blob: ee48789ad2a806aca17b35363ce9fa6841e18f51 [file] [log] [blame]
Vladimir Markob163bb72015-03-31 21:49:49 +01001/*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "linker/arm64/relative_patcher_arm64.h"
18
19#include "arch/arm64/instruction_set_features_arm64.h"
Mathieu Chartiere401d142015-04-22 13:56:20 -070020#include "art_method.h"
Vladimir Markob163bb72015-03-31 21:49:49 +010021#include "compiled_method.h"
22#include "driver/compiler_driver.h"
Vladimir Markob163bb72015-03-31 21:49:49 +010023#include "utils/arm64/assembler_arm64.h"
24#include "oat.h"
25#include "output_stream.h"
26
27namespace art {
28namespace linker {
29
30Arm64RelativePatcher::Arm64RelativePatcher(RelativePatcherTargetProvider* provider,
31 const Arm64InstructionSetFeatures* features)
32 : ArmBaseRelativePatcher(provider, kArm64, CompileThunkCode(),
33 kMaxPositiveDisplacement, kMaxNegativeDisplacement),
34 fix_cortex_a53_843419_(features->NeedFixCortexA53_843419()),
35 reserved_adrp_thunks_(0u),
36 processed_adrp_thunks_(0u) {
37 if (fix_cortex_a53_843419_) {
38 adrp_thunk_locations_.reserve(16u);
39 current_method_thunks_.reserve(16u * kAdrpThunkSize);
40 }
41}
42
43uint32_t Arm64RelativePatcher::ReserveSpace(uint32_t offset,
Vladimir Marko4d23c9d2015-04-01 23:03:09 +010044 const CompiledMethod* compiled_method,
45 MethodReference method_ref) {
Vladimir Markob163bb72015-03-31 21:49:49 +010046 if (!fix_cortex_a53_843419_) {
47 DCHECK(adrp_thunk_locations_.empty());
Vladimir Marko4d23c9d2015-04-01 23:03:09 +010048 return ReserveSpaceInternal(offset, compiled_method, method_ref, 0u);
Vladimir Markob163bb72015-03-31 21:49:49 +010049 }
50
51 // Add thunks for previous method if any.
52 if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
53 size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
54 offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
55 reserved_adrp_thunks_ = adrp_thunk_locations_.size();
56 }
57
58 // Count the number of ADRP insns as the upper bound on the number of thunks needed
59 // and use it to reserve space for other linker patches.
60 size_t num_adrp = 0u;
Vladimir Marko71b0ddf2015-04-02 19:45:06 +010061 DCHECK(compiled_method != nullptr);
62 for (const LinkerPatch& patch : compiled_method->GetPatches()) {
63 if (patch.Type() == kLinkerPatchDexCacheArray &&
64 patch.LiteralOffset() == patch.PcInsnOffset()) { // ADRP patch
65 ++num_adrp;
Vladimir Markob163bb72015-03-31 21:49:49 +010066 }
67 }
Vladimir Marko4d23c9d2015-04-01 23:03:09 +010068 offset = ReserveSpaceInternal(offset, compiled_method, method_ref, kAdrpThunkSize * num_adrp);
Vladimir Markob163bb72015-03-31 21:49:49 +010069 if (num_adrp == 0u) {
70 return offset;
71 }
72
73 // Now that we have the actual offset where the code will be placed, locate the ADRP insns
74 // that actually require the thunk.
75 uint32_t quick_code_offset = compiled_method->AlignCode(offset) + sizeof(OatQuickMethodHeader);
76 ArrayRef<const uint8_t> code(*compiled_method->GetQuickCode());
77 uint32_t thunk_offset = compiled_method->AlignCode(quick_code_offset + code.size());
78 DCHECK(compiled_method != nullptr);
79 for (const LinkerPatch& patch : compiled_method->GetPatches()) {
80 if (patch.Type() == kLinkerPatchDexCacheArray &&
81 patch.LiteralOffset() == patch.PcInsnOffset()) { // ADRP patch
82 uint32_t patch_offset = quick_code_offset + patch.LiteralOffset();
83 if (NeedsErratum843419Thunk(code, patch.LiteralOffset(), patch_offset)) {
84 adrp_thunk_locations_.emplace_back(patch_offset, thunk_offset);
85 thunk_offset += kAdrpThunkSize;
86 }
87 }
88 }
89 return offset;
90}
91
Vladimir Marko71b0ddf2015-04-02 19:45:06 +010092uint32_t Arm64RelativePatcher::ReserveSpaceEnd(uint32_t offset) {
93 if (!fix_cortex_a53_843419_) {
94 DCHECK(adrp_thunk_locations_.empty());
95 } else {
96 // Add thunks for the last method if any.
