blob: f98e366c1bfcb83db9dbff057f637849a17a169e [file] [log] [blame]
Matteo Franchin43ec8732014-03-31 15:00:14 +01001/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_COMPILER_DEX_QUICK_ARM64_ARM64_LIR_H_
18#define ART_COMPILER_DEX_QUICK_ARM64_ARM64_LIR_H_
19
20#include "dex/compiler_internals.h"
21
22namespace art {
23
24/*
Matteo Franchine45fb9e2014-05-06 10:10:30 +010025 * TODO(Arm64): the comments below are outdated.
26 *
Matteo Franchin43ec8732014-03-31 15:00:14 +010027 * Runtime register usage conventions.
28 *
29 * r0-r3: Argument registers in both Dalvik and C/C++ conventions.
30 * However, for Dalvik->Dalvik calls we'll pass the target's Method*
31 * pointer in r0 as a hidden arg0. Otherwise used as codegen scratch
32 * registers.
33 * r0-r1: As in C/C++ r0 is 32-bit return register and r0/r1 is 64-bit
Matteo Franchine45fb9e2014-05-06 10:10:30 +010034 * r4 : (rA64_SUSPEND) is reserved (suspend check/debugger assist)
Matteo Franchin43ec8732014-03-31 15:00:14 +010035 * r5 : Callee save (promotion target)
36 * r6 : Callee save (promotion target)
37 * r7 : Callee save (promotion target)
38 * r8 : Callee save (promotion target)
Matteo Franchine45fb9e2014-05-06 10:10:30 +010039 * r9 : (rA64_SELF) is reserved (pointer to thread-local storage)
Matteo Franchin43ec8732014-03-31 15:00:14 +010040 * r10 : Callee save (promotion target)
41 * r11 : Callee save (promotion target)
42 * r12 : Scratch, may be trashed by linkage stubs
43 * r13 : (sp) is reserved
44 * r14 : (lr) is reserved
45 * r15 : (pc) is reserved
46 *
47 * 5 core temps that codegen can use (r0, r1, r2, r3, r12)
48 * 7 core registers that can be used for promotion
49 *
50 * Floating pointer registers
51 * s0-s31
52 * d0-d15, where d0={s0,s1}, d1={s2,s3}, ... , d15={s30,s31}
53 *
54 * s16-s31 (d8-d15) preserved across C calls
55 * s0-s15 (d0-d7) trashed across C calls
56 *
57 * s0-s15/d0-d7 used as codegen temp/scratch
58 * s16-s31/d8-d31 can be used for promotion.
59 *
60 * Calling convention
61 * o On a call to a Dalvik method, pass target's Method* in r0
62 * o r1-r3 will be used for up to the first 3 words of arguments
63 * o Arguments past the first 3 words will be placed in appropriate
64 * out slots by the caller.
65 * o If a 64-bit argument would span the register/memory argument
66 * boundary, it will instead be fully passed in the frame.
67 * o Maintain a 16-byte stack alignment
68 *
69 * Stack frame diagram (stack grows down, higher addresses at top):
70 *
71 * +------------------------+
72 * | IN[ins-1] | {Note: resides in caller's frame}
73 * | . |
74 * | IN[0] |
75 * | caller's Method* |
76 * +========================+ {Note: start of callee's frame}
77 * | spill region | {variable sized - will include lr if non-leaf.}
78 * +------------------------+
79 * | ...filler word... | {Note: used as 2nd word of V[locals-1] if long]
80 * +------------------------+
81 * | V[locals-1] |
82 * | V[locals-2] |
83 * | . |
84 * | . |
85 * | V[1] |
86 * | V[0] |
87 * +------------------------+
88 * | 0 to 3 words padding |
89 * +------------------------+
90 * | OUT[outs-1] |
91 * | OUT[outs-2] |
92 * | . |
93 * | OUT[0] |
94 * | cur_method* | <<== sp w/ 16-byte alignment
95 * +========================+
96 */
97
Matteo Franchine45fb9e2014-05-06 10:10:30 +010098// Offset to distinguish FP regs.
99#define ARM_FP_REG_OFFSET 32
Matteo Franchin43ec8732014-03-31 15:00:14 +0100100// First FP callee save.
101#define ARM_FP_CALLEE_SAVE_BASE 16
102
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100103// Mask to strip off fp flags.
