blob: a964cc720fe58b34acf84928eaa3b669c13bab06 [file] [log] [blame]
buzbee311ca162013-02-28 15:56:43 -08001/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "compiler_internals.h"
18#include "local_value_numbering.h"
Ian Rogers8d3a1172013-06-04 01:13:28 -070019#include "dataflow_iterator-inl.h"
buzbee311ca162013-02-28 15:56:43 -080020
21namespace art {
22
23/*
24 * Main table containing data flow attributes for each bytecode. The
25 * first kNumPackedOpcodes entries are for Dalvik bytecode
26 * instructions, where extended opcode at the MIR level are appended
27 * afterwards.
28 *
29 * TODO - many optimization flags are incomplete - they will only limit the
30 * scope of optimizations but will not cause mis-optimizations.
31 */
buzbee1da1e2f2013-11-15 13:37:01 -080032const uint64_t MIRGraph::oat_data_flow_attributes_[kMirOpLast] = {
buzbee311ca162013-02-28 15:56:43 -080033 // 00 NOP
34 DF_NOP,
35
36 // 01 MOVE vA, vB
37 DF_DA | DF_UB | DF_IS_MOVE,
38
39 // 02 MOVE_FROM16 vAA, vBBBB
40 DF_DA | DF_UB | DF_IS_MOVE,
41
42 // 03 MOVE_16 vAAAA, vBBBB
43 DF_DA | DF_UB | DF_IS_MOVE,
44
45 // 04 MOVE_WIDE vA, vB
46 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
47
48 // 05 MOVE_WIDE_FROM16 vAA, vBBBB
49 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
50
51 // 06 MOVE_WIDE_16 vAAAA, vBBBB
52 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE,
53
54 // 07 MOVE_OBJECT vA, vB
55 DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
56
57 // 08 MOVE_OBJECT_FROM16 vAA, vBBBB
58 DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
59
60 // 09 MOVE_OBJECT_16 vAAAA, vBBBB
61 DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B,
62
63 // 0A MOVE_RESULT vAA
64 DF_DA,
65
66 // 0B MOVE_RESULT_WIDE vAA
67 DF_DA | DF_A_WIDE,
68
69 // 0C MOVE_RESULT_OBJECT vAA
70 DF_DA | DF_REF_A,
71
72 // 0D MOVE_EXCEPTION vAA
Ian Rogersfa7809f2013-06-13 11:15:15 -070073 DF_DA | DF_REF_A | DF_NON_NULL_DST,
buzbee311ca162013-02-28 15:56:43 -080074
75 // 0E RETURN_VOID
76 DF_NOP,
77
78 // 0F RETURN vAA
79 DF_UA,
80
81 // 10 RETURN_WIDE vAA
82 DF_UA | DF_A_WIDE,
83
84 // 11 RETURN_OBJECT vAA
85 DF_UA | DF_REF_A,
86
87 // 12 CONST_4 vA, #+B
88 DF_DA | DF_SETS_CONST,
89
90 // 13 CONST_16 vAA, #+BBBB
91 DF_DA | DF_SETS_CONST,
92
93 // 14 CONST vAA, #+BBBBBBBB
94 DF_DA | DF_SETS_CONST,
95
96 // 15 CONST_HIGH16 VAA, #+BBBB0000
97 DF_DA | DF_SETS_CONST,
98
99 // 16 CONST_WIDE_16 vAA, #+BBBB
100 DF_DA | DF_A_WIDE | DF_SETS_CONST,
101
102 // 17 CONST_WIDE_32 vAA, #+BBBBBBBB
103 DF_DA | DF_A_WIDE | DF_SETS_CONST,
104
105 // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB
106 DF_DA | DF_A_WIDE | DF_SETS_CONST,
107
108 // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000
109 DF_DA | DF_A_WIDE | DF_SETS_CONST,
110
111 // 1A CONST_STRING vAA, string@BBBB
Ian Rogersfa7809f2013-06-13 11:15:15 -0700112 DF_DA | DF_REF_A | DF_NON_NULL_DST,
buzbee311ca162013-02-28 15:56:43 -0800113
114 // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB
Ian Rogersfa7809f2013-06-13 11:15:15 -0700115 DF_DA | DF_REF_A | DF_NON_NULL_DST,
buzbee311ca162013-02-28 15:56:43 -0800116
117 // 1C CONST_CLASS vAA, type@BBBB
Ian Rogersfa7809f2013-06-13 11:15:15 -0700118 DF_DA | DF_REF_A | DF_NON_NULL_DST,
buzbee311ca162013-02-28 15:56:43 -0800119
120 // 1D MONITOR_ENTER vAA
121 DF_UA | DF_NULL_CHK_0 | DF_REF_A,
122
123 // 1E MONITOR_EXIT vAA
124 DF_UA | DF_NULL_CHK_0 | DF_REF_A,
125
126 // 1F CHK_CAST vAA, type@BBBB
127 DF_UA | DF_REF_A | DF_UMS,
128
129 // 20 INSTANCE_OF vA, vB, type@CCCC
130 DF_DA | DF_UB | DF_CORE_A | DF_REF_B | DF_UMS,
131
132 // 21 ARRAY_LENGTH vA, vB
133 DF_DA | DF_UB | DF_NULL_CHK_0 | DF_CORE_A | DF_REF_B,
134
135 // 22 NEW_INSTANCE vAA, type@BBBB
136 DF_DA | DF_NON_NULL_DST | DF_REF_A | DF_UMS,
137
138 // 23 NEW_ARRAY vA, vB, type@CCCC
139 DF_DA | DF_UB | DF_NON_NULL_DST | DF_REF_A | DF_CORE_B | DF_UMS,
140
141 // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA}
142 DF_FORMAT_35C | DF_NON_NULL_RET | DF_UMS,
143
144 // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB
145 DF_FORMAT_3RC | DF_NON_NULL_RET | DF_UMS,
146
147 // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB
148 DF_UA | DF_REF_A | DF_UMS,
149
150 // 27 THROW vAA
151 DF_UA | DF_REF_A | DF_UMS,
152
153 // 28 GOTO
154 DF_NOP,
155
156 // 29 GOTO_16
157 DF_NOP,
158
159 // 2A GOTO_32
160 DF_NOP,
161
162 // 2B PACKED_SWITCH vAA, +BBBBBBBB
163 DF_UA,
164
165 // 2C SPARSE_SWITCH vAA, +BBBBBBBB
166 DF_UA,
167
168 // 2D CMPL_FLOAT vAA, vBB, vCC
169 DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
170
171 // 2E CMPG_FLOAT vAA, vBB, vCC
172 DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A,
173
174 // 2F CMPL_DOUBLE vAA, vBB, vCC
175 DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
176
177 // 30 CMPG_DOUBLE vAA, vBB, vCC
178 DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A,
179
180 // 31 CMP_LONG vAA, vBB, vCC
181 DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
182
183 // 32 IF_EQ vA, vB, +CCCC
184 DF_UA | DF_UB,
185
186 // 33 IF_NE vA, vB, +CCCC
187 DF_UA | DF_UB,
188
189 // 34 IF_LT vA, vB, +CCCC
190 DF_UA | DF_UB,
191
192 // 35 IF_GE vA, vB, +CCCC
193 DF_UA | DF_UB,
194
195 // 36 IF_GT vA, vB, +CCCC
196 DF_UA | DF_UB,
197
198 // 37 IF_LE vA, vB, +CCCC
199 DF_UA | DF_UB,
200
201 // 38 IF_EQZ vAA, +BBBB
202 DF_UA,
203
204 // 39 IF_NEZ vAA, +BBBB
205 DF_UA,
206
207 // 3A IF_LTZ vAA, +BBBB
208 DF_UA,
209
210 // 3B IF_GEZ vAA, +BBBB
211 DF_UA,
212
213 // 3C IF_GTZ vAA, +BBBB
214 DF_UA,
215
216 // 3D IF_LEZ vAA, +BBBB
217 DF_UA,
218
219 // 3E UNUSED_3E
220 DF_NOP,
221
222 // 3F UNUSED_3F
223 DF_NOP,
224
225 // 40 UNUSED_40
226 DF_NOP,
227
228 // 41 UNUSED_41
229 DF_NOP,
230
231 // 42 UNUSED_42
232 DF_NOP,
233
234 // 43 UNUSED_43
235 DF_NOP,
236
237 // 44 AGET vAA, vBB, vCC
buzbee1da1e2f2013-11-15 13:37:01 -0800238 DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800239
240 // 45 AGET_WIDE vAA, vBB, vCC
buzbee1da1e2f2013-11-15 13:37:01 -0800241 DF_DA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800242
243 // 46 AGET_OBJECT vAA, vBB, vCC
buzbee1da1e2f2013-11-15 13:37:01 -0800244 DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800245
246 // 47 AGET_BOOLEAN vAA, vBB, vCC
buzbee1da1e2f2013-11-15 13:37:01 -0800247 DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800248
249 // 48 AGET_BYTE vAA, vBB, vCC
buzbee1da1e2f2013-11-15 13:37:01 -0800250 DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800251
252 // 49 AGET_CHAR vAA, vBB, vCC
buzbee1da1e2f2013-11-15 13:37:01 -0800253 DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800254
255 // 4A AGET_SHORT vAA, vBB, vCC
buzbee1da1e2f2013-11-15 13:37:01 -0800256 DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800257
258 // 4B APUT vAA, vBB, vCC
buzbee1da1e2f2013-11-15 13:37:01 -0800259 DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800260
261 // 4C APUT_WIDE vAA, vBB, vCC
buzbee1da1e2f2013-11-15 13:37:01 -0800262 DF_UA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_2 | DF_RANGE_CHK_3 | DF_REF_B | DF_CORE_C | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800263
264 // 4D APUT_OBJECT vAA, vBB, vCC
buzbee1da1e2f2013-11-15 13:37:01 -0800265 DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_A | DF_REF_B | DF_CORE_C | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800266
267 // 4E APUT_BOOLEAN vAA, vBB, vCC
buzbee1da1e2f2013-11-15 13:37:01 -0800268 DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800269
270 // 4F APUT_BYTE vAA, vBB, vCC
buzbee1da1e2f2013-11-15 13:37:01 -0800271 DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800272
273 // 50 APUT_CHAR vAA, vBB, vCC
buzbee1da1e2f2013-11-15 13:37:01 -0800274 DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800275
