| #include <stdio.h> |
| #include <stdlib.h> |
| #include <common.h> |
| #include <debug.h> |
| #include <libelf.h> |
| #include <libebl.h> |
| #ifdef ARM_SPECIFIC_HACKS |
| #include <libebl_arm.h> |
| #endif/*ARM_SPECIFIC_HACKS*/ |
| #include <elf.h> |
| #include <gelf.h> |
| #include <string.h> |
| #include <errno.h> |
| #include <string.h> |
| #include <sys/types.h> |
| #include <sys/stat.h> |
| #include <fcntl.h> |
| #include <unistd.h> |
| #include <hash.h> |
| #include <apriori.h> |
| #include <source.h> |
| #include <tweak.h> |
| #include <rangesort.h> |
| #include <prelink_info.h> |
| #include <prelinkmap.h> |
| #include <libgen.h> |
| |
| #ifndef ADJUST_ELF |
| #error "ADJUST_ELF must be defined!" |
| #endif |
| |
| /* When this macro is defined, apriori sets to ZERO those relocation values for |
| which it canot find the appropriate referent. |
| */ |
| #define PERMISSIVE |
| #define COPY_SECTION_DATA_BUFFER (0) |
| /* When this macro is set to a nonzero value, we replace calls to elf_strptr() |
| on the target ELF handle with code that extracts the strings directly from |
| the data buffers of that ELF handle. In this case, elf_strptr() does not |
| work as expected, as it tries to read the data buffer of the associated |
| string section directly from the file, and that buffer does not exist yet |
| in the file, since we haven't committed our changes yet. |
| */ |
| #define ELF_STRPTR_IS_BROKEN (1) |
| |
| /* When the macro below is defined, apriori does not mark for removal those |
| relocation sections that it fully handles. Instead, apriori just sets their |
| sizes to zero. This is more for debugging than of any actual use. |
| |
| This macro is meaningful only when ADJUST_ELF!=0 |
| */ |
| #define REMOVE_HANDLED_SECTIONS |
| |
| extern int verbose_flag; |
| |
| static source_t *sources = NULL; |
| |
| /* Retouch data is a very concise representation of the resolved relocations. |
| This data is used to randomize the location of prelinked libraries at |
| update time, on the device. |
| */ |
| |
| // We will store retouch entries into this buffer, then dump them at the |
| // end of the .so file before setup_prelink_info(). |
| #define RETOUCH_MAX_SIZE 600000 |
| static char *retouch_buf; |
| static unsigned int retouch_byte_cnt; |
| // Compression state. |
| static int32_t offs_prev; |
| static uint32_t cont_prev; |
| |
| #define false 0 |
| #define true 1 |
| |
| void retouch_init(void) { |
| offs_prev = 0; |
| cont_prev = 0; |
| retouch_byte_cnt = 0; |
| retouch_buf = malloc(RETOUCH_MAX_SIZE+12); |
| FAILIF(retouch_buf == NULL, |
| "Could not allocate %d bytes.\n", RETOUCH_MAX_SIZE+12); |
| } |
| |
| // |
| // We use three encoding schemes; this takes care of much of the redundancy |
| // inherent in lists of relocations: |
| // |
| // * two bytes, leading 1, 2b for d_offset ("s"), 13b for d_contents ("c") |
| // |
| // 76543210 76543210 |
| // 1ssccccc cccccccc |
| // |
| // * three bytes, leading 01, 2b for delta offset, 20b for delta contents |
| // |
| // 76543210 76543210 76543210 |
| // 01sscccc cccccccc cccccccc |
| // |
| // * eigth bytes, leading 00, 30b for offset, 32b for contents |
| // |
| // 76543210 76543210 76543210 76543210 |
