A node representing an `HInstruction` in the `SchedulingGraph`.
154 */
155class SchedulingNode : public ArenaObject<kArenaAllocScheduler> {
156 public:
157 SchedulingNode(HInstruction* instr, ArenaAllocator* arena, bool is_scheduling_barrier)
158 : latency_(0),
159 internal_latency_(0),
160 critical_path_(0),
161 instruction_(instr),
162 is_scheduling_barrier_(is_scheduling_barrier),
163 data_predecessors_(arena->Adapter(kArenaAllocScheduler)),
164 other_predecessors_(arena->Adapter(kArenaAllocScheduler)),
165 num_unscheduled_successors_(0) {
166 data_predecessors_.reserve(kPreallocatedPredecessors);
167 }
168
169 void AddDataPredecessor(SchedulingNode* predecessor) {
170 data_predecessors_.push_back(predecessor);
171 predecessor->num_unscheduled_successors_++;
172 }
173
174 void AddOtherPredecessor(SchedulingNode* predecessor) {
175 other_predecessors_.push_back(predecessor);
176 predecessor->num_unscheduled_successors_++;
177 }
178
179 void DecrementNumberOfUnscheduledSuccessors() {
180 num_unscheduled_successors_--;
181 }
182
183 void MaybeUpdateCriticalPath(uint32_t other_critical_path) {
184 critical_path_ = std::max(critical_path_, other_critical_path);
185 }
186
187 bool HasUnscheduledSuccessors() const {
188 return num_unscheduled_successors_ != 0;
189 }
190
191 HInstruction* GetInstruction() const { return instruction_; }
192 uint32_t GetLatency() const { return latency_; }
193 void SetLatency(uint32_t latency) { latency_ = latency; }
194 uint32_t GetInternalLatency() const { return internal_latency_; }
195 void SetInternalLatency(uint32_t internal_latency) { internal_latency_ = internal_latency; }
196 uint32_t GetCriticalPath() const { return critical_path_; }
197 bool IsSchedulingBarrier() const { return is_scheduling_barrier_; }
198 const ArenaVector<SchedulingNode*>& GetDataPredecessors() const { return data_predecessors_; }
199 const ArenaVector<SchedulingNode*>& GetOtherPredecessors() const { return other_predecessors_; }
200
201 private:
202 // The latency of this node. It represents the latency between the moment the
203 // last instruction for this node has executed to the moment the result
204 // produced by this node is available to users.
205 uint32_t latency_;
206 // This represents the time spent *within* the generated code for this node.
207 // It should be zero for nodes that only generate a single instruction.
208 uint32_t internal_latency_;
209
210 // The critical path from this instruction to the end of scheduling. It is
211 // used by the scheduling heuristics to measure the priority of this instruction.
212 // It is defined as
213 // critical_path_ = latency_ + max((use.internal_latency_ + use.critical_path_) for all uses)
214 // (Note that here 'uses' is equivalent to 'data successors'. Also see comments in
215 // `HScheduler::Schedule(SchedulingNode* scheduling_node)`).
216 uint32_t critical_path_;
217
218 // The instruction that this node represents.
219 HInstruction* const instruction_;
220
221 // If a node is scheduling barrier, other nodes cannot be scheduled before it.
222 const bool is_scheduling_barrier_;
223
224 // The lists of predecessors. They cannot be scheduled before this node. Once
225 // this node is scheduled, we check whether any of its predecessors has become a
226 // valid candidate for scheduling.
227 // Predecessors in `data_predecessors_` are data dependencies. Those in
228 // `other_predecessors_` contain side-effect dependencies, environment
229 // dependencies, and scheduling barrier dependencies.
230 ArenaVector<SchedulingNode*> data_predecessors_;
231 ArenaVector<SchedulingNode*> other_predecessors_;
232
233 // The number of unscheduled successors for this node. This number is
234 // decremented as successors are scheduled. When it reaches zero this node
235 // becomes a valid candidate to schedule.
236 uint32_t num_unscheduled_successors_;
237
238 static constexpr size_t kPreallocatedPredecessors = 4;
239};
240
241/*
242 * Directed acyclic graph for scheduling.
