blob: 1dcff652ba0cbe75baf514ea6379fa048b58a319 [file] [log] [blame]
Brian Carlstrom7940e442013-07-12 13:46:57 -07001/*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "codegen_x86.h"
18#include "dex/quick/mir_to_lir-inl.h"
19#include "x86_lir.h"
20
21namespace art {
22
23#define MAX_ASSEMBLER_RETRIES 50
24
25const X86EncodingMap X86Mir2Lir::EncodingMap[kX86Last] = {
26 { kX8632BitData, kData, IS_UNARY_OP, { 0, 0, 0x00, 0, 0, 0, 0, 4 }, "data", "0x!0d" },
27 { kX86Bkpt, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xCC, 0, 0, 0, 0, 0 }, "int 3", "" },
28 { kX86Nop, kNop, IS_UNARY_OP, { 0, 0, 0x90, 0, 0, 0, 0, 0 }, "nop", "" },
29
30#define ENCODING_MAP(opname, mem_use, reg_def, uses_ccodes, \
31 rm8_r8, rm32_r32, \
32 r8_rm8, r32_rm32, \
33 ax8_i8, ax32_i32, \
34 rm8_i8, rm8_i8_modrm, \
35 rm32_i32, rm32_i32_modrm, \
36 rm32_i8, rm32_i8_modrm) \
37{ kX86 ## opname ## 8MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8MR", "[!0r+!1d],!2r" }, \
38{ kX86 ## opname ## 8AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
39{ kX86 ## opname ## 8TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_r8, 0, 0, 0, 0, 0 }, #opname "8TR", "fs:[!0d],!1r" }, \
40{ kX86 ## opname ## 8RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RR", "!0r,!1r" }, \
41{ kX86 ## opname ## 8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RM", "!0r,[!1r+!2d]" }, \
42{ kX86 ## opname ## 8RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
43{ kX86 ## opname ## 8RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r8_rm8, 0, 0, 0, 0, 0 }, #opname "8RT", "!0r,fs:[!1d]" }, \
44{ kX86 ## opname ## 8RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, ax8_i8, 1 }, #opname "8RI", "!0r,!1d" }, \
45{ kX86 ## opname ## 8MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
46{ kX86 ## opname ## 8AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
47{ kX86 ## opname ## 8TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm8_i8, 0, 0, rm8_i8_modrm, 0, 1 }, #opname "8TI", "fs:[!0d],!1d" }, \
48 \
49{ kX86 ## opname ## 16MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16MR", "[!0r+!1d],!2r" }, \
50{ kX86 ## opname ## 16AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
51{ kX86 ## opname ## 16TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_r32, 0, 0, 0, 0, 0 }, #opname "16TR", "fs:[!0d],!1r" }, \
52{ kX86 ## opname ## 16RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RR", "!0r,!1r" }, \
53{ kX86 ## opname ## 16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RM", "!0r,[!1r+!2d]" }, \
54{ kX86 ## opname ## 16RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0x66, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
55{ kX86 ## opname ## 16RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, r32_rm32, 0, 0, 0, 0, 0 }, #opname "16RT", "!0r,fs:[!1d]" }, \
56{ kX86 ## opname ## 16RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 2 }, #opname "16RI", "!0r,!1d" }, \
57{ kX86 ## opname ## 16MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16MI", "[!0r+!1d],!2d" }, \
58{ kX86 ## opname ## 16AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
59{ kX86 ## opname ## 16TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i32, 0, 0, rm32_i32_modrm, 0, 2 }, #opname "16TI", "fs:[!0d],!1d" }, \
60{ kX86 ## opname ## 16RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16RI8", "!0r,!1d" }, \
61{ kX86 ## opname ## 16MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16MI8", "[!0r+!1d],!2d" }, \
62{ kX86 ## opname ## 16AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0x66, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
63{ kX86 ## opname ## 16TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0x66, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "16TI8", "fs:[!0d],!1d" }, \
64 \
65{ kX86 ## opname ## 32MR, kMemReg, mem_use | IS_TERTIARY_OP | REG_USE02 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32MR", "[!0r+!1d],!2r" }, \
66{ kX86 ## opname ## 32AR, kArrayReg, mem_use | IS_QUIN_OP | REG_USE014 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32AR", "[!0r+!1r<<!2d+!3d],!4r" }, \
67{ kX86 ## opname ## 32TR, kThreadReg, mem_use | IS_BINARY_OP | REG_USE1 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_r32, 0, 0, 0, 0, 0 }, #opname "32TR", "fs:[!0d],!1r" }, \
68{ kX86 ## opname ## 32RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RR", "!0r,!1r" }, \
69{ kX86 ## opname ## 32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RM", "!0r,[!1r+!2d]" }, \
70{ kX86 ## opname ## 32RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012 | SETS_CCODES | uses_ccodes, { 0, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RA", "!0r,[!1r+!2r<<!3d+!4d]" }, \
71{ kX86 ## opname ## 32RT, kRegThread, IS_LOAD | IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, r32_rm32, 0, 0, 0, 0, 0 }, #opname "32RT", "!0r,fs:[!1d]" }, \
72{ kX86 ## opname ## 32RI, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, ax32_i32, 4 }, #opname "32RI", "!0r,!1d" }, \
73{ kX86 ## opname ## 32MI, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32MI", "[!0r+!1d],!2d" }, \
74{ kX86 ## opname ## 32AI, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
75{ kX86 ## opname ## 32TI, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i32, 0, 0, rm32_i32_modrm, 0, 4 }, #opname "32TI", "fs:[!0d],!1d" }, \
76{ kX86 ## opname ## 32RI8, kRegImm, IS_BINARY_OP | reg_def | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32RI8", "!0r,!1d" }, \
77{ kX86 ## opname ## 32MI8, kMemImm, mem_use | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32MI8", "[!0r+!1d],!2d" }, \
78{ kX86 ## opname ## 32AI8, kArrayImm, mem_use | IS_QUIN_OP | REG_USE01 | SETS_CCODES | uses_ccodes, { 0, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32AI8", "[!0r+!1r<<!2d+!3d],!4d" }, \
79{ kX86 ## opname ## 32TI8, kThreadImm, mem_use | IS_BINARY_OP | SETS_CCODES | uses_ccodes, { THREAD_PREFIX, 0, rm32_i8, 0, 0, rm32_i8_modrm, 0, 1 }, #opname "32TI8", "fs:[!0d],!1d" }
80
81ENCODING_MAP(Add, IS_LOAD | IS_STORE, REG_DEF0, 0,
82 0x00 /* RegMem8/Reg8 */, 0x01 /* RegMem32/Reg32 */,
83 0x02 /* Reg8/RegMem8 */, 0x03 /* Reg32/RegMem32 */,
84 0x04 /* Rax8/imm8 opcode */, 0x05 /* Rax32/imm32 */,
85 0x80, 0x0 /* RegMem8/imm8 */,
86 0x81, 0x0 /* RegMem32/imm32 */, 0x83, 0x0 /* RegMem32/imm8 */),
87ENCODING_MAP(Or, IS_LOAD | IS_STORE, REG_DEF0, 0,
88 0x08 /* RegMem8/Reg8 */, 0x09 /* RegMem32/Reg32 */,
89 0x0A /* Reg8/RegMem8 */, 0x0B /* Reg32/RegMem32 */,
90 0x0C /* Rax8/imm8 opcode */, 0x0D /* Rax32/imm32 */,
91 0x80, 0x1 /* RegMem8/imm8 */,
92 0x81, 0x1 /* RegMem32/imm32 */, 0x83, 0x1 /* RegMem32/imm8 */),
93ENCODING_MAP(Adc, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
94 0x10 /* RegMem8/Reg8 */, 0x11 /* RegMem32/Reg32 */,
95 0x12 /* Reg8/RegMem8 */, 0x13 /* Reg32/RegMem32 */,
96 0x14 /* Rax8/imm8 opcode */, 0x15 /* Rax32/imm32 */,
97 0x80, 0x2 /* RegMem8/imm8 */,
98 0x81, 0x2 /* RegMem32/imm32 */, 0x83, 0x2 /* RegMem32/imm8 */),
99ENCODING_MAP(Sbb, IS_LOAD | IS_STORE, REG_DEF0, USES_CCODES,
100 0x18 /* RegMem8/Reg8 */, 0x19 /* RegMem32/Reg32 */,
101 0x1A /* Reg8/RegMem8 */, 0x1B /* Reg32/RegMem32 */,
102 0x1C /* Rax8/imm8 opcode */, 0x1D /* Rax32/imm32 */,
103 0x80, 0x3 /* RegMem8/imm8 */,
104 0x81, 0x3 /* RegMem32/imm32 */, 0x83, 0x3 /* RegMem32/imm8 */),
105ENCODING_MAP(And, IS_LOAD | IS_STORE, REG_DEF0, 0,
106 0x20 /* RegMem8/Reg8 */, 0x21 /* RegMem32/Reg32 */,
107 0x22 /* Reg8/RegMem8 */, 0x23 /* Reg32/RegMem32 */,
108 0x24 /* Rax8/imm8 opcode */, 0x25 /* Rax32/imm32 */,
109 0x80, 0x4 /* RegMem8/imm8 */,
110 0x81, 0x4 /* RegMem32/imm32 */, 0x83, 0x4 /* RegMem32/imm8 */),
111ENCODING_MAP(Sub, IS_LOAD | IS_STORE, REG_DEF0, 0,
112 0x28 /* RegMem8/Reg8 */, 0x29 /* RegMem32/Reg32 */,
113 0x2A /* Reg8/RegMem8 */, 0x2B /* Reg32/RegMem32 */,
114 0x2C /* Rax8/imm8 opcode */, 0x2D /* Rax32/imm32 */,
115 0x80, 0x5 /* RegMem8/imm8 */,
116 0x81, 0x5 /* RegMem32/imm32 */, 0x83, 0x5 /* RegMem32/imm8 */),
117ENCODING_MAP(Xor, IS_LOAD | IS_STORE, REG_DEF0, 0,
118 0x30 /* RegMem8/Reg8 */, 0x31 /* RegMem32/Reg32 */,
119 0x32 /* Reg8/RegMem8 */, 0x33 /* Reg32/RegMem32 */,
120 0x34 /* Rax8/imm8 opcode */, 0x35 /* Rax32/imm32 */,
121 0x80, 0x6 /* RegMem8/imm8 */,
122 0x81, 0x6 /* RegMem32/imm32 */, 0x83, 0x6 /* RegMem32/imm8 */),