276 // 51 APUT_SHORT vAA, vBB, vCC
buzbee1da1e2f2013-11-15 13:37:01 -0800277 DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800278
279 // 52 IGET vA, vB, field@CCCC
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000280 DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800281
282 // 53 IGET_WIDE vA, vB, field@CCCC
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000283 DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800284
285 // 54 IGET_OBJECT vA, vB, field@CCCC
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000286 DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800287
288 // 55 IGET_BOOLEAN vA, vB, field@CCCC
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000289 DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800290
291 // 56 IGET_BYTE vA, vB, field@CCCC
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000292 DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800293
294 // 57 IGET_CHAR vA, vB, field@CCCC
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000295 DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800296
297 // 58 IGET_SHORT vA, vB, field@CCCC
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000298 DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800299
300 // 59 IPUT vA, vB, field@CCCC
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000301 DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800302
303 // 5A IPUT_WIDE vA, vB, field@CCCC
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000304 DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800305
306 // 5B IPUT_OBJECT vA, vB, field@CCCC
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000307 DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800308
309 // 5C IPUT_BOOLEAN vA, vB, field@CCCC
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000310 DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800311
312 // 5D IPUT_BYTE vA, vB, field@CCCC
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000313 DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800314
315 // 5E IPUT_CHAR vA, vB, field@CCCC
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000316 DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800317
318 // 5F IPUT_SHORT vA, vB, field@CCCC
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000319 DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800320
321 // 60 SGET vAA, field@BBBB
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000322 DF_DA | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800323
324 // 61 SGET_WIDE vAA, field@BBBB
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000325 DF_DA | DF_A_WIDE | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800326
327 // 62 SGET_OBJECT vAA, field@BBBB
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000328 DF_DA | DF_REF_A | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800329
330 // 63 SGET_BOOLEAN vAA, field@BBBB
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000331 DF_DA | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800332
333 // 64 SGET_BYTE vAA, field@BBBB
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000334 DF_DA | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800335
336 // 65 SGET_CHAR vAA, field@BBBB
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000337 DF_DA | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800338
339 // 66 SGET_SHORT vAA, field@BBBB
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000340 DF_DA | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800341
342 // 67 SPUT vAA, field@BBBB
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000343 DF_UA | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800344
345 // 68 SPUT_WIDE vAA, field@BBBB
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000346 DF_UA | DF_A_WIDE | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800347
348 // 69 SPUT_OBJECT vAA, field@BBBB
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000349 DF_UA | DF_REF_A | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800350
351 // 6A SPUT_BOOLEAN vAA, field@BBBB
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000352 DF_UA | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800353
354 // 6B SPUT_BYTE vAA, field@BBBB
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000355 DF_UA | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800356
357 // 6C SPUT_CHAR vAA, field@BBBB
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000358 DF_UA | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800359
360 // 6D SPUT_SHORT vAA, field@BBBB
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000361 DF_UA | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800362
363 // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA}
364 DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
365
366 // 6F INVOKE_SUPER {vD, vE, vF, vG, vA}
367 DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
368
369 // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA}
370 DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
371
372 // 71 INVOKE_STATIC {vD, vE, vF, vG, vA}
373 DF_FORMAT_35C | DF_UMS,
374
375 // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA}
Sebastien Hertz67ce9b02013-07-11 14:31:18 +0200376 DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800377
378 // 73 UNUSED_73
379 DF_NOP,
380
381 // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN}
382 DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
383
384 // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN}
385 DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
386
387 // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN}
388 DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
389
390 // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN}
391 DF_FORMAT_3RC | DF_UMS,
392
393 // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN}
Sebastien Hertz67ce9b02013-07-11 14:31:18 +0200394 DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800395
396 // 79 UNUSED_79
397 DF_NOP,
398
399 // 7A UNUSED_7A
400 DF_NOP,
401
402 // 7B NEG_INT vA, vB
403 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
404
405 // 7C NOT_INT vA, vB
406 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
407
408 // 7D NEG_LONG vA, vB
409 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
410
411 // 7E NOT_LONG vA, vB
412 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
413
414 // 7F NEG_FLOAT vA, vB
415 DF_DA | DF_UB | DF_FP_A | DF_FP_B,
416
417 // 80 NEG_DOUBLE vA, vB
418 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
419
420 // 81 INT_TO_LONG vA, vB
421 DF_DA | DF_A_WIDE | DF_UB | DF_CORE_A | DF_CORE_B,
422
423 // 82 INT_TO_FLOAT vA, vB
424 DF_DA | DF_UB | DF_FP_A | DF_CORE_B,
425
426 // 83 INT_TO_DOUBLE vA, vB
427 DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_CORE_B,
428
429 // 84 LONG_TO_INT vA, vB
430 DF_DA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
431
432 // 85 LONG_TO_FLOAT vA, vB
433 DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
434
435 // 86 LONG_TO_DOUBLE vA, vB
436 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B,
437
438 // 87 FLOAT_TO_INT vA, vB
439 DF_DA | DF_UB | DF_FP_B | DF_CORE_A,
440
441 // 88 FLOAT_TO_LONG vA, vB
442 DF_DA | DF_A_WIDE | DF_UB | DF_FP_B | DF_CORE_A,
443
444 // 89 FLOAT_TO_DOUBLE vA, vB
445 DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_FP_B,
446
447 // 8A DOUBLE_TO_INT vA, vB
448 DF_DA | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
449
450 // 8B DOUBLE_TO_LONG vA, vB
451 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A,
452
453 // 8C DOUBLE_TO_FLOAT vA, vB
454 DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