243 */
244class SchedulingGraph : public ValueObject {
245 public:
246 SchedulingGraph(const HScheduler* scheduler, ArenaAllocator* arena)
247 : scheduler_(scheduler),
248 arena_(arena),
249 contains_scheduling_barrier_(false),
xueliang.zhong2a3471f2017-05-08 18:36:40 +0100250 nodes_map_(arena_->Adapter(kArenaAllocScheduler)),
251 heap_location_collector_(nullptr) {}
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100252
253 SchedulingNode* AddNode(HInstruction* instr, bool is_scheduling_barrier = false) {
254 SchedulingNode* node = new (arena_) SchedulingNode(instr, arena_, is_scheduling_barrier);
255 nodes_map_.Insert(std::make_pair(instr, node));
256 contains_scheduling_barrier_ |= is_scheduling_barrier;
257 AddDependencies(instr, is_scheduling_barrier);
258 return node;
259 }
260
261 void Clear() {
262 nodes_map_.Clear();
263 contains_scheduling_barrier_ = false;
264 }
265
xueliang.zhong2a3471f2017-05-08 18:36:40 +0100266 void SetHeapLocationCollector(const HeapLocationCollector& heap_location_collector) {
267 heap_location_collector_ = &heap_location_collector;
268 }
269
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100270 SchedulingNode* GetNode(const HInstruction* instr) const {
271 auto it = nodes_map_.Find(instr);
272 if (it == nodes_map_.end()) {
273 return nullptr;
274 } else {
275 return it->second;
276 }
277 }
278
279 bool IsSchedulingBarrier(const HInstruction* instruction) const;
280
281 bool HasImmediateDataDependency(const SchedulingNode* node, const SchedulingNode* other) const;
282 bool HasImmediateDataDependency(const HInstruction* node, const HInstruction* other) const;
283 bool HasImmediateOtherDependency(const SchedulingNode* node, const SchedulingNode* other) const;
284 bool HasImmediateOtherDependency(const HInstruction* node, const HInstruction* other) const;
285
286 size_t Size() const {
287 return nodes_map_.Size();
288 }
289
290 // Dump the scheduling graph, in dot file format, appending it to the file
291 // `scheduling_graphs.dot`.
292 void DumpAsDotGraph(const std::string& description,
293 const ArenaVector<SchedulingNode*>& initial_candidates);
294
295 protected:
296 void AddDependency(SchedulingNode* node, SchedulingNode* dependency, bool is_data_dependency);
297 void AddDataDependency(SchedulingNode* node, SchedulingNode* dependency) {
298 AddDependency(node, dependency, /*is_data_dependency*/true);
299 }
300 void AddOtherDependency(SchedulingNode* node, SchedulingNode* dependency) {
301 AddDependency(node, dependency, /*is_data_dependency*/false);
302 }
xueliang.zhong2a3471f2017-05-08 18:36:40 +0100303 bool HasMemoryDependency(const HInstruction* node, const HInstruction* other) const;
304 bool HasExceptionDependency(const HInstruction* node, const HInstruction* other) const;
305 bool HasSideEffectDependency(const HInstruction* node, const HInstruction* other) const;
306 bool ArrayAccessMayAlias(const HInstruction* node, const HInstruction* other) const;
307 bool FieldAccessMayAlias(const HInstruction* node, const HInstruction* other) const;
308 size_t ArrayAccessHeapLocation(HInstruction* array, HInstruction* index) const;
309 size_t FieldAccessHeapLocation(HInstruction* obj, const FieldInfo* field) const;
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100310
311 // Add dependencies nodes for the given `HInstruction`: inputs, environments, and side-effects.
312 void AddDependencies(HInstruction* instruction, bool is_scheduling_barrier = false);
313
314 const HScheduler* const scheduler_;
315
316 ArenaAllocator* const arena_;
317
318 bool contains_scheduling_barrier_;
319
320 ArenaHashMap<const HInstruction*, SchedulingNode*> nodes_map_;
xueliang.zhong2a3471f2017-05-08 18:36:40 +0100321
322 const HeapLocationCollector* heap_location_collector_;
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100323};
324
325/*
326 * The visitors derived from this base class are used by schedulers to evaluate
327 * the latencies of `HInstruction`s.