97 if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
98 size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
99 offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
100 reserved_adrp_thunks_ = adrp_thunk_locations_.size();
101 }
102 }
103 return ArmBaseRelativePatcher::ReserveSpaceEnd(offset);
104}
105
Vladimir Markob163bb72015-03-31 21:49:49 +0100106uint32_t Arm64RelativePatcher::WriteThunks(OutputStream* out, uint32_t offset) {
107 if (fix_cortex_a53_843419_) {
108 if (!current_method_thunks_.empty()) {
109 uint32_t aligned_offset = CompiledMethod::AlignCode(offset, kArm64);
110 if (kIsDebugBuild) {
111 CHECK(IsAligned<kAdrpThunkSize>(current_method_thunks_.size()));
112 size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
113 CHECK_LE(num_thunks, processed_adrp_thunks_);
114 for (size_t i = 0u; i != num_thunks; ++i) {
115 const auto& entry = adrp_thunk_locations_[processed_adrp_thunks_ - num_thunks + i];
116 CHECK_EQ(entry.second, aligned_offset + i * kAdrpThunkSize);
117 }
118 }
119 uint32_t aligned_code_delta = aligned_offset - offset;
120 if (aligned_code_delta != 0u && !WriteCodeAlignment(out, aligned_code_delta)) {
121 return 0u;
122 }
123 if (!WriteMiscThunk(out, ArrayRef<const uint8_t>(current_method_thunks_))) {
124 return 0u;
125 }
126 offset = aligned_offset + current_method_thunks_.size();
127 current_method_thunks_.clear();
128 }
129 }
130 return ArmBaseRelativePatcher::WriteThunks(out, offset);
131}
132
133void Arm64RelativePatcher::PatchCall(std::vector<uint8_t>* code, uint32_t literal_offset,
134 uint32_t patch_offset, uint32_t target_offset) {
135 DCHECK_LE(literal_offset + 4u, code->size());
136 DCHECK_EQ(literal_offset & 3u, 0u);
137 DCHECK_EQ(patch_offset & 3u, 0u);
138 DCHECK_EQ(target_offset & 3u, 0u);
139 uint32_t displacement = CalculateDisplacement(patch_offset, target_offset & ~1u);
140 DCHECK_EQ(displacement & 3u, 0u);
141 DCHECK((displacement >> 27) == 0u || (displacement >> 27) == 31u); // 28-bit signed.
142 uint32_t insn = (displacement & 0x0fffffffu) >> 2;
143 insn |= 0x94000000; // BL
144
145 // Check that we're just overwriting an existing BL.
146 DCHECK_EQ(GetInsn(code, literal_offset) & 0xfc000000u, 0x94000000u);
147 // Write the new BL.
148 SetInsn(code, literal_offset, insn);
149}
150
151void Arm64RelativePatcher::PatchDexCacheReference(std::vector<uint8_t>* code,
152 const LinkerPatch& patch,
153 uint32_t patch_offset,
154 uint32_t target_offset) {
155 DCHECK_EQ(patch_offset & 3u, 0u);
156 DCHECK_EQ(target_offset & 3u, 0u);
157 uint32_t literal_offset = patch.LiteralOffset();
158 uint32_t insn = GetInsn(code, literal_offset);
159 uint32_t pc_insn_offset = patch.PcInsnOffset();
160 uint32_t disp = target_offset - ((patch_offset - literal_offset + pc_insn_offset) & ~0xfffu);
Mathieu Chartiere401d142015-04-22 13:56:20 -0700161 bool wide = (insn & 0x40000000) != 0;
162 uint32_t shift = wide ? 3u : 2u;
Vladimir Markob163bb72015-03-31 21:49:49 +0100163 if (literal_offset == pc_insn_offset) {
164 // Check it's an ADRP with imm == 0 (unset).