123ENCODING_MAP(Cmp, IS_LOAD, 0, 0,
124 0x38 /* RegMem8/Reg8 */, 0x39 /* RegMem32/Reg32 */,
125 0x3A /* Reg8/RegMem8 */, 0x3B /* Reg32/RegMem32 */,
126 0x3C /* Rax8/imm8 opcode */, 0x3D /* Rax32/imm32 */,
127 0x80, 0x7 /* RegMem8/imm8 */,
128 0x81, 0x7 /* RegMem32/imm32 */, 0x83, 0x7 /* RegMem32/imm8 */),
129#undef ENCODING_MAP
130
131 { kX86Imul16RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RRI", "!0r,!1r,!2d" },
132 { kX86Imul16RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RMI", "!0r,[!1r+!2d],!3d" },
133 { kX86Imul16RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0x66, 0, 0x69, 0, 0, 0, 0, 2 }, "Imul16RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
134
135 { kX86Imul32RRI, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RRI", "!0r,!1r,!2d" },
136 { kX86Imul32RMI, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RMI", "!0r,[!1r+!2d],!3d" },
137 { kX86Imul32RAI, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x69, 0, 0, 0, 0, 4 }, "Imul32RAI", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
138 { kX86Imul32RRI8, kRegRegImm, IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RRI8", "!0r,!1r,!2d" },
139 { kX86Imul32RMI8, kRegMemImm, IS_LOAD | IS_QUAD_OP | REG_DEF0_USE1 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RMI8", "!0r,[!1r+!2d],!3d" },
140 { kX86Imul32RAI8, kRegArrayImm, IS_LOAD | IS_SEXTUPLE_OP | REG_DEF0_USE12 | SETS_CCODES, { 0, 0, 0x6B, 0, 0, 0, 0, 1 }, "Imul32RAI8", "!0r,[!1r+!2r<<!3d+!4d],!5d" },
141
142 { kX86Mov8MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8MR", "[!0r+!1d],!2r" },
143 { kX86Mov8AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8AR", "[!0r+!1r<<!2d+!3d],!4r" },
144 { kX86Mov8TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x88, 0, 0, 0, 0, 0 }, "Mov8TR", "fs:[!0d],!1r" },
145 { kX86Mov8RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RR", "!0r,!1r" },
146 { kX86Mov8RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RM", "!0r,[!1r+!2d]" },
147 { kX86Mov8RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RA", "!0r,[!1r+!2r<<!3d+!4d]" },
148 { kX86Mov8RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8A, 0, 0, 0, 0, 0 }, "Mov8RT", "!0r,fs:[!1d]" },
149 { kX86Mov8RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB0, 0, 0, 0, 0, 1 }, "Mov8RI", "!0r,!1d" },
150 { kX86Mov8MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8MI", "[!0r+!1d],!2d" },
151 { kX86Mov8AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8AI", "[!0r+!1r<<!2d+!3d],!4d" },
152 { kX86Mov8TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC6, 0, 0, 0, 0, 1 }, "Mov8TI", "fs:[!0d],!1d" },
153
154 { kX86Mov16MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16MR", "[!0r+!1d],!2r" },
155 { kX86Mov16AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov16AR", "[!0r+!1r<<!2d+!3d],!4r" },
156 { kX86Mov16TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0x66, 0x89, 0, 0, 0, 0, 0 }, "Mov16TR", "fs:[!0d],!1r" },
157 { kX86Mov16RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RR", "!0r,!1r" },
158 { kX86Mov16RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RM", "!0r,[!1r+!2d]" },
159 { kX86Mov16RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0x66, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RA", "!0r,[!1r+!2r<<!3d+!4d]" },
160 { kX86Mov16RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0x66, 0x8B, 0, 0, 0, 0, 0 }, "Mov16RT", "!0r,fs:[!1d]" },
161 { kX86Mov16RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0x66, 0, 0xB8, 0, 0, 0, 0, 2 }, "Mov16RI", "!0r,!1d" },
162 { kX86Mov16MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16MI", "[!0r+!1d],!2d" },
163 { kX86Mov16AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0x66, 0, 0xC7, 0, 0, 0, 0, 2 }, "Mov16AI", "[!0r+!1r<<!2d+!3d],!4d" },
164 { kX86Mov16TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0x66, 0xC7, 0, 0, 0, 0, 2 }, "Mov16TI", "fs:[!0d],!1d" },
165
166 { kX86Mov32MR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32MR", "[!0r+!1d],!2r" },
167 { kX86Mov32AR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32AR", "[!0r+!1r<<!2d+!3d],!4r" },
168 { kX86Mov32TR, kThreadReg, IS_STORE | IS_BINARY_OP | REG_USE1, { THREAD_PREFIX, 0, 0x89, 0, 0, 0, 0, 0 }, "Mov32TR", "fs:[!0d],!1r" },
169 { kX86Mov32RR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RR", "!0r,!1r" },
170 { kX86Mov32RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | REG_DEF0_USE1, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RM", "!0r,[!1r+!2d]" },
171 { kX86Mov32RA, kRegArray, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
172 { kX86Mov32RT, kRegThread, IS_LOAD | IS_BINARY_OP | REG_DEF0, { THREAD_PREFIX, 0, 0x8B, 0, 0, 0, 0, 0 }, "Mov32RT", "!0r,fs:[!1d]" },
173 { kX86Mov32RI, kMovRegImm, IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "Mov32RI", "!0r,!1d" },
174 { kX86Mov32MI, kMemImm, IS_STORE | IS_TERTIARY_OP | REG_USE0, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32MI", "[!0r+!1d],!2d" },
175 { kX86Mov32AI, kArrayImm, IS_STORE | IS_QUIN_OP | REG_USE01, { 0, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32AI", "[!0r+!1r<<!2d+!3d],!4d" },
176 { kX86Mov32TI, kThreadImm, IS_STORE | IS_BINARY_OP, { THREAD_PREFIX, 0, 0xC7, 0, 0, 0, 0, 4 }, "Mov32TI", "fs:[!0d],!1d" },
177
178 { kX86Lea32RA, kRegArray, IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8D, 0, 0, 0, 0, 0 }, "Lea32RA", "!0r,[!1r+!2r<<!3d+!4d]" },
179
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800180 { kX86Cmov32RRC, kRegRegCond, IS_TERTIARY_OP | REG_DEF0_USE01 | USES_CCODES, {0, 0, 0x0F, 0x40, 0, 0, 0, 0}, "Cmovcc32RR", "!2c !0r,!1r" },
181
Brian Carlstrom7940e442013-07-12 13:46:57 -0700182#define SHIFT_ENCODING_MAP(opname, modrm_opcode) \
183{ kX86 ## opname ## 8RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8RI", "!0r,!1d" }, \
184{ kX86 ## opname ## 8MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8MI", "[!0r+!1d],!2d" }, \
185{ kX86 ## opname ## 8AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC0, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "8AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
186{ kX86 ## opname ## 8RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8RC", "!0r,cl" }, \
187{ kX86 ## opname ## 8MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8MC", "[!0r+!1d],cl" }, \
188{ kX86 ## opname ## 8AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD2, 0, 0, modrm_opcode, 0, 1 }, #opname "8AC", "[!0r+!1r<<!2d+!3d],cl" }, \
189 \
190{ kX86 ## opname ## 16RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16RI", "!0r,!1d" }, \
191{ kX86 ## opname ## 16MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16MI", "[!0r+!1d],!2d" }, \
192{ kX86 ## opname ## 16AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "16AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
193{ kX86 ## opname ## 16RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16RC", "!0r,cl" }, \
194{ kX86 ## opname ## 16MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16MC", "[!0r+!1d],cl" }, \
195{ kX86 ## opname ## 16AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0x66, 0, 0xD3, 0, 0, modrm_opcode, 0, 1 }, #opname "16AC", "[!0r+!1r<<!2d+!3d],cl" }, \
196 \
197{ kX86 ## opname ## 32RI, kShiftRegImm, IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32RI", "!0r,!1d" }, \
198{ kX86 ## opname ## 32MI, kShiftMemImm, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32MI", "[!0r+!1d],!2d" }, \
199{ kX86 ## opname ## 32AI, kShiftArrayImm, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xC1, 0, 0, modrm_opcode, 0xD1, 1 }, #opname "32AI", "[!0r+!1r<<!2d+!3d],!4d" }, \
200{ kX86 ## opname ## 32RC, kShiftRegCl, IS_BINARY_OP | REG_DEF0_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32RC", "!0r,cl" }, \
201{ kX86 ## opname ## 32MC, kShiftMemCl, IS_LOAD | IS_STORE | IS_TERTIARY_OP | REG_USE0 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32MC", "[!0r+!1d],cl" }, \
202{ kX86 ## opname ## 32AC, kShiftArrayCl, IS_LOAD | IS_STORE | IS_QUIN_OP | REG_USE01 | REG_USEC | SETS_CCODES, { 0, 0, 0xD3, 0, 0, modrm_opcode, 0, 0 }, #opname "32AC", "[!0r+!1r<<!2d+!3d],cl" }
203
204 SHIFT_ENCODING_MAP(Rol, 0x0),
205 SHIFT_ENCODING_MAP(Ror, 0x1),
206 SHIFT_ENCODING_MAP(Rcl, 0x2),
207 SHIFT_ENCODING_MAP(Rcr, 0x3),
208 SHIFT_ENCODING_MAP(Sal, 0x4),