104#define ARM_FP_REG_MASK (ARM_FP_REG_OFFSET - 1)
105
106// Temporary macros, used to mark code which wants to distinguish betweek zr/sp.
107#define A64_REG_IS_SP(reg_num) ((reg_num) == rwsp || (reg_num) == rsp)
108#define A64_REG_IS_ZR(reg_num) ((reg_num) == rwzr || (reg_num) == rxzr)
109
Matteo Franchin43ec8732014-03-31 15:00:14 +0100110enum ArmResourceEncodingPos {
111 kArmGPReg0 = 0,
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100112 kArmRegLR = 30,
113 kArmRegSP = 31,
114 kArmFPReg0 = 32,
115 kArmRegEnd = 64,
Matteo Franchin43ec8732014-03-31 15:00:14 +0100116};
117
Matteo Franchin43ec8732014-03-31 15:00:14 +0100118#define ENCODE_ARM_REG_SP (1ULL << kArmRegSP)
119#define ENCODE_ARM_REG_LR (1ULL << kArmRegLR)
Matteo Franchin43ec8732014-03-31 15:00:14 +0100120
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100121#define IS_SIGNED_IMM(size, value) \
122 ((value) >= -(1 << ((size) - 1)) && (value) < (1 << ((size) - 1)))
123#define IS_SIGNED_IMM7(value) IS_SIGNED_IMM(7, value)
124#define IS_SIGNED_IMM9(value) IS_SIGNED_IMM(9, value)
125#define IS_SIGNED_IMM12(value) IS_SIGNED_IMM(12, value)
126#define IS_SIGNED_IMM19(value) IS_SIGNED_IMM(19, value)
127#define IS_SIGNED_IMM21(value) IS_SIGNED_IMM(21, value)
Matteo Franchin43ec8732014-03-31 15:00:14 +0100128
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100129// Quick macro used to define the registers.
130#define A64_REGISTER_CODE_LIST(R) \
131 R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) \
132 R(8) R(9) R(10) R(11) R(12) R(13) R(14) R(15) \
133 R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23) \
134 R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31)
Matteo Franchin43ec8732014-03-31 15:00:14 +0100135
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100136// Registers (integer) values.
137// TODO(Arm64): for now we define rx##nr identically to rw##nr. We should rather define rx##nr as
138// a k64BitSolo. We should do this once the register allocator is ready.
139enum A64NativeRegisterPool {
140# define A64_DEFINE_REGISTERS(nr) \
141 rw##nr = RegStorage::k32BitSolo | RegStorage::kCoreRegister | nr, \
142 rx##nr = RegStorage::k32BitSolo | RegStorage::kCoreRegister | nr, \
143 rf##nr = RegStorage::k32BitSolo | RegStorage::kFloatingPoint | nr, \
144 rd##nr = RegStorage::k64BitSolo | RegStorage::kFloatingPoint | nr,
145 A64_REGISTER_CODE_LIST(A64_DEFINE_REGISTERS)
146#undef A64_DEFINE_REGISTERS
147
148 // TODO(Arm64): can we change the lines below such that rwzr != rwsp && rxzr != rsp?
149 // This would be desirable to allow detecting usage-errors in the assembler.
150 rwzr = rw31,
151 rxzr = rx31,
152 rwsp = rw31,
153 rsp = rx31,
Zheng Xuc8304302014-05-15 17:21:01 +0100154 // TODO: rx4 is an argument register in C ABI which is not a good idea,
155 // But we need to decide to use caller save register in C ABI or callee save register.
156 // Because it will result to different implementation in the trampoline.