165 DCHECK_EQ((insn & 0xffffffe0u), 0x90000000u)
166 << literal_offset << ", " << pc_insn_offset << ", 0x" << std::hex << insn;
167 if (fix_cortex_a53_843419_ && processed_adrp_thunks_ != adrp_thunk_locations_.size() &&
168 adrp_thunk_locations_[processed_adrp_thunks_].first == patch_offset) {
169 DCHECK(NeedsErratum843419Thunk(ArrayRef<const uint8_t>(*code),
170 literal_offset, patch_offset));
171 uint32_t thunk_offset = adrp_thunk_locations_[processed_adrp_thunks_].second;
172 uint32_t adrp_disp = target_offset - (thunk_offset & ~0xfffu);
173 uint32_t adrp = PatchAdrp(insn, adrp_disp);
174
175 uint32_t out_disp = thunk_offset - patch_offset;
176 DCHECK_EQ(out_disp & 3u, 0u);
177 DCHECK((out_disp >> 27) == 0u || (out_disp >> 27) == 31u); // 28-bit signed.
Mathieu Chartiere401d142015-04-22 13:56:20 -0700178 insn = (out_disp & 0x0fffffffu) >> shift;
Vladimir Markob163bb72015-03-31 21:49:49 +0100179 insn |= 0x14000000; // B <thunk>
180
181 uint32_t back_disp = -out_disp;
182 DCHECK_EQ(back_disp & 3u, 0u);
183 DCHECK((back_disp >> 27) == 0u || (back_disp >> 27) == 31u); // 28-bit signed.
184 uint32_t b_back = (back_disp & 0x0fffffffu) >> 2;
185 b_back |= 0x14000000; // B <back>
186 size_t thunks_code_offset = current_method_thunks_.size();
187 current_method_thunks_.resize(thunks_code_offset + kAdrpThunkSize);
188 SetInsn(&current_method_thunks_, thunks_code_offset, adrp);
189 SetInsn(&current_method_thunks_, thunks_code_offset + 4u, b_back);
190 static_assert(kAdrpThunkSize == 2 * 4u, "thunk has 2 instructions");
191
192 processed_adrp_thunks_ += 1u;
193 } else {
194 insn = PatchAdrp(insn, disp);
195 }
196 // Write the new ADRP (or B to the erratum 843419 thunk).
197 SetInsn(code, literal_offset, insn);
198 } else {
Mathieu Chartiere401d142015-04-22 13:56:20 -0700199 // LDR 32-bit or 64-bit with imm12 == 0 (unset).
200 DCHECK_EQ(insn & 0xbffffc00, 0xb9400000) << insn;
Vladimir Markob163bb72015-03-31 21:49:49 +0100201 if (kIsDebugBuild) {
202 uint32_t adrp = GetInsn(code, pc_insn_offset);
203 if ((adrp & 0x9f000000u) != 0x90000000u) {
204 CHECK(fix_cortex_a53_843419_);
205 CHECK_EQ(adrp & 0xfc000000u, 0x14000000u); // B <thunk>
206 CHECK(IsAligned<kAdrpThunkSize>(current_method_thunks_.size()));
207 size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
208 CHECK_LE(num_thunks, processed_adrp_thunks_);
209 uint32_t b_offset = patch_offset - literal_offset + pc_insn_offset;
210 for (size_t i = processed_adrp_thunks_ - num_thunks; ; ++i) {
211 CHECK_NE(i, processed_adrp_thunks_);
212 if (adrp_thunk_locations_[i].first == b_offset) {
213 size_t idx = num_thunks - (processed_adrp_thunks_ - i);
214 adrp = GetInsn(&current_method_thunks_, idx * kAdrpThunkSize);
215 break;
216 }
217 }
218 }
219 CHECK_EQ(adrp & 0x9f00001fu, // Check that pc_insn_offset points
220 0x90000000 | ((insn >> 5) & 0x1fu)); // to ADRP with matching register.
221 }
Mathieu Chartiere401d142015-04-22 13:56:20 -0700222 uint32_t imm12 = (disp & 0xfffu) >> shift;
Vladimir Markob163bb72015-03-31 21:49:49 +0100223 insn = (insn & ~(0xfffu << 10)) | (imm12 << 10);
224 SetInsn(code, literal_offset, insn);
225 }
226}
227
228std::vector<uint8_t> Arm64RelativePatcher::CompileThunkCode() {
229 // The thunk just uses the entry point in the ArtMethod. This works even for calls
230 // to the generic JNI and interpreter trampolines.
231 arm64::Arm64Assembler assembler;
Mathieu Chartiere401d142015-04-22 13:56:20 -0700232 Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset(
Vladimir Markob163bb72015-03-31 21:49:49 +0100233 kArm64PointerSize).Int32Value());
234 assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
235 // Ensure we emit the literal pool.
Vladimir Markofbeb4ae2015-06-16 11:32:01 +0000236 assembler.EmitSlowPaths();
Vladimir Markob163bb72015-03-31 21:49:49 +0100237 std::vector<uint8_t> thunk_code(assembler.CodeSize());
238 MemoryRegion code(thunk_code.data(), thunk_code.size());
239 assembler.FinalizeInstructions(code);
240 return thunk_code;
241}
242
243uint32_t Arm64RelativePatcher::PatchAdrp(uint32_t adrp, uint32_t disp) {
244 return (adrp & 0x9f00001fu) | // Clear offset bits, keep ADRP with destination reg.