328 */
329class SchedulingLatencyVisitor : public HGraphDelegateVisitor {
330 public:
331 // This class and its sub-classes will never be used to drive a visit of an
332 // `HGraph` but only to visit `HInstructions` one at a time, so we do not need
333 // to pass a valid graph to `HGraphDelegateVisitor()`.
Andreas Gamped9911ee2017-03-27 13:27:24 -0700334 SchedulingLatencyVisitor()
335 : HGraphDelegateVisitor(nullptr),
336 last_visited_latency_(0),
337 last_visited_internal_latency_(0) {}
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100338
339 void VisitInstruction(HInstruction* instruction) OVERRIDE {
340 LOG(FATAL) << "Error visiting " << instruction->DebugName() << ". "
341 "Architecture-specific scheduling latency visitors must handle all instructions"
342 " (potentially by overriding the generic `VisitInstruction()`.";
343 UNREACHABLE();
344 }
345
346 void Visit(HInstruction* instruction) {
347 instruction->Accept(this);
348 }
349
350 void CalculateLatency(SchedulingNode* node) {
351 // By default nodes have no internal latency.
352 last_visited_internal_latency_ = 0;
353 Visit(node->GetInstruction());
354 }
355
356 uint32_t GetLastVisitedLatency() const { return last_visited_latency_; }
357 uint32_t GetLastVisitedInternalLatency() const { return last_visited_internal_latency_; }
358
359 protected:
360 // The latency of the most recent visited SchedulingNode.
361 // This is for reporting the latency value to the user of this visitor.
362 uint32_t last_visited_latency_;
363 // This represents the time spent *within* the generated code for the most recent visited
364 // SchedulingNode. This is for reporting the internal latency value to the user of this visitor.
365 uint32_t last_visited_internal_latency_;
366};
367
368class SchedulingNodeSelector : public ArenaObject<kArenaAllocScheduler> {
369 public:
370 virtual SchedulingNode* PopHighestPriorityNode(ArenaVector<SchedulingNode*>* nodes,
371 const SchedulingGraph& graph) = 0;
372 virtual ~SchedulingNodeSelector() {}
373 protected:
374 static void DeleteNodeAtIndex(ArenaVector<SchedulingNode*>* nodes, size_t index) {
375 (*nodes)[index] = nodes->back();
376 nodes->pop_back();
377 }
378};
379
380/*
381 * Select a `SchedulingNode` at random within the candidates.
382 */
383class RandomSchedulingNodeSelector : public SchedulingNodeSelector {
384 public:
385 explicit RandomSchedulingNodeSelector() : seed_(0) {
386 seed_ = static_cast<uint32_t>(NanoTime());
387 srand(seed_);
388 }
389
390 SchedulingNode* PopHighestPriorityNode(ArenaVector<SchedulingNode*>* nodes,
391 const SchedulingGraph& graph) OVERRIDE {
392 UNUSED(graph);
393 DCHECK(!nodes->empty());
394 size_t select = rand_r(&seed_) % nodes->size();
395 SchedulingNode* select_node = (*nodes)[select];
396 DeleteNodeAtIndex(nodes, select);
397 return select_node;
398 }
399
400 uint32_t seed_;
401};
402
403/*
404 * Select a `SchedulingNode` according to critical path information,
405 * with heuristics to favor certain instruction patterns like materialized condition.