455
456 // 8D INT_TO_BYTE vA, vB
457 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
458
459 // 8E INT_TO_CHAR vA, vB
460 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
461
462 // 8F INT_TO_SHORT vA, vB
463 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
464
465 // 90 ADD_INT vAA, vBB, vCC
466 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
467
468 // 91 SUB_INT vAA, vBB, vCC
469 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
470
471 // 92 MUL_INT vAA, vBB, vCC
472 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
473
474 // 93 DIV_INT vAA, vBB, vCC
475 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
476
477 // 94 REM_INT vAA, vBB, vCC
478 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
479
480 // 95 AND_INT vAA, vBB, vCC
481 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
482
483 // 96 OR_INT vAA, vBB, vCC
484 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
485
486 // 97 XOR_INT vAA, vBB, vCC
487 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
488
489 // 98 SHL_INT vAA, vBB, vCC
490 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
491
492 // 99 SHR_INT vAA, vBB, vCC
493 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
494
495 // 9A USHR_INT vAA, vBB, vCC
496 DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
497
498 // 9B ADD_LONG vAA, vBB, vCC
499 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
500
501 // 9C SUB_LONG vAA, vBB, vCC
502 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
503
504 // 9D MUL_LONG vAA, vBB, vCC
505 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
506
507 // 9E DIV_LONG vAA, vBB, vCC
508 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
509
510 // 9F REM_LONG vAA, vBB, vCC
511 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
512
513 // A0 AND_LONG vAA, vBB, vCC
514 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
515
516 // A1 OR_LONG vAA, vBB, vCC
517 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
518
519 // A2 XOR_LONG vAA, vBB, vCC
520 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C,
521
522 // A3 SHL_LONG vAA, vBB, vCC
523 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
524
525 // A4 SHR_LONG vAA, vBB, vCC
526 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
527
528 // A5 USHR_LONG vAA, vBB, vCC
529 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C,
530
531 // A6 ADD_FLOAT vAA, vBB, vCC
532 DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
533
534 // A7 SUB_FLOAT vAA, vBB, vCC
535 DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
536
537 // A8 MUL_FLOAT vAA, vBB, vCC
538 DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
539
540 // A9 DIV_FLOAT vAA, vBB, vCC
541 DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
542
543 // AA REM_FLOAT vAA, vBB, vCC
544 DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C,
545
546 // AB ADD_DOUBLE vAA, vBB, vCC
547 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
548
549 // AC SUB_DOUBLE vAA, vBB, vCC
550 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
551
552 // AD MUL_DOUBLE vAA, vBB, vCC
553 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
554
555 // AE DIV_DOUBLE vAA, vBB, vCC
556 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
557
558 // AF REM_DOUBLE vAA, vBB, vCC
559 DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C,
560
561 // B0 ADD_INT_2ADDR vA, vB
562 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
563
564 // B1 SUB_INT_2ADDR vA, vB
565 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
566
567 // B2 MUL_INT_2ADDR vA, vB
568 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
569
570 // B3 DIV_INT_2ADDR vA, vB
571 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
572
573 // B4 REM_INT_2ADDR vA, vB
574 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
575
576 // B5 AND_INT_2ADDR vA, vB
577 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
578
579 // B6 OR_INT_2ADDR vA, vB
580 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
581
582 // B7 XOR_INT_2ADDR vA, vB
583 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
584
585 // B8 SHL_INT_2ADDR vA, vB
586 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
587
588 // B9 SHR_INT_2ADDR vA, vB
589 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
590
591 // BA USHR_INT_2ADDR vA, vB
592 DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
593
594 // BB ADD_LONG_2ADDR vA, vB
595 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
596
597 // BC SUB_LONG_2ADDR vA, vB
598 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
599
600 // BD MUL_LONG_2ADDR vA, vB
601 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
602
603 // BE DIV_LONG_2ADDR vA, vB
604 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
605
606 // BF REM_LONG_2ADDR vA, vB
607 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
608
609 // C0 AND_LONG_2ADDR vA, vB
610 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
611
612 // C1 OR_LONG_2ADDR vA, vB
613 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
614
615 // C2 XOR_LONG_2ADDR vA, vB
616 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
617
618 // C3 SHL_LONG_2ADDR vA, vB
619 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
620
621 // C4 SHR_LONG_2ADDR vA, vB
622 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
623
624 // C5 USHR_LONG_2ADDR vA, vB
625 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B,
626
627 // C6 ADD_FLOAT_2ADDR vA, vB
628 DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
629
630 // C7 SUB_FLOAT_2ADDR vA, vB
631 DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
632
633 // C8 MUL_FLOAT_2ADDR vA, vB
634 DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
635
636 // C9 DIV_FLOAT_2ADDR vA, vB
637 DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
638
639 // CA REM_FLOAT_2ADDR vA, vB
640 DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B,
641
642 // CB ADD_DOUBLE_2ADDR vA, vB
643 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
644
645 // CC SUB_DOUBLE_2ADDR vA, vB
646 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
647
648 // CD MUL_DOUBLE_2ADDR vA, vB
649 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
650
651 // CE DIV_DOUBLE_2ADDR vA, vB
652 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
653
654 // CF REM_DOUBLE_2ADDR vA, vB
655 DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
656
657 // D0 ADD_INT_LIT16 vA, vB, #+CCCC
658 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
659
660 // D1 RSUB_INT vA, vB, #+CCCC
661 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
662
663 // D2 MUL_INT_LIT16 vA, vB, #+CCCC
664 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
665
666 // D3 DIV_INT_LIT16 vA, vB, #+CCCC
667 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
668
669 // D4 REM_INT_LIT16 vA, vB, #+CCCC
670 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
671
672 // D5 AND_INT_LIT16 vA, vB, #+CCCC
673 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
674
675 // D6 OR_INT_LIT16 vA, vB, #+CCCC
676 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
677
678 // D7 XOR_INT_LIT16 vA, vB, #+CCCC
679 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
680
681 // D8 ADD_INT_LIT8 vAA, vBB, #+CC
682 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
683
684 // D9 RSUB_INT_LIT8 vAA, vBB, #+CC
685 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
686
687 // DA MUL_INT_LIT8 vAA, vBB, #+CC
688 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
689
690 // DB DIV_INT_LIT8 vAA, vBB, #+CC
691 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
692
693 // DC REM_INT_LIT8 vAA, vBB, #+CC
694 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
695