245 // Bottom 12 bits are ignored, the next 2 lowest bits are encoded in bits 29-30.
246 ((disp & 0x00003000u) << (29 - 12)) |
247 // The next 16 bits are encoded in bits 5-22.
248 ((disp & 0xffffc000u) >> (12 + 2 - 5)) |
249 // Since the target_offset is based on the beginning of the oat file and the
250 // image space precedes the oat file, the target_offset into image space will
251 // be negative yet passed as uint32_t. Therefore we limit the displacement
252 // to +-2GiB (rather than the maximim +-4GiB) and determine the sign bit from
253 // the highest bit of the displacement. This is encoded in bit 23.
254 ((disp & 0x80000000u) >> (31 - 23));
255}
256
257bool Arm64RelativePatcher::NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,
258 uint32_t literal_offset,
259 uint32_t patch_offset) {
260 DCHECK_EQ(patch_offset & 0x3u, 0u);
261 if ((patch_offset & 0xff8) == 0xff8) { // ...ff8 or ...ffc
262 uint32_t adrp = GetInsn(code, literal_offset);
263 DCHECK_EQ(adrp & 0xff000000, 0x90000000);
Matteo Franchin97e2f262015-04-02 15:49:06 +0100264 uint32_t next_offset = patch_offset + 4u;
Vladimir Markob163bb72015-03-31 21:49:49 +0100265 uint32_t next_insn = GetInsn(code, literal_offset + 4u);
Matteo Franchin97e2f262015-04-02 15:49:06 +0100266
267 // Below we avoid patching sequences where the adrp is followed by a load which can easily
268 // be proved to be aligned.
269
270 // First check if the next insn is the LDR using the result of the ADRP.
271 // LDR <Wt>, [<Xn>, #pimm], where <Xn> == ADRP destination reg.
272 if ((next_insn & 0xffc00000) == 0xb9400000 &&
273 (((next_insn >> 5) ^ adrp) & 0x1f) == 0) {
274 return false;
275 }
276
277 // LDR <Wt>, <label> is always aligned and thus it doesn't cause boundary crossing.
278 if ((next_insn & 0xff000000) == 0x18000000) {
279 return false;
280 }
281
282 // LDR <Xt>, <label> is aligned iff the pc + displacement is a multiple of 8.
283 if ((next_insn & 0xff000000) == 0x58000000) {
284 bool is_aligned_load = (((next_offset >> 2) ^ (next_insn >> 5)) & 1) == 0;
285 return !is_aligned_load;
286 }
287
288 // LDR <Wt>, [SP, #<pimm>] and LDR <Xt>, [SP, #<pimm>] are always aligned loads, as SP is
289 // guaranteed to be 128-bits aligned and <pimm> is multiple of the load size.
290 if ((next_insn & 0xbfc003e0) == 0xb94003e0) {
291 return false;
292 }
293 return true;
Vladimir Markob163bb72015-03-31 21:49:49 +0100294 }
295 return false;
296}
297
298void Arm64RelativePatcher::SetInsn(std::vector<uint8_t>* code, uint32_t offset, uint32_t value) {
299 DCHECK_LE(offset + 4u, code->size());
300 DCHECK_EQ(offset & 3u, 0u);
301 uint8_t* addr = &(*code)[offset];
302 addr[0] = (value >> 0) & 0xff;
303 addr[1] = (value >> 8) & 0xff;
304 addr[2] = (value >> 16) & 0xff;
305 addr[3] = (value >> 24) & 0xff;
306}
307
308uint32_t Arm64RelativePatcher::GetInsn(ArrayRef<const uint8_t> code, uint32_t offset) {
309 DCHECK_LE(offset + 4u, code.size());
310 DCHECK_EQ(offset & 3u, 0u);
311 const uint8_t* addr = &code[offset];
312 return
313 (static_cast<uint32_t>(addr[0]) << 0) +
314 (static_cast<uint32_t>(addr[1]) << 8) +
315 (static_cast<uint32_t>(addr[2]) << 16)+
316 (static_cast<uint32_t>(addr[3]) << 24);
317}
318
319template <typename Alloc>
320uint32_t Arm64RelativePatcher::GetInsn(std::vector<uint8_t, Alloc>* code, uint32_t offset) {
321 return GetInsn(ArrayRef<const uint8_t>(*code), offset);
322}
323
324} // namespace linker
325} // namespace art