209 SHIFT_ENCODING_MAP(Shr, 0x5),
210 SHIFT_ENCODING_MAP(Sar, 0x7),
211#undef SHIFT_ENCODING_MAP
212
213 { kX86Cmc, kNullary, NO_OPERAND, { 0, 0, 0xF5, 0, 0, 0, 0, 0}, "Cmc", "" },
214
215 { kX86Test8RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8RI", "!0r,!1d" },
216 { kX86Test8MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8MI", "[!0r+!1d],!2d" },
217 { kX86Test8AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF6, 0, 0, 0, 0, 1}, "Test8AI", "[!0r+!1r<<!2d+!3d],!4d" },
218 { kX86Test16RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16RI", "!0r,!1d" },
219 { kX86Test16MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16MI", "[!0r+!1d],!2d" },
220 { kX86Test16AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0x66, 0, 0xF7, 0, 0, 0, 0, 2}, "Test16AI", "[!0r+!1r<<!2d+!3d],!4d" },
221 { kX86Test32RI, kRegImm, IS_BINARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32RI", "!0r,!1d" },
222 { kX86Test32MI, kMemImm, IS_LOAD | IS_TERTIARY_OP | REG_USE0 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32MI", "[!0r+!1d],!2d" },
223 { kX86Test32AI, kArrayImm, IS_LOAD | IS_QUIN_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0xF7, 0, 0, 0, 0, 4}, "Test32AI", "[!0r+!1r<<!2d+!3d],!4d" },
224 { kX86Test32RR, kRegReg, IS_BINARY_OP | REG_USE01 | SETS_CCODES, { 0, 0, 0x85, 0, 0, 0, 0, 0}, "Test32RR", "!0r,!1r" },
225
226#define UNARY_ENCODING_MAP(opname, modrm, is_store, sets_ccodes, \
227 reg, reg_kind, reg_flags, \
228 mem, mem_kind, mem_flags, \
229 arr, arr_kind, arr_flags, imm, \
230 b_flags, hw_flags, w_flags, \
231 b_format, hw_format, w_format) \
232{ kX86 ## opname ## 8 ## reg, reg_kind, reg_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #reg, #b_format "!0r" }, \
233{ kX86 ## opname ## 8 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #mem, #b_format "[!0r+!1d]" }, \
234{ kX86 ## opname ## 8 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | b_flags | sets_ccodes, { 0, 0, 0xF6, 0, 0, modrm, 0, imm << 0}, #opname "8" #arr, #b_format "[!0r+!1r<<!2d+!3d]" }, \
235{ kX86 ## opname ## 16 ## reg, reg_kind, reg_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #reg, #hw_format "!0r" }, \
236{ kX86 ## opname ## 16 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #mem, #hw_format "[!0r+!1d]" }, \
237{ kX86 ## opname ## 16 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | hw_flags | sets_ccodes, { 0x66, 0, 0xF7, 0, 0, modrm, 0, imm << 1}, #opname "16" #arr, #hw_format "[!0r+!1r<<!2d+!3d]" }, \
238{ kX86 ## opname ## 32 ## reg, reg_kind, reg_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #reg, #w_format "!0r" }, \
239{ kX86 ## opname ## 32 ## mem, mem_kind, IS_LOAD | is_store | mem_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #mem, #w_format "[!0r+!1d]" }, \
240{ kX86 ## opname ## 32 ## arr, arr_kind, IS_LOAD | is_store | arr_flags | w_flags | sets_ccodes, { 0, 0, 0xF7, 0, 0, modrm, 0, imm << 2}, #opname "32" #arr, #w_format "[!0r+!1r<<!2d+!3d]" }
241
242 UNARY_ENCODING_MAP(Not, 0x2, IS_STORE, 0, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
243 UNARY_ENCODING_MAP(Neg, 0x3, IS_STORE, SETS_CCODES, R, kReg, IS_UNARY_OP | REG_DEF0_USE0, M, kMem, IS_BINARY_OP | REG_USE0, A, kArray, IS_QUAD_OP | REG_USE01, 0, 0, 0, 0, "", "", ""),
244
245 UNARY_ENCODING_MAP(Mul, 0x4, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
246 UNARY_ENCODING_MAP(Imul, 0x5, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEA, REG_DEFAD_USEA, "ax,al,", "dx:ax,ax,", "edx:eax,eax,"),
247 UNARY_ENCODING_MAP(Divmod, 0x6, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
248 UNARY_ENCODING_MAP(Idivmod, 0x7, 0, SETS_CCODES, DaR, kRegRegReg, IS_UNARY_OP | REG_USE0, DaM, kRegRegMem, IS_BINARY_OP | REG_USE0, DaA, kRegRegArray, IS_QUAD_OP | REG_USE01, 0, REG_DEFA_USEA, REG_DEFAD_USEAD, REG_DEFAD_USEAD, "ah:al,ax,", "dx:ax,dx:ax,", "edx:eax,edx:eax,"),
249#undef UNARY_ENCODING_MAP
250
Vladimir Markoa6fd8ba2013-12-13 10:53:49 +0000251 { kX86Bswap32R, kRegOpcode, IS_UNARY_OP | REG_DEF0_USE0, { 0, 0, 0x0F, 0xC8, 0, 0, 0, 0 }, "Bswap32R", "!0r" },
252 { kX86Push32R, kRegOpcode, IS_UNARY_OP | REG_USE0 | REG_USE_SP | REG_DEF_SP | IS_STORE, { 0, 0, 0x50, 0, 0, 0, 0, 0 }, "Push32R", "!0r" },
253 { kX86Pop32R, kRegOpcode, IS_UNARY_OP | REG_DEF0 | REG_USE_SP | REG_DEF_SP | IS_LOAD, { 0, 0, 0x58, 0, 0, 0, 0, 0 }, "Pop32R", "!0r" },
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100254
Brian Carlstrom7940e442013-07-12 13:46:57 -0700255#define EXT_0F_ENCODING_MAP(opname, prefix, opcode, reg_def) \
256{ kX86 ## opname ## RR, kRegReg, IS_BINARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RR", "!0r,!1r" }, \
257{ kX86 ## opname ## RM, kRegMem, IS_LOAD | IS_TERTIARY_OP | reg_def | REG_USE01, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RM", "!0r,[!1r+!2d]" }, \
258{ kX86 ## opname ## RA, kRegArray, IS_LOAD | IS_QUIN_OP | reg_def | REG_USE012, { prefix, 0, 0x0F, opcode, 0, 0, 0, 0 }, #opname "RA", "!0r,[!1r+!2r<<!3d+!4d]" }
259
260 EXT_0F_ENCODING_MAP(Movsd, 0xF2, 0x10, REG_DEF0),
261 { kX86MovsdMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdMR", "[!0r+!1d],!2r" },
262 { kX86MovsdAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF2, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovsdAR", "[!0r+!1r<<!2d+!3d],!4r" },
263
264 EXT_0F_ENCODING_MAP(Movss, 0xF3, 0x10, REG_DEF0),
265 { kX86MovssMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssMR", "[!0r+!1d],!2r" },
266 { kX86MovssAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0xF3, 0, 0x0F, 0x11, 0, 0, 0, 0 }, "MovssAR", "[!0r+!1r<<!2d+!3d],!4r" },
267
268 EXT_0F_ENCODING_MAP(Cvtsi2sd, 0xF2, 0x2A, REG_DEF0),
269 EXT_0F_ENCODING_MAP(Cvtsi2ss, 0xF3, 0x2A, REG_DEF0),
270 EXT_0F_ENCODING_MAP(Cvttsd2si, 0xF2, 0x2C, REG_DEF0),
271 EXT_0F_ENCODING_MAP(Cvttss2si, 0xF3, 0x2C, REG_DEF0),
272 EXT_0F_ENCODING_MAP(Cvtsd2si, 0xF2, 0x2D, REG_DEF0),
273 EXT_0F_ENCODING_MAP(Cvtss2si, 0xF3, 0x2D, REG_DEF0),
274 EXT_0F_ENCODING_MAP(Ucomisd, 0x66, 0x2E, SETS_CCODES),
275 EXT_0F_ENCODING_MAP(Ucomiss, 0x00, 0x2E, SETS_CCODES),
276 EXT_0F_ENCODING_MAP(Comisd, 0x66, 0x2F, SETS_CCODES),
277 EXT_0F_ENCODING_MAP(Comiss, 0x00, 0x2F, SETS_CCODES),
278 EXT_0F_ENCODING_MAP(Orps, 0x00, 0x56, REG_DEF0),
279 EXT_0F_ENCODING_MAP(Xorps, 0x00, 0x57, REG_DEF0),
280 EXT_0F_ENCODING_MAP(Addsd, 0xF2, 0x58, REG_DEF0),
281 EXT_0F_ENCODING_MAP(Addss, 0xF3, 0x58, REG_DEF0),
282 EXT_0F_ENCODING_MAP(Mulsd, 0xF2, 0x59, REG_DEF0),
283 EXT_0F_ENCODING_MAP(Mulss, 0xF3, 0x59, REG_DEF0),
284 EXT_0F_ENCODING_MAP(Cvtsd2ss, 0xF2, 0x5A, REG_DEF0),
285 EXT_0F_ENCODING_MAP(Cvtss2sd, 0xF3, 0x5A, REG_DEF0),
286 EXT_0F_ENCODING_MAP(Subsd, 0xF2, 0x5C, REG_DEF0),
287 EXT_0F_ENCODING_MAP(Subss, 0xF3, 0x5C, REG_DEF0),
288 EXT_0F_ENCODING_MAP(Divsd, 0xF2, 0x5E, REG_DEF0),
289 EXT_0F_ENCODING_MAP(Divss, 0xF3, 0x5E, REG_DEF0),
290
291 { kX86PsrlqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 2, 0, 1 }, "PsrlqRI", "!0r,!1d" },
292 { kX86PsllqRI, kRegImm, IS_BINARY_OP | REG_DEF0_USE0, { 0x66, 0, 0x0F, 0x73, 0, 6, 0, 1 }, "PsllqRI", "!0r,!1d" },
Mark Mendellbff1ef02013-12-13 13:47:34 -0800293 { kX86SqrtsdRR, kRegReg, IS_BINARY_OP | REG_DEF0_USE1, { 0xF2, 0, 0x0F, 0x51, 0, 0, 0, 0 }, "SqrtsdRR", "!0r,!1r" },
Vladimir Marko12f96282013-12-16 14:44:03 +0000294 { kX86FstpdM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0, { 0x0, 0, 0xDD, 0x00, 0, 3, 0, 0 }, "FstpdM", "[!0r,!1d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700295
296 EXT_0F_ENCODING_MAP(Movdxr, 0x66, 0x6E, REG_DEF0),
297 { kX86MovdrxRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxRR", "!0r,!1r" },
298 { kX86MovdrxMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxMR", "[!0r+!1d],!2r" },
299 { kX86MovdrxAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014, { 0x66, 0, 0x0F, 0x7E, 0, 0, 0, 0 }, "MovdrxAR", "[!0r+!1r<<!2d+!3d],!4r" },
300
301 { kX86Set8R, kRegCond, IS_BINARY_OP | REG_DEF0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8R", "!1c !0r" },
302 { kX86Set8M, kMemCond, IS_STORE | IS_TERTIARY_OP | REG_USE0 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8M", "!2c [!0r+!1d]" },
303 { kX86Set8A, kArrayCond, IS_STORE | IS_QUIN_OP | REG_USE01 | USES_CCODES, { 0, 0, 0x0F, 0x90, 0, 0, 0, 0 }, "Set8A", "!4c [!0r+!1r<<!2d+!3d]" },
304
305 // TODO: load/store?