| // 00ssssss ssssssss ssssssss ssssssss + 4 bytes contents |
| // |
| // NOTE 1: All deltas are w.r.t. the previous line in the list. |
| // NOTE 2: Two-bit ("ss") offsets mean: "00"=4, "01"=8, "10"=12, and "11"=16. |
| // NOTE 3: Delta contents are signed. To map back to a int32 we refill with 1s. |
| // NOTE 4: Special encoding for -1 offset. Extended back to 32b when decoded. |
| // |
| |
| void retouch_encode(int32_t offset, uint32_t contents) { |
| int64_t d_offs = offset-offs_prev; |
| int64_t d_cont = (int64_t)contents-(int64_t)cont_prev; |
| |
| uint8_t output[8]; |
| uint32_t output_size; |
| |
| if ((d_offs > 3) && |
| (d_offs % 4) == 0 && |
| (d_offs / 4) < 5 && |
| (d_cont < 4000) && |
| (d_cont > -4000)) { |
| // we can fit in 2 bytes |
| output[0] = |
| 0x80 | |
| (((d_offs/4)-1) << 5) | |
| (((uint64_t)d_cont & 0x1f00) >> 8); |
| output[1] = |
| ((uint64_t)d_cont & 0xff); |
| output_size = 2; |
| } else if ((d_offs > 3) && |
| (d_offs % 4) == 0 && |
| (d_offs / 4) < 5 && |
| (d_cont < 510000) && |
| (d_cont > -510000)) { |
| // fit in 3 bytes |
| output[0] = |
| 0x40 | |
| (((d_offs/4)-1) << 4) | |
| (((uint64_t)d_cont & 0xf0000) >> 16); |
| output[1] = |
| ((uint64_t)d_cont & 0xff00) >> 8; |
| output[2] = |
| ((uint64_t)d_cont & 0xff); |
| output_size = 3; |
| } else { |
| // fit in 8 bytes; we can't support files bigger than (1GB-1) |
| // with this encoding: no library is that big anyway.. |
| FAILIF(offset < -1 || offset > 0x3ffffffe, "Offset out of range.\n"); |
| output[0] = (offset & 0x3f000000) >> 24; |
| output[1] = (offset & 0xff0000) >> 16; |
| output[2] = (offset & 0xff00) >> 8; |
| output[3] = (offset & 0xff); |
| output[4] = (contents & 0xff000000) >> 24; |
| output[5] = (contents & 0xff0000) >> 16; |
| output[6] = (contents & 0xff00) >> 8; |
| output[7] = (contents & 0xff); |
| output_size = 8; |
| } |
| |
| // If this happens, the retouch buffer size can be bumped up. |
| // Currently, the largest case is libwebcore, at about 250K. |
| FAILIF((retouch_byte_cnt+output_size) > RETOUCH_MAX_SIZE, |
| "About to overflow retouch buffer.\n"); |
| |
| memcpy(retouch_buf+retouch_byte_cnt, output, output_size); |
| retouch_byte_cnt += output_size; |
| |
| offs_prev = offset; |
| cont_prev = contents; |
| } |
| |
| void retouch_dump(const char *fname, int elf_little, |
| unsigned int retouch_byte_cnt, char *retouch_buf) { |
| int fd = open(fname, O_WRONLY); |
| FAILIF(fd < 0, |
| "open(%s, O_WRONLY): %s (%d)\n" , |
| fname, strerror(errno), errno); |
| off_t sz = lseek(fd, 0, SEEK_END); |
| FAILIF(sz == (off_t)-1, |
| "lseek(%d, 0, SEEK_END): %s (%d)!\n", |
| fd, strerror(errno), errno); |
| |
| // The retouch blob ends with "RETOUCH XXXX", where XXXX is the 4-byte |
| // size of the retouch blob, in target endianness. |
| strncpy(retouch_buf+retouch_byte_cnt, "RETOUCH ", 8); |
| if (elf_little ^ is_host_little()) { |
| *(unsigned int *)(retouch_buf+retouch_byte_cnt+8) = |
| switch_endianness(retouch_byte_cnt); |
| } else { |
| *(unsigned int *)(retouch_buf+retouch_byte_cnt+8) = |
| retouch_byte_cnt; |
| } |
| |
| int num_written = write(fd, retouch_buf, retouch_byte_cnt+12); |
| FAILIF(num_written < 0, |
| "write(%d, &info, sizeof(info)): %s (%d)\n", |