406 */
407class CriticalPathSchedulingNodeSelector : public SchedulingNodeSelector {
408 public:
409 CriticalPathSchedulingNodeSelector() : prev_select_(nullptr) {}
410
411 SchedulingNode* PopHighestPriorityNode(ArenaVector<SchedulingNode*>* nodes,
412 const SchedulingGraph& graph) OVERRIDE;
413
414 protected:
415 SchedulingNode* GetHigherPrioritySchedulingNode(SchedulingNode* candidate,
416 SchedulingNode* check) const;
417
418 SchedulingNode* SelectMaterializedCondition(ArenaVector<SchedulingNode*>* nodes,
419 const SchedulingGraph& graph) const;
420
421 private:
422 const SchedulingNode* prev_select_;
423};
424
425class HScheduler {
426 public:
427 HScheduler(ArenaAllocator* arena,
428 SchedulingLatencyVisitor* latency_visitor,
429 SchedulingNodeSelector* selector)
430 : arena_(arena),
431 latency_visitor_(latency_visitor),
432 selector_(selector),
433 only_optimize_loop_blocks_(true),
434 scheduling_graph_(this, arena),
Andreas Gamped9911ee2017-03-27 13:27:24 -0700435 cursor_(nullptr),
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100436 candidates_(arena_->Adapter(kArenaAllocScheduler)) {}
437 virtual ~HScheduler() {}
438
439 void Schedule(HGraph* graph);
440
441 void SetOnlyOptimizeLoopBlocks(bool loop_only) { only_optimize_loop_blocks_ = loop_only; }
442
443 // Instructions can not be rescheduled across a scheduling barrier.
444 virtual bool IsSchedulingBarrier(const HInstruction* instruction) const;
445
446 protected:
447 void Schedule(HBasicBlock* block);
448 void Schedule(SchedulingNode* scheduling_node);
449 void Schedule(HInstruction* instruction);
450
451 // Any instruction returning `false` via this method will prevent its
452 // containing basic block from being scheduled.
453 // This method is used to restrict scheduling to instructions that we know are
454 // safe to handle.
455 virtual bool IsSchedulable(const HInstruction* instruction) const;
456 bool IsSchedulable(const HBasicBlock* block) const;
457
458 void CalculateLatency(SchedulingNode* node) {
459 latency_visitor_->CalculateLatency(node);
460 node->SetLatency(latency_visitor_->GetLastVisitedLatency());
461 node->SetInternalLatency(latency_visitor_->GetLastVisitedInternalLatency());
462 }
463
464 ArenaAllocator* const arena_;
465 SchedulingLatencyVisitor* const latency_visitor_;
466 SchedulingNodeSelector* const selector_;
467 bool only_optimize_loop_blocks_;
468
469 // We instantiate the members below as part of this class to avoid
470 // instantiating them locally for every chunk scheduled.
471 SchedulingGraph scheduling_graph_;
472 // A pointer indicating where the next instruction to be scheduled will be inserted.
473 HInstruction* cursor_;
474 // The list of candidates for scheduling. A node becomes a candidate when all
475 // its predecessors have been scheduled.
476 ArenaVector<SchedulingNode*> candidates_;
477
478 private:
479 DISALLOW_COPY_AND_ASSIGN(HScheduler);
480};
481
482inline bool SchedulingGraph::IsSchedulingBarrier(const HInstruction* instruction) const {
483 return scheduler_->IsSchedulingBarrier(instruction);
484}
485
486class HInstructionScheduling : public HOptimization {
487 public:
xueliang.zhongf7caf682017-03-01 16:07:02 +0000488 HInstructionScheduling(HGraph* graph, InstructionSet instruction_set, CodeGenerator* cg = nullptr)
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100489 : HOptimization(graph, kInstructionScheduling),
xueliang.zhongf7caf682017-03-01 16:07:02 +0000490 codegen_(cg),
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100491 instruction_set_(instruction_set) {}
492
493 void Run() {
494 Run(/*only_optimize_loop_blocks*/ true, /*schedule_randomly*/ false);
495 }
496 void Run(bool only_optimize_loop_blocks, bool schedule_randomly);
497
498 static constexpr const char* kInstructionScheduling = "scheduler";
499
xueliang.zhong2a3471f2017-05-08 18:36:40 +0100500 private:
xueliang.zhongf7caf682017-03-01 16:07:02 +0000501 CodeGenerator* const codegen_;
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100502 const InstructionSet instruction_set_;
Alexandre Rames22aa54b2016-10-18 09:32:29 +0100503 DISALLOW_COPY_AND_ASSIGN(HInstructionScheduling);
504};
505
506} // namespace art
507
508#endif // ART_COMPILER_OPTIMIZING_SCHEDULER_H_