306 // Encode the modrm opcode as an extra opcode byte to avoid computation during assembly.
307 { kX86Mfence, kReg, NO_OPERAND, { 0, 0, 0x0F, 0xAE, 0, 6, 0, 0 }, "Mfence", "" },
308
309 EXT_0F_ENCODING_MAP(Imul16, 0x66, 0xAF, REG_DEF0 | SETS_CCODES),
310 EXT_0F_ENCODING_MAP(Imul32, 0x00, 0xAF, REG_DEF0 | SETS_CCODES),
311
312 { kX86CmpxchgRR, kRegRegStore, IS_BINARY_OP | REG_DEF0 | REG_USE01 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "!0r,!1r" },
313 { kX86CmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1d],!2r" },
314 { kX86CmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700315 { kX86LockCmpxchgMR, kMemReg, IS_STORE | IS_TERTIARY_OP | REG_USE02 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1d],!2r" },
316 { kX86LockCmpxchgAR, kArrayReg, IS_STORE | IS_QUIN_OP | REG_USE014 | REG_DEFA_USEA | SETS_CCODES, { 0xF0, 0, 0x0F, 0xB1, 0, 0, 0, 0 }, "Lock Cmpxchg", "[!0r+!1r<<!2d+!3d],!4r" },
Vladimir Marko70b797d2013-12-03 15:25:24 +0000317 { kX86LockCmpxchg8bM, kMem, IS_STORE | IS_BINARY_OP | REG_USE0 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1d]" },
318 { kX86LockCmpxchg8bA, kArray, IS_STORE | IS_QUAD_OP | REG_USE01 | REG_DEFAD_USEAD | REG_USEC | REG_USEB | SETS_CCODES, { 0xF0, 0, 0x0F, 0xC7, 0, 1, 0, 0 }, "Lock Cmpxchg8b", "[!0r+!1r<<!2d+!3d]" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700319
320 EXT_0F_ENCODING_MAP(Movzx8, 0x00, 0xB6, REG_DEF0),
321 EXT_0F_ENCODING_MAP(Movzx16, 0x00, 0xB7, REG_DEF0),
322 EXT_0F_ENCODING_MAP(Movsx8, 0x00, 0xBE, REG_DEF0),
323 EXT_0F_ENCODING_MAP(Movsx16, 0x00, 0xBF, REG_DEF0),
324#undef EXT_0F_ENCODING_MAP
325
326 { kX86Jcc8, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x70, 0, 0, 0, 0, 0 }, "Jcc8", "!1c !0t" },
327 { kX86Jcc32, kJcc, IS_BINARY_OP | IS_BRANCH | NEEDS_FIXUP | USES_CCODES, { 0, 0, 0x0F, 0x80, 0, 0, 0, 0 }, "Jcc32", "!1c !0t" },
328 { kX86Jmp8, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xEB, 0, 0, 0, 0, 0 }, "Jmp8", "!0t" },
329 { kX86Jmp32, kJmp, IS_UNARY_OP | IS_BRANCH | NEEDS_FIXUP, { 0, 0, 0xE9, 0, 0, 0, 0, 0 }, "Jmp32", "!0t" },
330 { kX86JmpR, kJmp, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xFF, 0, 0, 4, 0, 0 }, "JmpR", "!0r" },
331 { kX86CallR, kCall, IS_UNARY_OP | IS_BRANCH | REG_USE0, { 0, 0, 0xE8, 0, 0, 0, 0, 0 }, "CallR", "!0r" },
332 { kX86CallM, kCall, IS_BINARY_OP | IS_BRANCH | IS_LOAD | REG_USE0, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallM", "[!0r+!1d]" },
333 { kX86CallA, kCall, IS_QUAD_OP | IS_BRANCH | IS_LOAD | REG_USE01, { 0, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallA", "[!0r+!1r<<!2d+!3d]" },
334 { kX86CallT, kCall, IS_UNARY_OP | IS_BRANCH | IS_LOAD, { THREAD_PREFIX, 0, 0xFF, 0, 0, 2, 0, 0 }, "CallT", "fs:[!0d]" },
Brian Carlstromb1eba212013-07-17 18:07:19 -0700335 { kX86Ret, kNullary, NO_OPERAND | IS_BRANCH, { 0, 0, 0xC3, 0, 0, 0, 0, 0 }, "Ret", "" },
Brian Carlstrom7940e442013-07-12 13:46:57 -0700336
337 { kX86StartOfMethod, kMacro, IS_UNARY_OP | SETS_CCODES, { 0, 0, 0, 0, 0, 0, 0, 0 }, "StartOfMethod", "!0r" },
338 { kX86PcRelLoadRA, kPcRel, IS_LOAD | IS_QUIN_OP | REG_DEF0_USE12, { 0, 0, 0x8B, 0, 0, 0, 0, 0 }, "PcRelLoadRA", "!0r,[!1r+!2r<<!3d+!4p]" },
339 { kX86PcRelAdr, kPcRel, IS_LOAD | IS_BINARY_OP | REG_DEF0, { 0, 0, 0xB8, 0, 0, 0, 0, 4 }, "PcRelAdr", "!0r,!1d" },
340};
341
342static size_t ComputeSize(const X86EncodingMap* entry, int base, int displacement, bool has_sib) {
343 size_t size = 0;
344 if (entry->skeleton.prefix1 > 0) {
345 ++size;
346 if (entry->skeleton.prefix2 > 0) {
347 ++size;
348 }
349 }
350 ++size; // opcode
351 if (entry->skeleton.opcode == 0x0F) {
352 ++size;
353 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
354 ++size;
355 }
356 }
357 ++size; // modrm
358 if (has_sib || base == rX86_SP) {
359 // SP requires a SIB byte.
360 ++size;
361 }
362 if (displacement != 0 || base == rBP) {
363 // BP requires an explicit displacement, even when it's 0.
364 if (entry->opcode != kX86Lea32RA) {
365 DCHECK_NE(entry->flags & (IS_LOAD | IS_STORE), 0ULL) << entry->name;
366 }
367 size += IS_SIMM8(displacement) ? 1 : 4;
368 }
369 size += entry->skeleton.immediate_bytes;
370 return size;
371}
372
373int X86Mir2Lir::GetInsnSize(LIR* lir) {
buzbee409fe942013-10-11 10:49:56 -0700374 DCHECK(!IsPseudoLirOp(lir->opcode));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700375 const X86EncodingMap* entry = &X86Mir2Lir::EncodingMap[lir->opcode];
376 switch (entry->kind) {
377 case kData:
378 return 4; // 4 bytes of data
379 case kNop:
380 return lir->operands[0]; // length of nop is sole operand
381 case kNullary:
382 return 1; // 1 byte of opcode
Vladimir Markoa8b4caf2013-10-24 15:08:57 +0100383 case kRegOpcode: // lir operands - 0: reg
384 return ComputeSize(entry, 0, 0, false) - 1; // substract 1 for modrm
Brian Carlstrom7940e442013-07-12 13:46:57 -0700385 case kReg: // lir operands - 0: reg
386 return ComputeSize(entry, 0, 0, false);
387 case kMem: // lir operands - 0: base, 1: disp
388 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
389 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
390 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
391 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
392 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
393 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
394 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
395 case kThreadReg: // lir operands - 0: disp, 1: reg
396 return ComputeSize(entry, 0, lir->operands[0], false);
397 case kRegReg:
398 return ComputeSize(entry, 0, 0, false);
399 case kRegRegStore:
400 return ComputeSize(entry, 0, 0, false);
401 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
402 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
403 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
404 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
405 case kRegThread: // lir operands - 0: reg, 1: disp
406 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
407 case kRegImm: { // lir operands - 0: reg, 1: immediate
408 size_t size = ComputeSize(entry, 0, 0, false);
409 if (entry->skeleton.ax_opcode == 0) {
410 return size;
411 } else {
412 // AX opcodes don't require the modrm byte.
413 int reg = lir->operands[0];
414 return size - (reg == rAX ? 1 : 0);
415 }
416 }
417 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
418 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
419 case kArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
420 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
421 case kThreadImm: // lir operands - 0: disp, 1: imm
422 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
423 case kRegRegImm: // lir operands - 0: reg, 1: reg, 2: imm
424 return ComputeSize(entry, 0, 0, false);
425 case kRegMemImm: // lir operands - 0: reg, 1: base, 2: disp, 3: imm
426 return ComputeSize(entry, lir->operands[1], lir->operands[2], false);
427 case kRegArrayImm: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp, 5: imm
428 return ComputeSize(entry, lir->operands[1], lir->operands[4], true);
429 case kMovRegImm: // lir operands - 0: reg, 1: immediate
430 return 1 + entry->skeleton.immediate_bytes;
431 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
432 // Shift by immediate one has a shorter opcode.
433 return ComputeSize(entry, 0, 0, false) - (lir->operands[1] == 1 ? 1 : 0);
434 case kShiftMemImm: // lir operands - 0: base, 1: disp, 2: immediate
435 // Shift by immediate one has a shorter opcode.
436 return ComputeSize(entry, lir->operands[0], lir->operands[1], false) -
437 (lir->operands[2] == 1 ? 1 : 0);
438 case kShiftArrayImm: // lir operands - 0: base, 1: index, 2: scale, 3: disp 4: immediate
439 // Shift by immediate one has a shorter opcode.