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100157 rA64_SUSPEND = rx4,
158 rA64_SELF = rx18,
159 rA64_SP = rx31,
160 rA64_LR = rx30
Matteo Franchin43ec8732014-03-31 15:00:14 +0100161};
162
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100163#define A64_DEFINE_REGSTORAGES(nr) \
164 constexpr RegStorage rs_w##nr(RegStorage::kValid | rw##nr); \
165 constexpr RegStorage rs_x##nr(RegStorage::kValid | rx##nr); \
166 constexpr RegStorage rs_f##nr(RegStorage::kValid | rf##nr); \
167 constexpr RegStorage rs_d##nr(RegStorage::kValid | rd##nr);
168A64_REGISTER_CODE_LIST(A64_DEFINE_REGSTORAGES)
169#undef A64_DEFINE_REGSTORAGES
Matteo Franchin43ec8732014-03-31 15:00:14 +0100170
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100171constexpr RegStorage rs_wzr(RegStorage::kValid | rwzr);
172constexpr RegStorage rs_xzr(RegStorage::kValid | rxzr);
173constexpr RegStorage rs_rA64_SUSPEND(RegStorage::kValid | rA64_SUSPEND);
174constexpr RegStorage rs_rA64_SELF(RegStorage::kValid | rA64_SELF);
175constexpr RegStorage rs_rA64_SP(RegStorage::kValid | rA64_SP);
176constexpr RegStorage rs_rA64_LR(RegStorage::kValid | rA64_LR);
Matteo Franchin43ec8732014-03-31 15:00:14 +0100177
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100178// RegisterLocation templates return values (following the hard-float calling convention).
179const RegLocation arm_loc_c_return =
180 {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, rs_w0, INVALID_SREG, INVALID_SREG};
181const RegLocation arm_loc_c_return_wide =
182 {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, rs_x0, INVALID_SREG, INVALID_SREG};
183const RegLocation arm_loc_c_return_float =
184 {kLocPhysReg, 0, 0, 0, 0, 0, 0, 0, 1, rs_f0, INVALID_SREG, INVALID_SREG};
185const RegLocation arm_loc_c_return_double =
186 {kLocPhysReg, 1, 0, 0, 0, 0, 0, 0, 1, rs_d0, INVALID_SREG, INVALID_SREG};
Matteo Franchin43ec8732014-03-31 15:00:14 +0100187
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100188/**
189 * @brief Shift-type to be applied to a register via EncodeShift().
190 */
191enum A64ShiftEncodings {
192 kA64Lsl = 0x0,
193 kA64Lsr = 0x1,
194 kA64Asr = 0x2,
195 kA64Ror = 0x3
196};
Matteo Franchin43ec8732014-03-31 15:00:14 +0100197
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100198/**
199 * @brief Extend-type to be applied to a register via EncodeExtend().
200 */
201enum A64RegExtEncodings {
202 kA64Uxtb = 0x0,
203 kA64Uxth = 0x1,
204 kA64Uxtw = 0x2,
205 kA64Uxtx = 0x3,
206 kA64Sxtb = 0x4,
207 kA64Sxth = 0x5,
208 kA64Sxtw = 0x6,
209 kA64Sxtx = 0x7
210};
211
212#define ENCODE_NO_SHIFT (EncodeShift(kA64Lsl, 0))
213
214/*
215 * The following enum defines the list of supported A64 instructions by the
216 * assembler. Their corresponding EncodingMap positions will be defined in
217 * assemble_arm64.cc.
218 */
219enum ArmOpcode {
220 kA64First = 0,
221 kA64Adc3rrr = kA64First, // adc [00011010000] rm[20-16] [000000] rn[9-5] rd[4-0].
222 kA64Add4RRdT, // add [s001000100] imm_12[21-10] rn[9-5] rd[4-0].
223 kA64Add4rrro, // add [00001011000] rm[20-16] option[15-13] imm_3[12-10] rn[9-5] rd[4-0].
224 kA64Adr2xd, // adr [0] immlo[30-29] [10000] immhi[23-5] rd[4-0].
225 kA64And3Rrl, // and [00010010] N[22] imm_r[21-16] imm_s[15-10] rn[9-5] rd[4-0].
226 kA64And4rrro, // and [00001010] shift[23-22] [N=0] rm[20-16] imm_6[15-10] rn[9-5] rd[4-0].
227 kA64Asr3rrd, // asr [0001001100] immr[21-16] imms[15-10] rn[9-5] rd[4-0].
228 kA64Asr3rrr, // asr alias of "sbfm arg0, arg1, arg2, {#31/#63}".
229 kA64B2ct, // b.cond [01010100] imm_19[23-5] [0] cond[3-0].
230 kA64Blr1x, // blr [1101011000111111000000] rn[9-5] [00000].
231 kA64Br1x, // br [1101011000011111000000] rn[9-5] [00000].
232 kA64Brk1d, // brk [11010100001] imm_16[20-5] [00000].
233 kA64B1t, // b [00010100] offset_26[25-0].
234 kA64Cbnz2rt, // cbnz[00110101] imm_19[23-5] rt[4-0].