696 // DD AND_INT_LIT8 vAA, vBB, #+CC
697 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
698
699 // DE OR_INT_LIT8 vAA, vBB, #+CC
700 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
701
702 // DF XOR_INT_LIT8 vAA, vBB, #+CC
703 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
704
705 // E0 SHL_INT_LIT8 vAA, vBB, #+CC
706 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
707
708 // E1 SHR_INT_LIT8 vAA, vBB, #+CC
709 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
710
711 // E2 USHR_INT_LIT8 vAA, vBB, #+CC
712 DF_DA | DF_UB | DF_CORE_A | DF_CORE_B,
713
714 // E3 IGET_VOLATILE
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000715 DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800716
717 // E4 IPUT_VOLATILE
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000718 DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800719
720 // E5 SGET_VOLATILE
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000721 DF_DA | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800722
723 // E6 SPUT_VOLATILE
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000724 DF_UA | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800725
726 // E7 IGET_OBJECT_VOLATILE
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000727 DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800728
729 // E8 IGET_WIDE_VOLATILE
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000730 DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800731
732 // E9 IPUT_WIDE_VOLATILE
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000733 DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800734
735 // EA SGET_WIDE_VOLATILE
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000736 DF_DA | DF_A_WIDE | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800737
738 // EB SPUT_WIDE_VOLATILE
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000739 DF_UA | DF_A_WIDE | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800740
741 // EC BREAKPOINT
742 DF_NOP,
743
744 // ED THROW_VERIFICATION_ERROR
745 DF_NOP | DF_UMS,
746
747 // EE EXECUTE_INLINE
748 DF_FORMAT_35C,
749
750 // EF EXECUTE_INLINE_RANGE
751 DF_FORMAT_3RC,
752
753 // F0 INVOKE_OBJECT_INIT_RANGE
754 DF_NOP | DF_NULL_CHK_0,
755
756 // F1 RETURN_VOID_BARRIER
757 DF_NOP,
758
759 // F2 IGET_QUICK
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000760 DF_DA | DF_UB | DF_NULL_CHK_0 | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800761
762 // F3 IGET_WIDE_QUICK
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000763 DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800764
765 // F4 IGET_OBJECT_QUICK
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000766 DF_DA | DF_UB | DF_NULL_CHK_0 | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800767
768 // F5 IPUT_QUICK
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000769 DF_UA | DF_UB | DF_NULL_CHK_1 | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800770
771 // F6 IPUT_WIDE_QUICK
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000772 DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800773
774 // F7 IPUT_OBJECT_QUICK
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000775 DF_UA | DF_UB | DF_NULL_CHK_1 | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800776
777 // F8 INVOKE_VIRTUAL_QUICK
778 DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
779
780 // F9 INVOKE_VIRTUAL_QUICK_RANGE
781 DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
782
783 // FA INVOKE_SUPER_QUICK
784 DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS,
785
786 // FB INVOKE_SUPER_QUICK_RANGE
787 DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS,
788
789 // FC IPUT_OBJECT_VOLATILE
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000790 DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B | DF_IFIELD | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800791
792 // FD SGET_OBJECT_VOLATILE
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000793 DF_DA | DF_REF_A | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800794
795 // FE SPUT_OBJECT_VOLATILE
Vladimir Marko3d73ba22014-03-06 15:18:04 +0000796 DF_UA | DF_REF_A | DF_SFIELD | DF_UMS,
buzbee311ca162013-02-28 15:56:43 -0800797
798 // FF UNUSED_FF
799 DF_NOP,
800
801 // Beginning of extended MIR opcodes
802 // 100 MIR_PHI
803 DF_DA | DF_NULL_TRANSFER_N,
804
805 // 101 MIR_COPY
806 DF_DA | DF_UB | DF_IS_MOVE,
807
808 // 102 MIR_FUSED_CMPL_FLOAT
809 DF_UA | DF_UB | DF_FP_A | DF_FP_B,
810
811 // 103 MIR_FUSED_CMPG_FLOAT
812 DF_UA | DF_UB | DF_FP_A | DF_FP_B,
813
814 // 104 MIR_FUSED_CMPL_DOUBLE
815 DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
816
817 // 105 MIR_FUSED_CMPG_DOUBLE
818 DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B,
819
820 // 106 MIR_FUSED_CMP_LONG
821 DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B,
822
823 // 107 MIR_NOP
824 DF_NOP,
825
826 // 108 MIR_NULL_CHECK
Razvan A Lupusoru76423242014-08-04 09:38:46 -0700827 DF_UA | DF_REF_A | DF_NULL_CHK_0 | DF_LVN,
buzbee311ca162013-02-28 15:56:43 -0800828
829 // 109 MIR_RANGE_CHECK
830 0,
831
832 // 110 MIR_DIV_ZERO_CHECK
833 0,
834
835 // 111 MIR_CHECK
836 0,
837
838 // 112 MIR_CHECKPART2
839 0,
840
841 // 113 MIR_SELECT
842 DF_DA | DF_UB,
Udayan Banerji60bfe7b2014-07-08 19:59:43 -0700843
844 // 114 MirOpConstVector
845 DF_DA,
846
847 // 115 MirOpMoveVector
848 0,
849
850 // 116 MirOpPackedMultiply
851 0,
852
853 // 117 MirOpPackedAddition
854 0,
855
856 // 118 MirOpPackedSubtract
857 0,
858
859 // 119 MirOpPackedShiftLeft
860 0,
861
862 // 120 MirOpPackedSignedShiftRight
863 0,
864
865 // 121 MirOpPackedUnsignedShiftRight
866 0,
867
868 // 122 MirOpPackedAnd
869 0,
870
871 // 123 MirOpPackedOr
872 0,
873
874 // 124 MirOpPackedXor
875 0,
876
877 // 125 MirOpPackedAddReduce
878 DF_DA | DF_UA,
879
880 // 126 MirOpPackedReduce
881 DF_DA,
882
883 // 127 MirOpPackedSet
884 DF_UB,
885
886 // 128 MirOpReserveVectorRegisters
887 0,
888
889 // 129 MirOpReturnVectorRegisters
890 0,
Jean Christophe Beylerb5bce7c2014-07-25 12:32:18 -0700891
892 // 130 MirOpMemBarrier
893 0,
buzbee311ca162013-02-28 15:56:43 -0800894};
895
896/* Return the base virtual register for a SSA name */
Ian Rogers71fe2672013-03-19 20:45:02 -0700897int MIRGraph::SRegToVReg(int ssa_reg) const {
buzbee862a7602013-04-05 10:58:54 -0700898 return ssa_base_vregs_->Get(ssa_reg);
buzbee311ca162013-02-28 15:56:43 -0800899}
900
901/* Any register that is used before being defined is considered live-in */
902void MIRGraph::HandleLiveInUse(ArenaBitVector* use_v, ArenaBitVector* def_v,
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700903 ArenaBitVector* live_in_v, int dalvik_reg_id) {
buzbee862a7602013-04-05 10:58:54 -0700904 use_v->SetBit(dalvik_reg_id);
905 if (!def_v->IsBitSet(dalvik_reg_id)) {
906 live_in_v->SetBit(dalvik_reg_id);
buzbee311ca162013-02-28 15:56:43 -0800907 }
908}
909
910/* Mark a reg as being defined */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700911void MIRGraph::HandleDef(ArenaBitVector* def_v, int dalvik_reg_id) {
buzbee862a7602013-04-05 10:58:54 -0700912 def_v->SetBit(dalvik_reg_id);
buzbee311ca162013-02-28 15:56:43 -0800913}
914
Udayan Banerjif2466a72014-07-09 19:14:53 -0700915void MIRGraph::HandleExtended(ArenaBitVector* use_v, ArenaBitVector* def_v,
916 ArenaBitVector* live_in_v,
917 const MIR::DecodedInstruction& d_insn) {
918 switch (static_cast<int>(d_insn.opcode)) {
919 default:
920 LOG(ERROR) << "Unexpected Extended Opcode " << d_insn.opcode;
921 break;
922 }
923}
924
buzbee311ca162013-02-28 15:56:43 -0800925/*
926 * Find out live-in variables for natural loops. Variables that are live-in in
927 * the main loop body are considered to be defined in the entry block.