440 return ComputeSize(entry, lir->operands[0], lir->operands[3], true) -
441 (lir->operands[4] == 1 ? 1 : 0);
442 case kShiftRegCl:
443 return ComputeSize(entry, 0, 0, false);
444 case kShiftMemCl: // lir operands - 0: base, 1: disp, 2: cl
445 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
446 case kShiftArrayCl: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
447 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
448 case kRegCond: // lir operands - 0: reg, 1: cond
449 return ComputeSize(entry, 0, 0, false);
450 case kMemCond: // lir operands - 0: base, 1: disp, 2: cond
451 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
452 case kArrayCond: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: cond
453 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800454 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: cond
455 return ComputeSize(entry, 0, 0, false);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700456 case kJcc:
457 if (lir->opcode == kX86Jcc8) {
458 return 2; // opcode + rel8
459 } else {
460 DCHECK(lir->opcode == kX86Jcc32);
461 return 6; // 2 byte opcode + rel32
462 }
463 case kJmp:
464 if (lir->opcode == kX86Jmp8) {
465 return 2; // opcode + rel8
466 } else if (lir->opcode == kX86Jmp32) {
467 return 5; // opcode + rel32
468 } else {
469 DCHECK(lir->opcode == kX86JmpR);
470 return 2; // opcode + modrm
471 }
472 case kCall:
473 switch (lir->opcode) {
474 case kX86CallR: return 2; // opcode modrm
475 case kX86CallM: // lir operands - 0: base, 1: disp
476 return ComputeSize(entry, lir->operands[0], lir->operands[1], false);
477 case kX86CallA: // lir operands - 0: base, 1: index, 2: scale, 3: disp
478 return ComputeSize(entry, lir->operands[0], lir->operands[3], true);
479 case kX86CallT: // lir operands - 0: disp
480 return ComputeSize(entry, 0, 0x12345678, false); // displacement size is always 32bit
481 default:
482 break;
483 }
484 break;
485 case kPcRel:
486 if (entry->opcode == kX86PcRelLoadRA) {
487 // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
488 return ComputeSize(entry, lir->operands[1], 0x12345678, true);
489 } else {
490 DCHECK(entry->opcode == kX86PcRelAdr);
Brian Carlstrom7934ac22013-07-26 10:54:15 -0700491 return 5; // opcode with reg + 4 byte immediate
Brian Carlstrom7940e442013-07-12 13:46:57 -0700492 }
493 case kMacro:
494 DCHECK_EQ(lir->opcode, static_cast<int>(kX86StartOfMethod));
495 return 5 /* call opcode + 4 byte displacement */ + 1 /* pop reg */ +
496 ComputeSize(&X86Mir2Lir::EncodingMap[kX86Sub32RI], 0, 0, false) -
497 (lir->operands[0] == rAX ? 1 : 0); // shorter ax encoding
498 default:
499 break;
500 }
501 UNIMPLEMENTED(FATAL) << "Unimplemented size encoding for: " << entry->name;
502 return 0;
503}
504
Vladimir Marko057c74a2013-12-03 15:20:45 +0000505void X86Mir2Lir::EmitPrefix(const X86EncodingMap* entry) {
506 if (entry->skeleton.prefix1 != 0) {
507 code_buffer_.push_back(entry->skeleton.prefix1);
508 if (entry->skeleton.prefix2 != 0) {
509 code_buffer_.push_back(entry->skeleton.prefix2);
510 }
511 } else {
512 DCHECK_EQ(0, entry->skeleton.prefix2);
513 }
514}
515
516void X86Mir2Lir::EmitOpcode(const X86EncodingMap* entry) {
517 code_buffer_.push_back(entry->skeleton.opcode);
518 if (entry->skeleton.opcode == 0x0F) {
519 code_buffer_.push_back(entry->skeleton.extra_opcode1);
520 if (entry->skeleton.extra_opcode1 == 0x38 || entry->skeleton.extra_opcode1 == 0x3A) {
521 code_buffer_.push_back(entry->skeleton.extra_opcode2);
522 } else {
523 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
524 }
525 } else {
526 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
527 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
528 }
529}
530
531void X86Mir2Lir::EmitPrefixAndOpcode(const X86EncodingMap* entry) {
532 EmitPrefix(entry);
533 EmitOpcode(entry);
534}
535
Brian Carlstrom7940e442013-07-12 13:46:57 -0700536static uint8_t ModrmForDisp(int base, int disp) {
537 // BP requires an explicit disp, so do not omit it in the 0 case
538 if (disp == 0 && base != rBP) {
539 return 0;
540 } else if (IS_SIMM8(disp)) {
541 return 1;
542 } else {
543 return 2;
544 }
545}
546
Vladimir Marko057c74a2013-12-03 15:20:45 +0000547void X86Mir2Lir::EmitDisp(uint8_t base, int disp) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700548 // BP requires an explicit disp, so do not omit it in the 0 case
549 if (disp == 0 && base != rBP) {
550 return;
551 } else if (IS_SIMM8(disp)) {
552 code_buffer_.push_back(disp & 0xFF);
553 } else {
554 code_buffer_.push_back(disp & 0xFF);
555 code_buffer_.push_back((disp >> 8) & 0xFF);
556 code_buffer_.push_back((disp >> 16) & 0xFF);
557 code_buffer_.push_back((disp >> 24) & 0xFF);
558 }
559}
560
Vladimir Marko057c74a2013-12-03 15:20:45 +0000561void X86Mir2Lir::EmitModrmDisp(uint8_t reg_or_opcode, uint8_t base, int disp) {
562 DCHECK_LT(reg_or_opcode, 8);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700563 DCHECK_LT(base, 8);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000564 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | base;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700565 code_buffer_.push_back(modrm);
566 if (base == rX86_SP) {
567 // Special SIB for SP base
568 code_buffer_.push_back(0 << 6 | (rX86_SP << 3) | rX86_SP);
569 }
570 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700571}
572
Vladimir Marko057c74a2013-12-03 15:20:45 +0000573void X86Mir2Lir::EmitModrmSibDisp(uint8_t reg_or_opcode, uint8_t base, uint8_t index,
574 int scale, int disp) {
575 DCHECK_LT(reg_or_opcode, 8);
576 uint8_t modrm = (ModrmForDisp(base, disp) << 6) | (reg_or_opcode << 3) | rX86_SP;
Brian Carlstrom7940e442013-07-12 13:46:57 -0700577 code_buffer_.push_back(modrm);
578 DCHECK_LT(scale, 4);
579 DCHECK_LT(index, 8);
580 DCHECK_LT(base, 8);
581 uint8_t sib = (scale << 6) | (index << 3) | base;
582 code_buffer_.push_back(sib);
583 EmitDisp(base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700584}
585
Vladimir Marko057c74a2013-12-03 15:20:45 +0000586void X86Mir2Lir::EmitImm(const X86EncodingMap* entry, int imm) {
Brian Carlstrom7940e442013-07-12 13:46:57 -0700587 switch (entry->skeleton.immediate_bytes) {
588 case 1:
589 DCHECK(IS_SIMM8(imm));
590 code_buffer_.push_back(imm & 0xFF);
591 break;
592 case 2:
593 DCHECK(IS_SIMM16(imm));
594 code_buffer_.push_back(imm & 0xFF);
595 code_buffer_.push_back((imm >> 8) & 0xFF);
596 break;
597 case 4:
598 code_buffer_.push_back(imm & 0xFF);
599 code_buffer_.push_back((imm >> 8) & 0xFF);
600 code_buffer_.push_back((imm >> 16) & 0xFF);
601 code_buffer_.push_back((imm >> 24) & 0xFF);
602 break;
603 default:
604 LOG(FATAL) << "Unexpected immediate bytes (" << entry->skeleton.immediate_bytes
605 << ") for instruction: " << entry->name;
606 break;
607 }
608}
609
Vladimir Marko057c74a2013-12-03 15:20:45 +0000610void X86Mir2Lir::EmitOpRegOpcode(const X86EncodingMap* entry, uint8_t reg) {
611 EmitPrefixAndOpcode(entry);
612 // There's no 3-byte instruction with +rd
613 DCHECK(entry->skeleton.opcode != 0x0F ||
614 (entry->skeleton.extra_opcode1 != 0x38 && entry->skeleton.extra_opcode1 != 0x3A));
615 DCHECK(!X86_FPREG(reg));
616 DCHECK_LT(reg, 8);
617 code_buffer_.back() += reg;
618 DCHECK_EQ(0, entry->skeleton.ax_opcode);
619 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
620}
621
622void X86Mir2Lir::EmitOpReg(const X86EncodingMap* entry, uint8_t reg) {
623 EmitPrefixAndOpcode(entry);
624 if (X86_FPREG(reg)) {
625 reg = reg & X86_FP_REG_MASK;
626 }
627 if (reg >= 4) {
628 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
629 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
630 }
631 DCHECK_LT(reg, 8);
632 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
633 code_buffer_.push_back(modrm);
634 DCHECK_EQ(0, entry->skeleton.ax_opcode);
635 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
636}
637
638void X86Mir2Lir::EmitOpMem(const X86EncodingMap* entry, uint8_t base, int disp) {
639 EmitPrefix(entry);
640 code_buffer_.push_back(entry->skeleton.opcode);
641 DCHECK_NE(0x0F, entry->skeleton.opcode);
642 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
643 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
644 DCHECK_NE(rX86_SP, base);
645 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
646 DCHECK_EQ(0, entry->skeleton.ax_opcode);
647 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
648}
649
650void X86Mir2Lir::EmitOpArray(const X86EncodingMap* entry, uint8_t base, uint8_t index,
651 int scale, int disp) {
652 EmitPrefixAndOpcode(entry);
653 EmitModrmSibDisp(entry->skeleton.modrm_opcode, base, index, scale, disp);
654 DCHECK_EQ(0, entry->skeleton.ax_opcode);
655 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
656}
657
658void X86Mir2Lir::EmitMemReg(const X86EncodingMap* entry,
659 uint8_t base, int disp, uint8_t reg) {
660 EmitPrefixAndOpcode(entry);
661 if (X86_FPREG(reg)) {
662 reg = reg & X86_FP_REG_MASK;
663 }
664 if (reg >= 4) {
665 DCHECK(strchr(entry->name, '8') == NULL ||
666 entry->opcode == kX86Movzx8RM || entry->opcode == kX86Movsx8RM)
667 << entry->name << " " << static_cast<int>(reg)
668 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
669 }
670 EmitModrmDisp(reg, base, disp);
671 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
672 DCHECK_EQ(0, entry->skeleton.ax_opcode);
673 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
674}
675
676void X86Mir2Lir::EmitRegMem(const X86EncodingMap* entry,
677 uint8_t reg, uint8_t base, int disp) {
678 // Opcode will flip operands.