235 kA64Cbz2rt, // cbz [00110100] imm_19[23-5] rt[4-0].
236 kA64Cmn3Rro, // cmn [s0101011001] rm[20-16] option[15-13] imm_3[12-10] rn[9-5] [11111].
237 kA64Cmn3RdT, // cmn [00110001] shift[23-22] imm_12[21-10] rn[9-5] [11111].
238 kA64Cmp3Rro, // cmp [s1101011001] rm[20-16] option[15-13] imm_3[12-10] rn[9-5] [11111].
239 kA64Cmp3RdT, // cmp [01110001] shift[23-22] imm_12[21-10] rn[9-5] [11111].
240 kA64Csel4rrrc, // csel[s0011010100] rm[20-16] cond[15-12] [00] rn[9-5] rd[4-0].
241 kA64Csinc4rrrc, // csinc [s0011010100] rm[20-16] cond[15-12] [01] rn[9-5] rd[4-0].
242 kA64Csneg4rrrc, // csneg [s1011010100] rm[20-16] cond[15-12] [01] rn[9-5] rd[4-0].
243 kA64Dmb1B, // dmb [11010101000000110011] CRm[11-8] [10111111].
244 kA64Eor3Rrl, // eor [s10100100] N[22] imm_r[21-16] imm_s[15-10] rn[9-5] rd[4-0].
245 kA64Eor4rrro, // eor [s1001010] shift[23-22] [0] rm[20-16] imm_6[15-10] rn[9-5] rd[4-0].
246 kA64Extr4rrrd, // extr[s00100111N0] rm[20-16] imm_s[15-10] rn[9-5] rd[4-0].
247 kA64Fabs2ff, // fabs[000111100s100000110000] rn[9-5] rd[4-0].
248 kA64Fadd3fff, // fadd[000111100s1] rm[20-16] [001010] rn[9-5] rd[4-0].
249 kA64Fcmp1f, // fcmp[000111100s100000001000] rn[9-5] [01000].
250 kA64Fcmp2ff, // fcmp[000111100s1] rm[20-16] [001000] rn[9-5] [00000].
251 kA64Fcvtzs2wf, // fcvtzs [000111100s111000000000] rn[9-5] rd[4-0].
252 kA64Fcvtzs2xf, // fcvtzs [100111100s111000000000] rn[9-5] rd[4-0].
253 kA64Fcvt2Ss, // fcvt [0001111000100010110000] rn[9-5] rd[4-0].
254 kA64Fcvt2sS, // fcvt [0001111001100010010000] rn[9-5] rd[4-0].
255 kA64Fdiv3fff, // fdiv[000111100s1] rm[20-16] [000110] rn[9-5] rd[4-0].
256 kA64Fmov2ff, // fmov[000111100s100000010000] rn[9-5] rd[4-0].
257 kA64Fmov2fI, // fmov[000111100s1] imm_8[20-13] [10000000] rd[4-0].
258 kA64Fmov2sw, // fmov[0001111000100111000000] rn[9-5] rd[4-0].
259 kA64Fmov2Sx, // fmov[1001111001100111000000] rn[9-5] rd[4-0].
260 kA64Fmov2ws, // fmov[0001111001101110000000] rn[9-5] rd[4-0].
261 kA64Fmov2xS, // fmov[1001111001101111000000] rn[9-5] rd[4-0].
262 kA64Fmul3fff, // fmul[000111100s1] rm[20-16] [000010] rn[9-5] rd[4-0].
263 kA64Fneg2ff, // fneg[000111100s100001010000] rn[9-5] rd[4-0].
264 kA64Frintz2ff, // frintz [000111100s100101110000] rn[9-5] rd[4-0].
265 kA64Fsqrt2ff, // fsqrt[000111100s100001110000] rn[9-5] rd[4-0].
266 kA64Fsub3fff, // fsub[000111100s1] rm[20-16] [001110] rn[9-5] rd[4-0].
267 kA64Ldrb3wXd, // ldrb[0011100101] imm_12[21-10] rn[9-5] rt[4-0].
268 kA64Ldrb3wXx, // ldrb[00111000011] rm[20-16] [011] S[12] [10] rn[9-5] rt[4-0].
269 kA64Ldrsb3rXd, // ldrsb[001110011s] imm_12[21-10] rn[9-5] rt[4-0].