928 */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700929bool MIRGraph::FindLocalLiveIn(BasicBlock* bb) {
buzbee311ca162013-02-28 15:56:43 -0800930 MIR* mir;
931 ArenaBitVector *use_v, *def_v, *live_in_v;
932
933 if (bb->data_flow_info == NULL) return false;
934
935 use_v = bb->data_flow_info->use_v =
buzbee862a7602013-04-05 10:58:54 -0700936 new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapUse);
buzbee311ca162013-02-28 15:56:43 -0800937 def_v = bb->data_flow_info->def_v =
buzbee862a7602013-04-05 10:58:54 -0700938 new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapDef);
buzbee311ca162013-02-28 15:56:43 -0800939 live_in_v = bb->data_flow_info->live_in_v =
buzbee862a7602013-04-05 10:58:54 -0700940 new (arena_) ArenaBitVector(arena_, cu_->num_dalvik_registers, false, kBitMapLiveIn);
buzbee311ca162013-02-28 15:56:43 -0800941
942 for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
Jean Christophe Beylercc794c32014-05-02 09:34:13 -0700943 uint64_t df_attributes = GetDataFlowAttributes(mir);
Ian Rogers29a26482014-05-02 15:27:29 -0700944 MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
buzbee311ca162013-02-28 15:56:43 -0800945
946 if (df_attributes & DF_HAS_USES) {
947 if (df_attributes & DF_UA) {
948 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA);
949 if (df_attributes & DF_A_WIDE) {
950 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vA+1);
951 }
952 }
953 if (df_attributes & DF_UB) {
954 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB);
955 if (df_attributes & DF_B_WIDE) {
956 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vB+1);
957 }
958 }
959 if (df_attributes & DF_UC) {
960 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC);
961 if (df_attributes & DF_C_WIDE) {
962 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+1);
963 }
964 }
965 }
966 if (df_attributes & DF_FORMAT_35C) {
967 for (unsigned int i = 0; i < d_insn->vA; i++) {
968 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->arg[i]);
969 }
970 }
971 if (df_attributes & DF_FORMAT_3RC) {
972 for (unsigned int i = 0; i < d_insn->vA; i++) {
973 HandleLiveInUse(use_v, def_v, live_in_v, d_insn->vC+i);
974 }
975 }
976 if (df_attributes & DF_HAS_DEFS) {
977 HandleDef(def_v, d_insn->vA);
978 if (df_attributes & DF_A_WIDE) {
979 HandleDef(def_v, d_insn->vA+1);
980 }
981 }
Udayan Banerjif2466a72014-07-09 19:14:53 -0700982 if (df_attributes & DF_FORMAT_EXTENDED) {
983 HandleExtended(use_v, def_v, live_in_v, mir->dalvikInsn);
984 }
buzbee311ca162013-02-28 15:56:43 -0800985 }
986 return true;
987}
988
Brian Carlstrom2ce745c2013-07-17 17:44:30 -0700989int MIRGraph::AddNewSReg(int v_reg) {
buzbee311ca162013-02-28 15:56:43 -0800990 // Compiler temps always have a subscript of 0
991 int subscript = (v_reg < 0) ? 0 : ++ssa_last_defs_[v_reg];
Mark Mendell0add77a2014-05-05 22:28:55 -0400992 uint32_t ssa_reg = GetNumSSARegs();
buzbee311ca162013-02-28 15:56:43 -0800993 SetNumSSARegs(ssa_reg + 1);
buzbee862a7602013-04-05 10:58:54 -0700994 ssa_base_vregs_->Insert(v_reg);
995 ssa_subscripts_->Insert(subscript);
buzbee862a7602013-04-05 10:58:54 -0700996 DCHECK_EQ(ssa_base_vregs_->Size(), ssa_subscripts_->Size());
Mark Mendell0add77a2014-05-05 22:28:55 -0400997 // If we are expanding very late, update use counts too.
998 if (ssa_reg > 0 && use_counts_.Size() == ssa_reg) {
999 // Need to expand the counts.
1000 use_counts_.Insert(0);
1001 raw_use_counts_.Insert(0);
1002 }
buzbee311ca162013-02-28 15:56:43 -08001003 return ssa_reg;
1004}
1005
1006/* Find out the latest SSA register for a given Dalvik register */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001007void MIRGraph::HandleSSAUse(int* uses, int dalvik_reg, int reg_index) {
buzbee311ca162013-02-28 15:56:43 -08001008 DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers));
1009 uses[reg_index] = vreg_to_ssa_map_[dalvik_reg];
1010}
1011
1012/* Setup a new SSA register for a given Dalvik register */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001013void MIRGraph::HandleSSADef(int* defs, int dalvik_reg, int reg_index) {
buzbee311ca162013-02-28 15:56:43 -08001014 DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu_->num_dalvik_registers));
1015 int ssa_reg = AddNewSReg(dalvik_reg);
1016 vreg_to_ssa_map_[dalvik_reg] = ssa_reg;
1017 defs[reg_index] = ssa_reg;
1018}
1019
Jean Christophe Beyler4896d7b2014-05-01 15:36:22 -07001020void MIRGraph::AllocateSSAUseData(MIR *mir, int num_uses) {
1021 mir->ssa_rep->num_uses = num_uses;
1022
1023 if (mir->ssa_rep->num_uses_allocated < num_uses) {
1024 mir->ssa_rep->uses = static_cast<int*>(arena_->Alloc(sizeof(int) * num_uses, kArenaAllocDFInfo));
1025 // NOTE: will be filled in during type & size inference pass
1026 mir->ssa_rep->fp_use = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_uses, kArenaAllocDFInfo));
1027 }
1028}
1029
1030void MIRGraph::AllocateSSADefData(MIR *mir, int num_defs) {
1031 mir->ssa_rep->num_defs = num_defs;
1032
1033 if (mir->ssa_rep->num_defs_allocated < num_defs) {
1034 mir->ssa_rep->defs = static_cast<int*>(arena_->Alloc(sizeof(int) * num_defs,
1035 kArenaAllocDFInfo));
1036 mir->ssa_rep->fp_def = static_cast<bool*>(arena_->Alloc(sizeof(bool) * num_defs,
1037 kArenaAllocDFInfo));
1038 }
1039}
1040
buzbee311ca162013-02-28 15:56:43 -08001041/* Look up new SSA names for format_35c instructions */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001042void MIRGraph::DataFlowSSAFormat35C(MIR* mir) {
Ian Rogers29a26482014-05-02 15:27:29 -07001043 MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
buzbee311ca162013-02-28 15:56:43 -08001044 int num_uses = d_insn->vA;
1045 int i;
1046
Jean Christophe Beyler4896d7b2014-05-01 15:36:22 -07001047 AllocateSSAUseData(mir, num_uses);
buzbee311ca162013-02-28 15:56:43 -08001048
1049 for (i = 0; i < num_uses; i++) {