679 EmitMemReg(entry, base, disp, reg);
680}
681
682void X86Mir2Lir::EmitRegArray(const X86EncodingMap* entry, uint8_t reg, uint8_t base, uint8_t index,
683 int scale, int disp) {
684 EmitPrefixAndOpcode(entry);
685 if (X86_FPREG(reg)) {
686 reg = reg & X86_FP_REG_MASK;
687 }
688 EmitModrmSibDisp(reg, base, index, scale, disp);
689 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
690 DCHECK_EQ(0, entry->skeleton.ax_opcode);
691 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
692}
693
694void X86Mir2Lir::EmitArrayReg(const X86EncodingMap* entry, uint8_t base, uint8_t index, int scale, int disp,
695 uint8_t reg) {
696 // Opcode will flip operands.
697 EmitRegArray(entry, reg, base, index, scale, disp);
698}
699
700void X86Mir2Lir::EmitRegThread(const X86EncodingMap* entry, uint8_t reg, int disp) {
701 DCHECK_NE(entry->skeleton.prefix1, 0);
702 EmitPrefixAndOpcode(entry);
703 if (X86_FPREG(reg)) {
704 reg = reg & X86_FP_REG_MASK;
705 }
706 if (reg >= 4) {
707 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
708 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
709 }
710 DCHECK_LT(reg, 8);
711 uint8_t modrm = (0 << 6) | (reg << 3) | rBP;
712 code_buffer_.push_back(modrm);
713 code_buffer_.push_back(disp & 0xFF);
714 code_buffer_.push_back((disp >> 8) & 0xFF);
715 code_buffer_.push_back((disp >> 16) & 0xFF);
716 code_buffer_.push_back((disp >> 24) & 0xFF);
717 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
718 DCHECK_EQ(0, entry->skeleton.ax_opcode);
719 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
720}
721
722void X86Mir2Lir::EmitRegReg(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2) {
723 EmitPrefixAndOpcode(entry);
724 if (X86_FPREG(reg1)) {
725 reg1 = reg1 & X86_FP_REG_MASK;
726 }
727 if (X86_FPREG(reg2)) {
728 reg2 = reg2 & X86_FP_REG_MASK;
729 }
730 DCHECK_LT(reg1, 8);
731 DCHECK_LT(reg2, 8);
732 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
733 code_buffer_.push_back(modrm);
734 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
735 DCHECK_EQ(0, entry->skeleton.ax_opcode);
736 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
737}
738
739void X86Mir2Lir::EmitRegRegImm(const X86EncodingMap* entry,
740 uint8_t reg1, uint8_t reg2, int32_t imm) {
741 EmitPrefixAndOpcode(entry);
742 if (X86_FPREG(reg1)) {
743 reg1 = reg1 & X86_FP_REG_MASK;
744 }
745 if (X86_FPREG(reg2)) {
746 reg2 = reg2 & X86_FP_REG_MASK;
747 }
748 DCHECK_LT(reg1, 8);
749 DCHECK_LT(reg2, 8);
750 uint8_t modrm = (3 << 6) | (reg1 << 3) | reg2;
751 code_buffer_.push_back(modrm);
752 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
753 DCHECK_EQ(0, entry->skeleton.ax_opcode);
754 EmitImm(entry, imm);
755}
756
Brian Carlstrom7940e442013-07-12 13:46:57 -0700757void X86Mir2Lir::EmitRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
758 if (entry->skeleton.prefix1 != 0) {
759 code_buffer_.push_back(entry->skeleton.prefix1);
760 if (entry->skeleton.prefix2 != 0) {
761 code_buffer_.push_back(entry->skeleton.prefix2);
762 }
763 } else {
764 DCHECK_EQ(0, entry->skeleton.prefix2);
765 }
766 if (reg == rAX && entry->skeleton.ax_opcode != 0) {
767 code_buffer_.push_back(entry->skeleton.ax_opcode);
768 } else {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000769 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700770 if (X86_FPREG(reg)) {
771 reg = reg & X86_FP_REG_MASK;
772 }
773 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
774 code_buffer_.push_back(modrm);
775 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000776 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700777}
778
Mark Mendell343adb52013-12-18 06:02:17 -0800779void X86Mir2Lir::EmitMemImm(const X86EncodingMap* entry, uint8_t base, int disp, int32_t imm) {
780 EmitPrefixAndOpcode(entry);
781 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
782 DCHECK_EQ(0, entry->skeleton.ax_opcode);
783 EmitImm(entry, imm);
784}
785
Brian Carlstrom7940e442013-07-12 13:46:57 -0700786void X86Mir2Lir::EmitThreadImm(const X86EncodingMap* entry, int disp, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000787 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700788 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
789 code_buffer_.push_back(modrm);
790 code_buffer_.push_back(disp & 0xFF);
791 code_buffer_.push_back((disp >> 8) & 0xFF);
792 code_buffer_.push_back((disp >> 16) & 0xFF);
793 code_buffer_.push_back((disp >> 24) & 0xFF);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000794 EmitImm(entry, imm);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700795 DCHECK_EQ(entry->skeleton.ax_opcode, 0);
796}
797
798void X86Mir2Lir::EmitMovRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
799 DCHECK_LT(reg, 8);
800 code_buffer_.push_back(0xB8 + reg);
801 code_buffer_.push_back(imm & 0xFF);
802 code_buffer_.push_back((imm >> 8) & 0xFF);
803 code_buffer_.push_back((imm >> 16) & 0xFF);
804 code_buffer_.push_back((imm >> 24) & 0xFF);
805}
806
807void X86Mir2Lir::EmitShiftRegImm(const X86EncodingMap* entry, uint8_t reg, int imm) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000808 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700809 if (imm != 1) {
810 code_buffer_.push_back(entry->skeleton.opcode);
811 } else {
812 // Shorter encoding for 1 bit shift
813 code_buffer_.push_back(entry->skeleton.ax_opcode);
814 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000815 DCHECK_NE(0x0F, entry->skeleton.opcode);
816 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
817 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700818 if (reg >= 4) {
819 DCHECK(strchr(entry->name, '8') == NULL) << entry->name << " " << static_cast<int>(reg)
820 << " in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
821 }
822 DCHECK_LT(reg, 8);
823 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
824 code_buffer_.push_back(modrm);
825 if (imm != 1) {
826 DCHECK_EQ(entry->skeleton.immediate_bytes, 1);
827 DCHECK(IS_SIMM8(imm));
828 code_buffer_.push_back(imm & 0xFF);
829 }
830}
831
832void X86Mir2Lir::EmitShiftRegCl(const X86EncodingMap* entry, uint8_t reg, uint8_t cl) {
833 DCHECK_EQ(cl, static_cast<uint8_t>(rCX));
Vladimir Marko057c74a2013-12-03 15:20:45 +0000834 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700835 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000836 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700837 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
838 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
839 DCHECK_LT(reg, 8);
840 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
841 code_buffer_.push_back(modrm);
842 DCHECK_EQ(0, entry->skeleton.ax_opcode);
843 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
844}
845
846void X86Mir2Lir::EmitRegCond(const X86EncodingMap* entry, uint8_t reg, uint8_t condition) {
847 if (entry->skeleton.prefix1 != 0) {
848 code_buffer_.push_back(entry->skeleton.prefix1);
849 if (entry->skeleton.prefix2 != 0) {
850 code_buffer_.push_back(entry->skeleton.prefix2);
851 }
852 } else {
853 DCHECK_EQ(0, entry->skeleton.prefix2);
854 }
855 DCHECK_EQ(0, entry->skeleton.ax_opcode);
856 DCHECK_EQ(0x0F, entry->skeleton.opcode);
857 code_buffer_.push_back(0x0F);
858 DCHECK_EQ(0x90, entry->skeleton.extra_opcode1);
859 code_buffer_.push_back(0x90 | condition);
860 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
861 DCHECK_LT(reg, 8);
862 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
863 code_buffer_.push_back(modrm);
864 DCHECK_EQ(entry->skeleton.immediate_bytes, 0);
865}
866
Razvan A Lupusorubd288c22013-12-20 17:27:23 -0800867void X86Mir2Lir::EmitRegRegCond(const X86EncodingMap* entry, uint8_t reg1, uint8_t reg2, uint8_t condition) {
868 // Generate prefix and opcode without the condition
869 EmitPrefixAndOpcode(entry);
870
871 // Now add the condition. The last byte of opcode is the one that receives it.
872 DCHECK_LE(condition, 0xF);
873 code_buffer_.back() += condition;
874
875 // Not expecting to have to encode immediate or do anything special for ModR/M since there are two registers.
876 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
877 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
878
879 // Check that registers requested for encoding are sane.
880 DCHECK_LT(reg1, 8);
881 DCHECK_LT(reg2, 8);
882
883 // For register to register encoding, the mod is 3.
884 const uint8_t mod = (3 << 6);
885
886 // Encode the ModR/M byte now.