270 kA64Ldrsb3rXx, // ldrsb[0011 1000 1s1] rm[20-16] [011] S[12] [10] rn[9-5] rt[4-0].
271 kA64Ldrh3wXF, // ldrh[0111100101] imm_12[21-10] rn[9-5] rt[4-0].
272 kA64Ldrh4wXxd, // ldrh[01111000011] rm[20-16] [011] S[12] [10] rn[9-5] rt[4-0].
273 kA64Ldrsh3rXF, // ldrsh[011110011s] imm_12[21-10] rn[9-5] rt[4-0].
274 kA64Ldrsh4rXxd, // ldrsh[011110001s1] rm[20-16] [011] S[12] [10] rn[9-5] rt[4-0]
275 kA64Ldr2fp, // ldr [0s011100] imm_19[23-5] rt[4-0].
276 kA64Ldr2rp, // ldr [0s011000] imm_19[23-5] rt[4-0].
277 kA64Ldr3fXD, // ldr [1s11110100] imm_12[21-10] rn[9-5] rt[4-0].
278 kA64Ldr3rXD, // ldr [1s111000010] imm_9[20-12] [01] rn[9-5] rt[4-0].
279 kA64Ldr4fXxG, // ldr [1s111100011] rm[20-16] [011] S[12] [10] rn[9-5] rt[4-0].
280 kA64Ldr4rXxG, // ldr [1s111000011] rm[20-16] [011] S[12] [10] rn[9-5] rt[4-0].
281 kA64LdrPost3rXd, // ldr [1s111000010] imm_9[20-12] [01] rn[9-5] rt[4-0].
282 kA64Ldp4rrXD, // ldp [s010100101] imm_7[21-15] rt2[14-10] rn[9-5] rt[4-0].
283 kA64LdpPost4rrXD, // ldp [s010100011] imm_7[21-15] rt2[14-10] rn[9-5] rt[4-0].
284 kA64Ldur3fXd, // ldur[1s111100010] imm_9[20-12] [00] rn[9-5] rt[4-0].
285 kA64Ldur3rXd, // ldur[1s111000010] imm_9[20-12] [00] rn[9-5] rt[4-0].
286 kA64Ldxr2rX, // ldxr[1s00100001011111011111] rn[9-5] rt[4-0].
287 kA64Lsl3rrr, // lsl [s0011010110] rm[20-16] [001000] rn[9-5] rd[4-0].
288 kA64Lsr3rrd, // lsr alias of "ubfm arg0, arg1, arg2, #{31/63}".
289 kA64Lsr3rrr, // lsr [s0011010110] rm[20-16] [001001] rn[9-5] rd[4-0].
290 kA64Movk3rdM, // mov [010100101] hw[22-21] imm_16[20-5] rd[4-0].
291 kA64Movn3rdM, // mov [000100101] hw[22-21] imm_16[20-5] rd[4-0].
292 kA64Movz3rdM, // mov [011100101] hw[22-21] imm_16[20-5] rd[4-0].
293 kA64Mov2rr, // mov [00101010000] rm[20-16] [000000] [11111] rd[4-0].
294 kA64Mvn2rr, // mov [00101010001] rm[20-16] [000000] [11111] rd[4-0].
295 kA64Mul3rrr, // mul [00011011000] rm[20-16] [011111] rn[9-5] rd[4-0].
296 kA64Neg3rro, // neg alias of "sub arg0, rzr, arg1, arg2".
297 kA64Orr3Rrl, // orr [s01100100] N[22] imm_r[21-16] imm_s[15-10] rn[9-5] rd[4-0].
298 kA64Orr4rrro, // orr [s0101010] shift[23-22] [0] rm[20-16] imm_6[15-10] rn[9-5] rd[4-0].
299 kA64Ret, // ret [11010110010111110000001111000000].
300 kA64Rev2rr, // rev [s10110101100000000001x] rn[9-5] rd[4-0].
301 kA64Rev162rr, // rev16[s101101011000000000001] rn[9-5] rd[4-0].
302 kA64Ror3rrr, // ror [s0011010110] rm[20-16] [001011] rn[9-5] rd[4-0].
303 kA64Sbc3rrr, // sbc [s0011010000] rm[20-16] [000000] rn[9-5] rd[4-0].