1050 HandleSSAUse(mir->ssa_rep->uses, d_insn->arg[i], i);
1051 }
1052}
1053
1054/* Look up new SSA names for format_3rc instructions */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001055void MIRGraph::DataFlowSSAFormat3RC(MIR* mir) {
Ian Rogers29a26482014-05-02 15:27:29 -07001056 MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
buzbee311ca162013-02-28 15:56:43 -08001057 int num_uses = d_insn->vA;
1058 int i;
1059
Jean Christophe Beyler4896d7b2014-05-01 15:36:22 -07001060 AllocateSSAUseData(mir, num_uses);
buzbee311ca162013-02-28 15:56:43 -08001061
1062 for (i = 0; i < num_uses; i++) {
1063 HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+i, i);
1064 }
1065}
1066
Udayan Banerjif2466a72014-07-09 19:14:53 -07001067void MIRGraph::DataFlowSSAFormatExtended(MIR* mir) {
1068 switch (static_cast<int>(mir->dalvikInsn.opcode)) {
1069 default:
1070 LOG(ERROR) << "Missing case for extended MIR: " << mir->dalvikInsn.opcode;
1071 break;
1072 }
1073}
1074
buzbee311ca162013-02-28 15:56:43 -08001075/* Entry function to convert a block into SSA representation */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001076bool MIRGraph::DoSSAConversion(BasicBlock* bb) {
buzbee311ca162013-02-28 15:56:43 -08001077 MIR* mir;
1078
1079 if (bb->data_flow_info == NULL) return false;
1080
1081 for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
buzbee862a7602013-04-05 10:58:54 -07001082 mir->ssa_rep =
Mathieu Chartierf6c4b3b2013-08-24 16:11:37 -07001083 static_cast<struct SSARepresentation *>(arena_->Alloc(sizeof(SSARepresentation),
Vladimir Marko83cc7ae2014-02-12 18:02:05 +00001084 kArenaAllocDFInfo));
Jean Christophe Beyler4896d7b2014-05-01 15:36:22 -07001085 memset(mir->ssa_rep, 0, sizeof(*mir->ssa_rep));
buzbee311ca162013-02-28 15:56:43 -08001086
Jean Christophe Beylercc794c32014-05-02 09:34:13 -07001087 uint64_t df_attributes = GetDataFlowAttributes(mir);
buzbee311ca162013-02-28 15:56:43 -08001088
1089 // If not a pseudo-op, note non-leaf or can throw
Jean Christophe Beyler2ab40eb2014-06-02 09:03:14 -07001090 if (!MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
Jean Christophe Beylerfb0ea2d2014-07-29 13:20:42 -07001091 int flags = mir->dalvikInsn.FlagsOf();
buzbee311ca162013-02-28 15:56:43 -08001092
Vladimir Marko9820b7c2014-01-02 16:40:37 +00001093 if ((flags & Instruction::kInvoke) != 0 && (mir->optimization_flags & MIR_INLINED) == 0) {
buzbee1fd33462013-03-25 13:40:45 -07001094 attributes_ &= ~METHOD_IS_LEAF;
buzbee311ca162013-02-28 15:56:43 -08001095 }
1096 }
1097
1098 int num_uses = 0;
1099
1100 if (df_attributes & DF_FORMAT_35C) {
1101 DataFlowSSAFormat35C(mir);
1102 continue;
1103 }
1104
1105 if (df_attributes & DF_FORMAT_3RC) {
1106 DataFlowSSAFormat3RC(mir);
1107 continue;
1108 }
1109
Udayan Banerjif2466a72014-07-09 19:14:53 -07001110 if (df_attributes & DF_FORMAT_EXTENDED) {
1111 DataFlowSSAFormatExtended(mir);
1112 continue;
1113 }
1114
buzbee311ca162013-02-28 15:56:43 -08001115 if (df_attributes & DF_HAS_USES) {
1116 if (df_attributes & DF_UA) {
1117 num_uses++;
1118 if (df_attributes & DF_A_WIDE) {
Brian Carlstrom38f85e42013-07-18 14:45:22 -07001119 num_uses++;
buzbee311ca162013-02-28 15:56:43 -08001120 }
1121 }
1122 if (df_attributes & DF_UB) {
1123 num_uses++;
1124 if (df_attributes & DF_B_WIDE) {
Brian Carlstrom38f85e42013-07-18 14:45:22 -07001125 num_uses++;
buzbee311ca162013-02-28 15:56:43 -08001126 }
1127 }
1128 if (df_attributes & DF_UC) {
1129 num_uses++;
1130 if (df_attributes & DF_C_WIDE) {
Brian Carlstrom38f85e42013-07-18 14:45:22 -07001131 num_uses++;
buzbee311ca162013-02-28 15:56:43 -08001132 }
1133 }
1134 }
1135
Jean Christophe Beyler4896d7b2014-05-01 15:36:22 -07001136 AllocateSSAUseData(mir, num_uses);
buzbee311ca162013-02-28 15:56:43 -08001137
1138 int num_defs = 0;
1139
1140 if (df_attributes & DF_HAS_DEFS) {
1141 num_defs++;
1142 if (df_attributes & DF_A_WIDE) {
1143 num_defs++;
1144 }
1145 }
1146
Jean Christophe Beyler4896d7b2014-05-01 15:36:22 -07001147 AllocateSSADefData(mir, num_defs);
buzbee311ca162013-02-28 15:56:43 -08001148
Ian Rogers29a26482014-05-02 15:27:29 -07001149 MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
buzbee311ca162013-02-28 15:56:43 -08001150
1151 if (df_attributes & DF_HAS_USES) {
1152 num_uses = 0;
1153 if (df_attributes & DF_UA) {
1154 mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A;
1155 HandleSSAUse(mir->ssa_rep->uses, d_insn->vA, num_uses++);
1156 if (df_attributes & DF_A_WIDE) {
1157 mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A;
1158 HandleSSAUse(mir->ssa_rep->uses, d_insn->vA+1, num_uses++);
1159 }
1160 }
1161 if (df_attributes & DF_UB) {
1162 mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B;
1163 HandleSSAUse(mir->ssa_rep->uses, d_insn->vB, num_uses++);
1164 if (df_attributes & DF_B_WIDE) {
1165 mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B;
1166 HandleSSAUse(mir->ssa_rep->uses, d_insn->vB+1, num_uses++);
1167 }
1168 }
1169 if (df_attributes & DF_UC) {
1170 mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C;
1171 HandleSSAUse(mir->ssa_rep->uses, d_insn->vC, num_uses++);
1172 if (df_attributes & DF_C_WIDE) {
1173 mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C;
1174 HandleSSAUse(mir->ssa_rep->uses, d_insn->vC+1, num_uses++);
1175 }
1176 }
1177 }
1178 if (df_attributes & DF_HAS_DEFS) {
1179 mir->ssa_rep->fp_def[0] = df_attributes & DF_FP_A;
1180 HandleSSADef(mir->ssa_rep->defs, d_insn->vA, 0);
1181 if (df_attributes & DF_A_WIDE) {
1182 mir->ssa_rep->fp_def[1] = df_attributes & DF_FP_A;
1183 HandleSSADef(mir->ssa_rep->defs, d_insn->vA+1, 1);
1184 }
1185 }
1186 }
1187
buzbee1fd33462013-03-25 13:40:45 -07001188 /*
1189 * Take a snapshot of Dalvik->SSA mapping at the end of each block. The
1190 * input to PHI nodes can be derived from the snapshot of all
1191 * predecessor blocks.