887 const uint8_t modrm = mod | (reg1 << 3) | reg2;
888 code_buffer_.push_back(modrm);
889}
890
Brian Carlstrom7940e442013-07-12 13:46:57 -0700891void X86Mir2Lir::EmitJmp(const X86EncodingMap* entry, int rel) {
892 if (entry->opcode == kX86Jmp8) {
893 DCHECK(IS_SIMM8(rel));
894 code_buffer_.push_back(0xEB);
895 code_buffer_.push_back(rel & 0xFF);
896 } else if (entry->opcode == kX86Jmp32) {
897 code_buffer_.push_back(0xE9);
898 code_buffer_.push_back(rel & 0xFF);
899 code_buffer_.push_back((rel >> 8) & 0xFF);
900 code_buffer_.push_back((rel >> 16) & 0xFF);
901 code_buffer_.push_back((rel >> 24) & 0xFF);
902 } else {
903 DCHECK(entry->opcode == kX86JmpR);
904 code_buffer_.push_back(entry->skeleton.opcode);
905 uint8_t reg = static_cast<uint8_t>(rel);
906 DCHECK_LT(reg, 8);
907 uint8_t modrm = (3 << 6) | (entry->skeleton.modrm_opcode << 3) | reg;
908 code_buffer_.push_back(modrm);
909 }
910}
911
912void X86Mir2Lir::EmitJcc(const X86EncodingMap* entry, int rel, uint8_t cc) {
913 DCHECK_LT(cc, 16);
914 if (entry->opcode == kX86Jcc8) {
915 DCHECK(IS_SIMM8(rel));
916 code_buffer_.push_back(0x70 | cc);
917 code_buffer_.push_back(rel & 0xFF);
918 } else {
919 DCHECK(entry->opcode == kX86Jcc32);
920 code_buffer_.push_back(0x0F);
921 code_buffer_.push_back(0x80 | cc);
922 code_buffer_.push_back(rel & 0xFF);
923 code_buffer_.push_back((rel >> 8) & 0xFF);
924 code_buffer_.push_back((rel >> 16) & 0xFF);
925 code_buffer_.push_back((rel >> 24) & 0xFF);
926 }
927}
928
929void X86Mir2Lir::EmitCallMem(const X86EncodingMap* entry, uint8_t base, int disp) {
Vladimir Marko057c74a2013-12-03 15:20:45 +0000930 EmitPrefixAndOpcode(entry);
931 EmitModrmDisp(entry->skeleton.modrm_opcode, base, disp);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700932 DCHECK_EQ(0, entry->skeleton.ax_opcode);
933 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
934}
935
936void X86Mir2Lir::EmitCallThread(const X86EncodingMap* entry, int disp) {
937 DCHECK_NE(entry->skeleton.prefix1, 0);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000938 EmitPrefixAndOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700939 uint8_t modrm = (0 << 6) | (entry->skeleton.modrm_opcode << 3) | rBP;
940 code_buffer_.push_back(modrm);
941 code_buffer_.push_back(disp & 0xFF);
942 code_buffer_.push_back((disp >> 8) & 0xFF);
943 code_buffer_.push_back((disp >> 16) & 0xFF);
944 code_buffer_.push_back((disp >> 24) & 0xFF);
945 DCHECK_EQ(0, entry->skeleton.ax_opcode);
946 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
947}
948
949void X86Mir2Lir::EmitPcRel(const X86EncodingMap* entry, uint8_t reg,
950 int base_or_table, uint8_t index, int scale, int table_or_disp) {
951 int disp;
952 if (entry->opcode == kX86PcRelLoadRA) {
buzbee0d829482013-10-11 15:24:55 -0700953 Mir2Lir::EmbeddedData *tab_rec =
954 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(table_or_disp));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700955 disp = tab_rec->offset;
956 } else {
957 DCHECK(entry->opcode == kX86PcRelAdr);
buzbee0d829482013-10-11 15:24:55 -0700958 Mir2Lir::EmbeddedData *tab_rec =
959 reinterpret_cast<Mir2Lir::EmbeddedData*>(UnwrapPointer(base_or_table));
Brian Carlstrom7940e442013-07-12 13:46:57 -0700960 disp = tab_rec->offset;
961 }
Vladimir Marko057c74a2013-12-03 15:20:45 +0000962 EmitPrefix(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700963 if (X86_FPREG(reg)) {
964 reg = reg & X86_FP_REG_MASK;
965 }
966 DCHECK_LT(reg, 8);
967 if (entry->opcode == kX86PcRelLoadRA) {
968 code_buffer_.push_back(entry->skeleton.opcode);
Vladimir Marko057c74a2013-12-03 15:20:45 +0000969 DCHECK_NE(0x0F, entry->skeleton.opcode);
Brian Carlstrom7940e442013-07-12 13:46:57 -0700970 DCHECK_EQ(0, entry->skeleton.extra_opcode1);
971 DCHECK_EQ(0, entry->skeleton.extra_opcode2);
972 uint8_t modrm = (2 << 6) | (reg << 3) | rX86_SP;
973 code_buffer_.push_back(modrm);
974 DCHECK_LT(scale, 4);
975 DCHECK_LT(index, 8);
976 DCHECK_LT(base_or_table, 8);
977 uint8_t base = static_cast<uint8_t>(base_or_table);
978 uint8_t sib = (scale << 6) | (index << 3) | base;
979 code_buffer_.push_back(sib);
980 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
981 } else {
982 code_buffer_.push_back(entry->skeleton.opcode + reg);
983 }
984 code_buffer_.push_back(disp & 0xFF);
985 code_buffer_.push_back((disp >> 8) & 0xFF);
986 code_buffer_.push_back((disp >> 16) & 0xFF);
987 code_buffer_.push_back((disp >> 24) & 0xFF);
988 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
989 DCHECK_EQ(0, entry->skeleton.ax_opcode);
990}
991
992void X86Mir2Lir::EmitMacro(const X86EncodingMap* entry, uint8_t reg, int offset) {
993 DCHECK(entry->opcode == kX86StartOfMethod) << entry->name;
994 code_buffer_.push_back(0xE8); // call +0
995 code_buffer_.push_back(0);
996 code_buffer_.push_back(0);
997 code_buffer_.push_back(0);
998 code_buffer_.push_back(0);
999
1000 DCHECK_LT(reg, 8);
1001 code_buffer_.push_back(0x58 + reg); // pop reg
1002
1003 EmitRegImm(&X86Mir2Lir::EncodingMap[kX86Sub32RI], reg, offset + 5 /* size of call +0 */);
1004}
1005
1006void X86Mir2Lir::EmitUnimplemented(const X86EncodingMap* entry, LIR* lir) {
1007 UNIMPLEMENTED(WARNING) << "encoding kind for " << entry->name << " "
1008 << BuildInsnString(entry->fmt, lir, 0);
1009 for (int i = 0; i < GetInsnSize(lir); ++i) {
1010 code_buffer_.push_back(0xCC); // push breakpoint instruction - int 3
1011 }
1012}
1013
1014/*
1015 * Assemble the LIR into binary instruction format. Note that we may
1016 * discover that pc-relative displacements may not fit the selected
1017 * instruction. In those cases we will try to substitute a new code
1018 * sequence or request that the trace be shortened and retried.
1019 */
buzbee0d829482013-10-11 15:24:55 -07001020AssemblerStatus X86Mir2Lir::AssembleInstructions(CodeOffset start_addr) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001021 LIR *lir;
1022 AssemblerStatus res = kSuccess; // Assume success
1023
1024 const bool kVerbosePcFixup = false;
1025 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
buzbee409fe942013-10-11 10:49:56 -07001026 if (IsPseudoLirOp(lir->opcode)) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001027 continue;
1028 }
1029
1030 if (lir->flags.is_nop) {
1031 continue;
1032 }
1033
buzbeeb48819d2013-09-14 16:15:25 -07001034 if (lir->flags.fixup != kFixupNone) {
Brian Carlstrom7940e442013-07-12 13:46:57 -07001035 switch (lir->opcode) {
1036 case kX86Jcc8: {
1037 LIR *target_lir = lir->target;
1038 DCHECK(target_lir != NULL);
1039 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001040 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001041 if (IS_SIMM8(lir->operands[0])) {
1042 pc = lir->offset + 2 /* opcode + rel8 */;
1043 } else {
1044 pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1045 }
buzbee0d829482013-10-11 15:24:55 -07001046 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001047 delta = target - pc;
1048 if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1049 if (kVerbosePcFixup) {
1050 LOG(INFO) << "Retry for JCC growth at " << lir->offset
1051 << " delta: " << delta << " old delta: " << lir->operands[0];
1052 }
1053 lir->opcode = kX86Jcc32;
1054 SetupResourceMasks(lir);
1055 res = kRetryAll;
1056 }
1057 if (kVerbosePcFixup) {
1058 LOG(INFO) << "Source:";
1059 DumpLIRInsn(lir, 0);
1060 LOG(INFO) << "Target:";
1061 DumpLIRInsn(target_lir, 0);
1062 LOG(INFO) << "Delta " << delta;
1063 }
1064 lir->operands[0] = delta;
1065 break;
1066 }
1067 case kX86Jcc32: {
1068 LIR *target_lir = lir->target;
1069 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001070 CodeOffset pc = lir->offset + 6 /* 2 byte opcode + rel32 */;
1071 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001072 int delta = target - pc;
1073 if (kVerbosePcFixup) {
1074 LOG(INFO) << "Source:";
1075 DumpLIRInsn(lir, 0);
1076 LOG(INFO) << "Target:";
1077 DumpLIRInsn(target_lir, 0);
1078 LOG(INFO) << "Delta " << delta;
1079 }
1080 lir->operands[0] = delta;
1081 break;
1082 }
1083 case kX86Jmp8: {
1084 LIR *target_lir = lir->target;
1085 DCHECK(target_lir != NULL);
1086 int delta = 0;
buzbee0d829482013-10-11 15:24:55 -07001087 CodeOffset pc;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001088 if (IS_SIMM8(lir->operands[0])) {
1089 pc = lir->offset + 2 /* opcode + rel8 */;
1090 } else {
1091 pc = lir->offset + 5 /* opcode + rel32 */;
1092 }
buzbee0d829482013-10-11 15:24:55 -07001093 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001094 delta = target - pc;
1095 if (!(cu_->disable_opt & (1 << kSafeOptimizations)) && delta == 0) {
1096 // Useless branch
buzbee252254b2013-09-08 16:20:53 -07001097 NopLIR(lir);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001098 if (kVerbosePcFixup) {
1099 LOG(INFO) << "Retry for useless branch at " << lir->offset;
1100 }
1101 res = kRetryAll;
1102 } else if (IS_SIMM8(delta) != IS_SIMM8(lir->operands[0])) {
1103 if (kVerbosePcFixup) {
1104 LOG(INFO) << "Retry for JMP growth at " << lir->offset;
1105 }
1106 lir->opcode = kX86Jmp32;
1107 SetupResourceMasks(lir);
1108 res = kRetryAll;
1109 }
1110 lir->operands[0] = delta;
1111 break;
1112 }
1113 case kX86Jmp32: {
1114 LIR *target_lir = lir->target;
1115 DCHECK(target_lir != NULL);
buzbee0d829482013-10-11 15:24:55 -07001116 CodeOffset pc = lir->offset + 5 /* opcode + rel32 */;
1117 CodeOffset target = target_lir->offset;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001118 int delta = target - pc;
1119 lir->operands[0] = delta;
1120 break;
1121 }
1122 default:
1123 break;
1124 }
1125 }
1126
1127 /*
1128 * If one of the pc-relative instructions expanded we'll have
1129 * to make another pass. Don't bother to fully assemble the
1130 * instruction.