304 kA64Sbfm4rrdd, // sbfm[0001001100] imm_r[21-16] imm_s[15-10] rn[9-5] rd[4-0].
305 kA64Scvtf2fw, // scvtf [000111100s100010000000] rn[9-5] rd[4-0].
306 kA64Scvtf2fx, // scvtf [100111100s100010000000] rn[9-5] rd[4-0].
307 kA64Sdiv3rrr, // sdiv[s0011010110] rm[20-16] [000011] rn[9-5] rd[4-0].
308 kA64Smaddl4xwwx, // smaddl [10011011001] rm[20-16] [0] ra[14-10] rn[9-5] rd[4-0].
309 kA64Stp4rrXD, // stp [s010100101] imm_7[21-15] rt2[14-10] rn[9-5] rt[4-0].
310 kA64StpPost4rrXD, // stp [s010100010] imm_7[21-15] rt2[14-10] rn[9-5] rt[4-0].
311 kA64StpPre4rrXD, // stp [s010100110] imm_7[21-15] rt2[14-10] rn[9-5] rt[4-0].
312 kA64Str3fXD, // str [1s11110100] imm_12[21-10] rn[9-5] rt[4-0].
313 kA64Str4fXxG, // str [1s111100001] rm[20-16] [011] S[12] [10] rn[9-5] rt[4-0].
314 kA64Str3rXD, // str [1s11100100] imm_12[21-10] rn[9-5] rt[4-0].
315 kA64Str4rXxG, // str [1s111000001] rm[20-16] option[15-13] S[12-12] [10] rn[9-5] rt[4-0].
316 kA64Strb3wXd, // strb[0011100100] imm_12[21-10] rn[9-5] rt[4-0].
317 kA64Strb3wXx, // strb[00111000001] rm[20-16] [011] S[12] [10] rn[9-5] rt[4-0].
318 kA64Strh3wXF, // strh[0111100100] imm_12[21-10] rn[9-5] rt[4-0].
319 kA64Strh4wXxd, // strh[01111000001] rm[20-16] [011] S[12] [10] rn[9-5] rt[4-0].
320 kA64StrPost3rXd, // str [1s111000000] imm_9[20-12] [01] rn[9-5] rt[4-0].
321 kA64Stur3fXd, // stur[1s111100000] imm_9[20-12] [00] rn[9-5] rt[4-0].
322 kA64Stur3rXd, // stur[1s111000000] imm_9[20-12] [00] rn[9-5] rt[4-0].
323 kA64Stxr3wrX, // stxr[11001000000] rs[20-16] [011111] rn[9-5] rt[4-0].
324 kA64Sub4RRdT, // sub [s101000100] imm_12[21-10] rn[9-5] rd[4-0].
325 kA64Sub4rrro, // sub [s1001011001] rm[20-16] option[15-13] imm_3[12-10] rn[9-5] rd[4-0].
326 kA64Subs3rRd, // subs[s111000100] imm_12[21-10] rn[9-5] rd[4-0].
327 kA64Tst3rro, // tst alias of "ands rzr, arg1, arg2, arg3".
328 kA64Ubfm4rrdd, // ubfm[s10100110] N[22] imm_r[21-16] imm_s[15-10] rn[9-5] rd[4-0].
329 kA64Last,
330 kA64NotWide = 0, // Flag used to select the first instruction variant.
331 kA64Wide = 0x1000 // Flag used to select the second instruction variant.
Matteo Franchin43ec8732014-03-31 15:00:14 +0100332};
333
334/*
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100335 * The A64 instruction set provides two variants for many instructions. For example, "mov wN, wM"
336 * and "mov xN, xM" or - for floating point instructions - "mov sN, sM" and "mov dN, dM".
337 * It definitely makes sense to exploit this symmetries of the instruction set. We do this via the
338 * WIDE, UNWIDE macros. For opcodes that allow it, the wide variant can be obtained by applying the
339 * WIDE macro to the non-wide opcode. E.g. WIDE(kA64Sub4RRdT).
Matteo Franchin43ec8732014-03-31 15:00:14 +0100340 */
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100341
342// Return the wide and no-wide variants of the given opcode.
343#define WIDE(op) ((ArmOpcode)((op) | kA64Wide))
344#define UNWIDE(op) ((ArmOpcode)((op) & ~kA64Wide))
345
346// Whether the given opcode is wide.