1192 */
Jean Christophe Beyler4896d7b2014-05-01 15:36:22 -07001193 bb->data_flow_info->vreg_to_ssa_map_exit =
Mathieu Chartierf6c4b3b2013-08-24 16:11:37 -07001194 static_cast<int*>(arena_->Alloc(sizeof(int) * cu_->num_dalvik_registers,
Vladimir Marko83cc7ae2014-02-12 18:02:05 +00001195 kArenaAllocDFInfo));
buzbee311ca162013-02-28 15:56:43 -08001196
Jean Christophe Beyler4896d7b2014-05-01 15:36:22 -07001197 memcpy(bb->data_flow_info->vreg_to_ssa_map_exit, vreg_to_ssa_map_,
buzbee1fd33462013-03-25 13:40:45 -07001198 sizeof(int) * cu_->num_dalvik_registers);
buzbee311ca162013-02-28 15:56:43 -08001199 return true;
1200}
1201
1202/* Setup the basic data structures for SSA conversion */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001203void MIRGraph::CompilerInitializeSSAConversion() {
buzbee862a7602013-04-05 10:58:54 -07001204 size_t num_dalvik_reg = cu_->num_dalvik_registers;
buzbee311ca162013-02-28 15:56:43 -08001205
buzbee862a7602013-04-05 10:58:54 -07001206 ssa_base_vregs_ = new (arena_) GrowableArray<int>(arena_, num_dalvik_reg + GetDefCount() + 128,
Brian Carlstromdf629502013-07-17 22:39:56 -07001207 kGrowableArraySSAtoDalvikMap);
buzbee862a7602013-04-05 10:58:54 -07001208 ssa_subscripts_ = new (arena_) GrowableArray<int>(arena_, num_dalvik_reg + GetDefCount() + 128,
Brian Carlstromdf629502013-07-17 22:39:56 -07001209 kGrowableArraySSAtoDalvikMap);
buzbee311ca162013-02-28 15:56:43 -08001210 /*
1211 * Initial number of SSA registers is equal to the number of Dalvik
1212 * registers.
1213 */
1214 SetNumSSARegs(num_dalvik_reg);
1215
1216 /*
1217 * Initialize the SSA2Dalvik map list. For the first num_dalvik_reg elements,
1218 * the subscript is 0 so we use the ENCODE_REG_SUB macro to encode the value
1219 * into "(0 << 16) | i"
1220 */
buzbee862a7602013-04-05 10:58:54 -07001221 for (unsigned int i = 0; i < num_dalvik_reg; i++) {
1222 ssa_base_vregs_->Insert(i);
1223 ssa_subscripts_->Insert(0);
buzbee311ca162013-02-28 15:56:43 -08001224 }
1225
1226 /*
1227 * Initialize the DalvikToSSAMap map. There is one entry for each
1228 * Dalvik register, and the SSA names for those are the same.
1229 */
1230 vreg_to_ssa_map_ =
Mathieu Chartierf6c4b3b2013-08-24 16:11:37 -07001231 static_cast<int*>(arena_->Alloc(sizeof(int) * num_dalvik_reg,
Vladimir Marko83cc7ae2014-02-12 18:02:05 +00001232 kArenaAllocDFInfo));
buzbee311ca162013-02-28 15:56:43 -08001233 /* Keep track of the higest def for each dalvik reg */
1234 ssa_last_defs_ =
Mathieu Chartierf6c4b3b2013-08-24 16:11:37 -07001235 static_cast<int*>(arena_->Alloc(sizeof(int) * num_dalvik_reg,
Vladimir Marko83cc7ae2014-02-12 18:02:05 +00001236 kArenaAllocDFInfo));
buzbee311ca162013-02-28 15:56:43 -08001237
buzbee862a7602013-04-05 10:58:54 -07001238 for (unsigned int i = 0; i < num_dalvik_reg; i++) {
buzbee311ca162013-02-28 15:56:43 -08001239 vreg_to_ssa_map_[i] = i;
1240 ssa_last_defs_[i] = 0;
1241 }
1242
Razvan A Lupusoruda7a69b2014-01-08 15:09:50 -08001243 // Create a compiler temporary for Method*. This is done after SSA initialization.
1244 GetNewCompilerTemp(kCompilerTempSpecialMethodPtr, false);
buzbee311ca162013-02-28 15:56:43 -08001245
1246 /*
1247 * Allocate the BasicBlockDataFlow structure for the entry and code blocks
1248 */
buzbee862a7602013-04-05 10:58:54 -07001249 GrowableArray<BasicBlock*>::Iterator iterator(&block_list_);
buzbee311ca162013-02-28 15:56:43 -08001250
1251 while (true) {
buzbee862a7602013-04-05 10:58:54 -07001252 BasicBlock* bb = iterator.Next();
buzbee311ca162013-02-28 15:56:43 -08001253 if (bb == NULL) break;
1254 if (bb->hidden == true) continue;
1255 if (bb->block_type == kDalvikByteCode ||
1256 bb->block_type == kEntryBlock ||
1257 bb->block_type == kExitBlock) {
buzbee862a7602013-04-05 10:58:54 -07001258 bb->data_flow_info =
Mathieu Chartierf6c4b3b2013-08-24 16:11:37 -07001259 static_cast<BasicBlockDataFlow*>(arena_->Alloc(sizeof(BasicBlockDataFlow),
Vladimir Marko83cc7ae2014-02-12 18:02:05 +00001260 kArenaAllocDFInfo));
buzbee311ca162013-02-28 15:56:43 -08001261 }
1262 }
1263}
1264
buzbee311ca162013-02-28 15:56:43 -08001265/*
1266 * This function will make a best guess at whether the invoke will
1267 * end up using Method*. It isn't critical to get it exactly right,
1268 * and attempting to do would involve more complexity than it's
1269 * worth.