1131 */
1132 if (res != kSuccess) {
1133 continue;
1134 }
1135 CHECK_EQ(static_cast<size_t>(lir->offset), code_buffer_.size());
1136 const X86EncodingMap *entry = &X86Mir2Lir::EncodingMap[lir->opcode];
1137 size_t starting_cbuf_size = code_buffer_.size();
1138 switch (entry->kind) {
1139 case kData: // 4 bytes of data
1140 code_buffer_.push_back(lir->operands[0]);
1141 break;
1142 case kNullary: // 1 byte of opcode
1143 DCHECK_EQ(0, entry->skeleton.prefix1);
1144 DCHECK_EQ(0, entry->skeleton.prefix2);
Vladimir Marko057c74a2013-12-03 15:20:45 +00001145 EmitOpcode(entry);
Brian Carlstrom7940e442013-07-12 13:46:57 -07001146 DCHECK_EQ(0, entry->skeleton.modrm_opcode);
1147 DCHECK_EQ(0, entry->skeleton.ax_opcode);
1148 DCHECK_EQ(0, entry->skeleton.immediate_bytes);
1149 break;
Vladimir Markoa8b4caf2013-10-24 15:08:57 +01001150 case kRegOpcode: // lir operands - 0: reg
1151 EmitOpRegOpcode(entry, lir->operands[0]);
1152 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001153 case kReg: // lir operands - 0: reg
1154 EmitOpReg(entry, lir->operands[0]);
1155 break;
1156 case kMem: // lir operands - 0: base, 1: disp
1157 EmitOpMem(entry, lir->operands[0], lir->operands[1]);
1158 break;
Vladimir Marko057c74a2013-12-03 15:20:45 +00001159 case kArray: // lir operands - 0: base, 1: index, 2: scale, 3: disp
1160 EmitOpArray(entry, lir->operands[0], lir->operands[1], lir->operands[2], lir->operands[3]);
1161 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001162 case kMemReg: // lir operands - 0: base, 1: disp, 2: reg
1163 EmitMemReg(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1164 break;
Mark Mendell343adb52013-12-18 06:02:17 -08001165 case kMemImm: // lir operands - 0: base, 1: disp, 2: immediate
1166 EmitMemImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1167 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001168 case kArrayReg: // lir operands - 0: base, 1: index, 2: scale, 3: disp, 4: reg
1169 EmitArrayReg(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1170 lir->operands[3], lir->operands[4]);
1171 break;
1172 case kRegMem: // lir operands - 0: reg, 1: base, 2: disp
1173 EmitRegMem(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1174 break;
1175 case kRegArray: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: disp
1176 EmitRegArray(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1177 lir->operands[3], lir->operands[4]);
1178 break;
1179 case kRegThread: // lir operands - 0: reg, 1: disp
1180 EmitRegThread(entry, lir->operands[0], lir->operands[1]);
1181 break;
1182 case kRegReg: // lir operands - 0: reg1, 1: reg2
1183 EmitRegReg(entry, lir->operands[0], lir->operands[1]);
1184 break;
1185 case kRegRegStore: // lir operands - 0: reg2, 1: reg1
1186 EmitRegReg(entry, lir->operands[1], lir->operands[0]);
1187 break;
1188 case kRegRegImm:
1189 EmitRegRegImm(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1190 break;
1191 case kRegImm: // lir operands - 0: reg, 1: immediate
1192 EmitRegImm(entry, lir->operands[0], lir->operands[1]);
1193 break;
1194 case kThreadImm: // lir operands - 0: disp, 1: immediate
1195 EmitThreadImm(entry, lir->operands[0], lir->operands[1]);
1196 break;
1197 case kMovRegImm: // lir operands - 0: reg, 1: immediate
1198 EmitMovRegImm(entry, lir->operands[0], lir->operands[1]);
1199 break;
1200 case kShiftRegImm: // lir operands - 0: reg, 1: immediate
1201 EmitShiftRegImm(entry, lir->operands[0], lir->operands[1]);
1202 break;
Brian Carlstrom7934ac22013-07-26 10:54:15 -07001203 case kShiftRegCl: // lir operands - 0: reg, 1: cl
Brian Carlstrom7940e442013-07-12 13:46:57 -07001204 EmitShiftRegCl(entry, lir->operands[0], lir->operands[1]);
1205 break;
1206 case kRegCond: // lir operands - 0: reg, 1: condition
1207 EmitRegCond(entry, lir->operands[0], lir->operands[1]);
1208 break;
Razvan A Lupusorubd288c22013-12-20 17:27:23 -08001209 case kRegRegCond: // lir operands - 0: reg, 1: reg, 2: condition
1210 EmitRegRegCond(entry, lir->operands[0], lir->operands[1], lir->operands[2]);
1211 break;
Brian Carlstrom7940e442013-07-12 13:46:57 -07001212 case kJmp: // lir operands - 0: rel
1213 EmitJmp(entry, lir->operands[0]);
1214 break;
1215 case kJcc: // lir operands - 0: rel, 1: CC, target assigned
1216 EmitJcc(entry, lir->operands[0], lir->operands[1]);
1217 break;
1218 case kCall:
1219 switch (entry->opcode) {
1220 case kX86CallM: // lir operands - 0: base, 1: disp
1221 EmitCallMem(entry, lir->operands[0], lir->operands[1]);
1222 break;
1223 case kX86CallT: // lir operands - 0: disp
1224 EmitCallThread(entry, lir->operands[0]);
1225 break;
1226 default:
1227 EmitUnimplemented(entry, lir);
1228 break;
1229 }
1230 break;
1231 case kPcRel: // lir operands - 0: reg, 1: base, 2: index, 3: scale, 4: table
1232 EmitPcRel(entry, lir->operands[0], lir->operands[1], lir->operands[2],
1233 lir->operands[3], lir->operands[4]);
1234 break;
1235 case kMacro:
1236 EmitMacro(entry, lir->operands[0], lir->offset);
1237 break;
1238 default:
1239 EmitUnimplemented(entry, lir);
1240 break;
1241 }
1242 CHECK_EQ(static_cast<size_t>(GetInsnSize(lir)),
1243 code_buffer_.size() - starting_cbuf_size)
1244 << "Instruction size mismatch for entry: " << X86Mir2Lir::EncodingMap[lir->opcode].name;
1245 }
1246 return res;
1247}
1248
buzbeeb48819d2013-09-14 16:15:25 -07001249// LIR offset assignment.
1250// TODO: consolidate w/ Arm assembly mechanism.
1251int X86Mir2Lir::AssignInsnOffsets() {
1252 LIR* lir;
1253 int offset = 0;
1254
1255 for (lir = first_lir_insn_; lir != NULL; lir = NEXT_LIR(lir)) {
1256 lir->offset = offset;
buzbee409fe942013-10-11 10:49:56 -07001257 if (LIKELY(!IsPseudoLirOp(lir->opcode))) {
buzbeeb48819d2013-09-14 16:15:25 -07001258 if (!lir->flags.is_nop) {
1259 offset += lir->flags.size;
1260 }
1261 } else if (UNLIKELY(lir->opcode == kPseudoPseudoAlign4)) {
1262 if (offset & 0x2) {
1263 offset += 2;
1264 lir->operands[0] = 1;
1265 } else {
1266 lir->operands[0] = 0;
1267 }
1268 }
1269 /* Pseudo opcodes don't consume space */
1270 }
1271 return offset;
1272}
1273
1274/*
1275 * Walk the compilation unit and assign offsets to instructions
1276 * and literals and compute the total size of the compiled unit.
1277 * TODO: consolidate w/ Arm assembly mechanism.
1278 */
1279void X86Mir2Lir::AssignOffsets() {
1280 int offset = AssignInsnOffsets();
1281
1282 /* Const values have to be word aligned */
1283 offset = (offset + 3) & ~3;
1284
1285 /* Set up offsets for literals */
1286 data_offset_ = offset;
1287
1288 offset = AssignLiteralOffset(offset);
1289
1290 offset = AssignSwitchTablesOffset(offset);
1291
1292 offset = AssignFillArrayDataOffset(offset);
1293
1294 total_size_ = offset;
1295}
1296
1297/*
1298 * Go over each instruction in the list and calculate the offset from the top
1299 * before sending them off to the assembler. If out-of-range branch distance is
1300 * seen rearrange the instructions a bit to correct it.
1301 * TODO: consolidate w/ Arm assembly mechanism.
1302 */
1303void X86Mir2Lir::AssembleLIR() {
buzbeea61f4952013-08-23 14:27:06 -07001304 cu_->NewTimingSplit("Assemble");
buzbeeb48819d2013-09-14 16:15:25 -07001305 AssignOffsets();
1306 int assembler_retries = 0;
1307 /*
1308 * Assemble here. Note that we generate code with optimistic assumptions
1309 * and if found now to work, we'll have to redo the sequence and retry.
1310 */
1311
1312 while (true) {
1313 AssemblerStatus res = AssembleInstructions(0);
1314 if (res == kSuccess) {
1315 break;
1316 } else {
1317 assembler_retries++;
1318 if (assembler_retries > MAX_ASSEMBLER_RETRIES) {
1319 CodegenDump();
1320 LOG(FATAL) << "Assembler error - too many retries";
1321 }
1322 // Redo offsets and try again
1323 AssignOffsets();
1324 code_buffer_.clear();
1325 }
1326 }
1327
1328 // Install literals
1329 InstallLiteralPools();
1330
1331 // Install switch tables
1332 InstallSwitchTables();
1333
1334 // Install fill array data
1335 InstallFillArrayData();
1336
1337 // Create the mapping table and native offset to reference map.
buzbeea61f4952013-08-23 14:27:06 -07001338 cu_->NewTimingSplit("PcMappingTable");
buzbeeb48819d2013-09-14 16:15:25 -07001339 CreateMappingTables();
1340
buzbeea61f4952013-08-23 14:27:06 -07001341 cu_->NewTimingSplit("GcMap");
buzbeeb48819d2013-09-14 16:15:25 -07001342 CreateNativeGcMap();
1343}
1344
Brian Carlstrom7940e442013-07-12 13:46:57 -07001345} // namespace art