347#define IS_WIDE(op) (((op) & kA64Wide) != 0)
348
349/*
350 * Floating point variants. These are just aliases of the macros above which we use for floating
351 * point instructions, just for readibility reasons.
352 * TODO(Arm64): should we remove these and use the original macros?
353 */
354#define FWIDE WIDE
355#define FUNWIDE UNWIDE
356#define IS_FWIDE IS_WIDE
357
358#define OP_KIND_UNWIDE(opcode) (opcode)
359#define OP_KIND_IS_WIDE(opcode) (false)
Matteo Franchin43ec8732014-03-31 15:00:14 +0100360
361enum ArmOpDmbOptions {
362 kSY = 0xf,
363 kST = 0xe,
364 kISH = 0xb,
365 kISHST = 0xa,
366 kNSH = 0x7,
367 kNSHST = 0x6
368};
369
370// Instruction assembly field_loc kind.
371enum ArmEncodingKind {
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100372 // All the formats below are encoded in the same way (as a kFmtBitBlt).
373 // These are grouped together, for fast handling (e.g. "if (LIKELY(fmt <= kFmtBitBlt)) ...").
374 kFmtRegW = 0, // Word register (w) or wzr.
375 kFmtRegX, // Extended word register (x) or xzr.
376 kFmtRegR, // Register with same width as the instruction or zr.
377 kFmtRegWOrSp, // Word register (w) or wsp.
378 kFmtRegXOrSp, // Extended word register (x) or sp.
379 kFmtRegROrSp, // Register with same width as the instruction or sp.
380 kFmtRegS, // Single FP reg.
381 kFmtRegD, // Double FP reg.
382 kFmtRegF, // Single/double FP reg depending on the instruction width.
Matteo Franchin43ec8732014-03-31 15:00:14 +0100383 kFmtBitBlt, // Bit string using end/start.
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100384
385 // Less likely formats.
386 kFmtUnused, // Unused field and marks end of formats.
387 kFmtImm21, // Sign-extended immediate using [23..5,30..29].
388 kFmtShift, // Register shift, 9-bit at [23..21, 15..10]..
389 kFmtExtend, // Register extend, 9-bit at [23..21, 15..10].
Matteo Franchin43ec8732014-03-31 15:00:14 +0100390 kFmtSkip, // Unused field, but continue to next.
391};
392
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100393// Struct used to define the snippet positions for each A64 opcode.
Matteo Franchin43ec8732014-03-31 15:00:14 +0100394struct ArmEncodingMap {
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100395 uint32_t wskeleton;
396 uint32_t xskeleton;
Matteo Franchin43ec8732014-03-31 15:00:14 +0100397 struct {
398 ArmEncodingKind kind;
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100399 int end; // end for kFmtBitBlt, 1-bit slice end for FP regs.
400 int start; // start for kFmtBitBlt, 4-bit slice end for FP regs.
Matteo Franchin43ec8732014-03-31 15:00:14 +0100401 } field_loc[4];
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100402 ArmOpcode opcode; // can be WIDE()-ned to indicate it has a wide variant.
Matteo Franchin43ec8732014-03-31 15:00:14 +0100403 uint64_t flags;
404 const char* name;
405 const char* fmt;
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100406 int size; // Note: size is in bytes.
Matteo Franchin43ec8732014-03-31 15:00:14 +0100407 FixupKind fixup;
408};
409
Matteo Franchine45fb9e2014-05-06 10:10:30 +0100410#if 0
411// TODO(Arm64): try the following alternative, which fits exactly in one cache line (64 bytes).
412struct ArmEncodingMap {
413 uint32_t wskeleton;
414 uint32_t xskeleton;
415 uint64_t flags;
416 const char* name;
417 const char* fmt;
418 struct {
419 uint8_t kind;
420 int8_t end; // end for kFmtBitBlt, 1-bit slice end for FP regs.
421 int8_t start; // start for kFmtBitBlt, 4-bit slice end for FP regs.
422 } field_loc[4];
423 uint32_t fixup;
424 uint32_t opcode; // can be WIDE()-ned to indicate it has a wide variant.
425 uint32_t padding[3];
426};
427#endif
428
Matteo Franchin43ec8732014-03-31 15:00:14 +0100429} // namespace art
430
431#endif // ART_COMPILER_DEX_QUICK_ARM64_ARM64_LIR_H_