1270 */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001271bool MIRGraph::InvokeUsesMethodStar(MIR* mir) {
buzbee311ca162013-02-28 15:56:43 -08001272 InvokeType type;
1273 Instruction::Code opcode = mir->dalvikInsn.opcode;
1274 switch (opcode) {
1275 case Instruction::INVOKE_STATIC:
1276 case Instruction::INVOKE_STATIC_RANGE:
1277 type = kStatic;
1278 break;
1279 case Instruction::INVOKE_DIRECT:
1280 case Instruction::INVOKE_DIRECT_RANGE:
1281 type = kDirect;
1282 break;
1283 case Instruction::INVOKE_VIRTUAL:
1284 case Instruction::INVOKE_VIRTUAL_RANGE:
1285 type = kVirtual;
1286 break;
1287 case Instruction::INVOKE_INTERFACE:
1288 case Instruction::INVOKE_INTERFACE_RANGE:
1289 return false;
1290 case Instruction::INVOKE_SUPER_RANGE:
1291 case Instruction::INVOKE_SUPER:
1292 type = kSuper;
1293 break;
1294 default:
1295 LOG(WARNING) << "Unexpected invoke op: " << opcode;
1296 return false;
1297 }
1298 DexCompilationUnit m_unit(cu_);
Brian Carlstrom51c24672013-07-11 16:00:56 -07001299 MethodReference target_method(cu_->dex_file, mir->dalvikInsn.vB);
buzbee311ca162013-02-28 15:56:43 -08001300 int vtable_idx;
1301 uintptr_t direct_code;
1302 uintptr_t direct_method;
Sameer Abu Asal02c42232013-04-30 12:09:45 -07001303 uint32_t current_offset = static_cast<uint32_t>(current_offset_);
buzbee311ca162013-02-28 15:56:43 -08001304 bool fast_path =
Ian Rogerse3cd2f02013-05-24 15:32:56 -07001305 cu_->compiler_driver->ComputeInvokeInfo(&m_unit, current_offset,
Ian Rogers65ec92c2013-09-06 10:49:58 -07001306 false, true,
1307 &type, &target_method,
1308 &vtable_idx,
1309 &direct_code, &direct_method) &&
Sameer Abu Asal02c42232013-04-30 12:09:45 -07001310 !(cu_->enable_debug & (1 << kDebugSlowInvokePath));
buzbee311ca162013-02-28 15:56:43 -08001311 return (((type == kDirect) || (type == kStatic)) &&
1312 fast_path && ((direct_code == 0) || (direct_method == 0)));
1313}
1314
1315/*
1316 * Count uses, weighting by loop nesting depth. This code only
1317 * counts explicitly used s_regs. A later phase will add implicit
1318 * counts for things such as Method*, null-checked references, etc.
1319 */
Jean Christophe Beyler4e97c532014-01-07 10:07:18 -08001320void MIRGraph::CountUses(struct BasicBlock* bb) {
buzbee311ca162013-02-28 15:56:43 -08001321 if (bb->block_type != kDalvikByteCode) {
Jean Christophe Beyler4e97c532014-01-07 10:07:18 -08001322 return;
buzbee311ca162013-02-28 15:56:43 -08001323 }
buzbee1da1e2f2013-11-15 13:37:01 -08001324 // Each level of nesting adds *100 to count, up to 3 levels deep.
1325 uint32_t depth = std::min(3U, static_cast<uint32_t>(bb->nesting_depth));
1326 uint32_t weight = std::max(1U, depth * 100);
buzbee311ca162013-02-28 15:56:43 -08001327 for (MIR* mir = bb->first_mir_insn; (mir != NULL); mir = mir->next) {
1328 if (mir->ssa_rep == NULL) {
1329 continue;
1330 }
buzbee311ca162013-02-28 15:56:43 -08001331 for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
1332 int s_reg = mir->ssa_rep->uses[i];
buzbee862a7602013-04-05 10:58:54 -07001333 raw_use_counts_.Increment(s_reg);
buzbee17189ac2013-11-08 11:07:02 -08001334 use_counts_.Put(s_reg, use_counts_.Get(s_reg) + weight);
buzbee311ca162013-02-28 15:56:43 -08001335 }
1336 if (!(cu_->disable_opt & (1 << kPromoteCompilerTemps))) {
Jean Christophe Beylercc794c32014-05-02 09:34:13 -07001337 uint64_t df_attributes = GetDataFlowAttributes(mir);
buzbee311ca162013-02-28 15:56:43 -08001338 // Implicit use of Method* ? */
1339 if (df_attributes & DF_UMS) {
1340 /*
1341 * Some invokes will not use Method* - need to perform test similar
1342 * to that found in GenInvoke() to decide whether to count refs
buzbee1da1e2f2013-11-15 13:37:01 -08001343 * for Method* on invoke-class opcodes. This is a relatively expensive
1344 * operation, so should only be done once.
1345 * TODO: refactor InvokeUsesMethodStar() to perform check at parse time,
1346 * and save results for both here and GenInvoke. For now, go ahead
1347 * and assume all invokes use method*.
buzbee311ca162013-02-28 15:56:43 -08001348 */
buzbee1da1e2f2013-11-15 13:37:01 -08001349 raw_use_counts_.Increment(method_sreg_);
1350 use_counts_.Put(method_sreg_, use_counts_.Get(method_sreg_) + weight);
buzbee311ca162013-02-28 15:56:43 -08001351 }
1352 }
1353 }
buzbee311ca162013-02-28 15:56:43 -08001354}
1355
1356/* Verify if all the successor is connected with all the claimed predecessors */
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001357bool MIRGraph::VerifyPredInfo(BasicBlock* bb) {
buzbee0d829482013-10-11 15:24:55 -07001358 GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
buzbee311ca162013-02-28 15:56:43 -08001359
buzbee311ca162013-02-28 15:56:43 -08001360 while (true) {
Jean Christophe Beyler2469e602014-05-06 20:36:55 -07001361 BasicBlock* pred_bb = GetBasicBlock(iter.Next());
buzbee311ca162013-02-28 15:56:43 -08001362 if (!pred_bb) break;
1363 bool found = false;
buzbee0d829482013-10-11 15:24:55 -07001364 if (pred_bb->taken == bb->id) {
buzbee311ca162013-02-28 15:56:43 -08001365 found = true;
buzbee0d829482013-10-11 15:24:55 -07001366 } else if (pred_bb->fall_through == bb->id) {
buzbee311ca162013-02-28 15:56:43 -08001367 found = true;
buzbee0d829482013-10-11 15:24:55 -07001368 } else if (pred_bb->successor_block_list_type != kNotUsed) {
1369 GrowableArray<SuccessorBlockInfo*>::Iterator iterator(pred_bb->successor_blocks);
buzbee311ca162013-02-28 15:56:43 -08001370 while (true) {
buzbee862a7602013-04-05 10:58:54 -07001371 SuccessorBlockInfo *successor_block_info = iterator.Next();
buzbee311ca162013-02-28 15:56:43 -08001372 if (successor_block_info == NULL) break;
buzbee0d829482013-10-11 15:24:55 -07001373 BasicBlockId succ_bb = successor_block_info->block;
1374 if (succ_bb == bb->id) {
buzbee311ca162013-02-28 15:56:43 -08001375 found = true;
1376 break;
1377 }
1378 }
1379 }
1380 if (found == false) {
1381 char block_name1[BLOCK_NAME_LEN], block_name2[BLOCK_NAME_LEN];
1382 GetBlockName(bb, block_name1);
1383 GetBlockName(pred_bb, block_name2);
1384 DumpCFG("/sdcard/cfg/", false);
1385 LOG(FATAL) << "Successor " << block_name1 << "not found from "
1386 << block_name2;
1387 }
1388 }
1389 return true;
1390}
1391
Brian Carlstrom2ce745c2013-07-17 17:44:30 -07001392void MIRGraph::VerifyDataflow() {
buzbee311ca162013-02-28 15:56:43 -08001393 /* Verify if all blocks are connected as claimed */
buzbee56c71782013-09-05 17:13:19 -07001394 AllNodesIterator iter(this);
buzbee311ca162013-02-28 15:56:43 -08001395 for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1396 VerifyPredInfo(bb);
1397 }
1398}
1399
1400} // namespace art