| fd, strerror(errno), errno); |
| FAILIF((retouch_byte_cnt+12) != num_written, |
| "Could not write %d bytes as expected (wrote %d bytes instead)!\n", |
| retouch_byte_cnt, num_written); |
| FAILIF(close(fd) < 0, "close(%d): %s (%d)!\n", fd, strerror(errno), errno); |
| } |
| |
| /* End of retouch code. |
| */ |
| |
| #if defined(DEBUG) && 0 |
| |
| static void print_shdr(source_t *source, Elf_Scn *scn) |
| { |
| GElf_Shdr shdr_mem, *shdr; |
| shdr = gelf_getshdr(scn, &shdr_mem); |
| Elf_Data *data = elf_getdata(scn, NULL); |
| INFO("\t%02d: data = %p, hdr = { offset = %8lld, size = %lld }, " |
| "data->d_buf = %p data->d_off = %lld, data->d_size = %d\n", |
| elf_ndxscn(scn), |
| data, |
| shdr->sh_offset, shdr->sh_size, |
| data->d_buf, data->d_off, data->d_size); |
| } |
| |
| static void print_shdr_idx(source_t *source, Elf *elf, int idx) |
| { |
| print_shdr(source, elf_getscn(elf, idx)); |
| } |
| |
| static void print_shdrs(source_t *source) { |
| Elf_Scn *scn = NULL; |
| INFO("section offset dump for new ELF\n"); |
| while ((scn = elf_nextscn (source->elf, scn)) != NULL) |
| print_shdr(source, scn); |
| |
| INFO("\nsection offset dump for original ELF\n"); |
| while ((scn = elf_nextscn (source->oldelf, scn)) != NULL) |
| print_shdr(source, scn); |
| |
| #if 0 |
| { |
| INFO("section offset dump for new ELF\n"); |
| int i = 0; |
| for (i = 0; i < source->shnum; i++) { |
| scn = elf_getscn(source->elf, i); |
| print_shdr(source, scn); |
| } |
| } |
| #endif |
| } |
| |
| #endif /* DEBUG */ |
| |
| static char * find_file(const char *libname, |
| char **lib_lookup_dirs, |
| int num_lib_lookup_dirs); |
| |
| static inline source_t* find_source(const char *name, |
| char **lib_lookup_dirs, |
| int num_lib_lookup_dirs) { |
| char *full = find_file(name, lib_lookup_dirs, num_lib_lookup_dirs); |
| if (full) { |
| source_t *trav = sources; |
| while (trav) { |
| if (!strcmp(trav->name, full)) |
| break; |
| trav = trav->next; |
| } |
| free(full); |
| return trav; |
| } |
| return NULL; |
| } |
| |
| static inline void add_to_sources(source_t *src) { |
| src->next = sources; |
| sources = src; |
| } |
| |
| static void handle_range_error(range_error_t err, |
| range_t *left, range_t *right) { |
| switch (err) { |
| case ERROR_CONTAINS: |
| ERROR("ERROR: section (%lld, %lld bytes) contains " |
| "section (%lld, %lld bytes)\n", |
| left->start, left->length, |
| right->start, right->length); |
| break; |
| case ERROR_OVERLAPS: |
| ERROR("ERROR: Section (%lld, %lld bytes) intersects " |
| "section (%lld, %lld bytes)\n", |
| left->start, left->length, |
| right->start, right->length); |
| break; |
| default: |
| ASSERT(!"Unknown range error code!"); |
| } |
| |
| FAILIF(1, "Range error.\n"); |
| } |
| |
| static void create_elf_sections(source_t *source, Elf *elf) |
| { |
| INFO("Creating new ELF sections.\n"); |
| ASSERT(elf == NULL || source->elf == NULL || source->elf == elf); |
| if (elf == NULL) { |
| ASSERT(source->elf != NULL); |
| elf = source->elf; |
| } |
| |
| int cnt = 1; |
| Elf_Scn *oldscn = NULL, *scn; |
| while ((oldscn = elf_nextscn (source->oldelf, oldscn)) != NULL) { |
| GElf_Shdr *oldshdr, oldshdr_mem; |
| |
| scn = elf_newscn(elf); |
| FAILIF_LIBELF(NULL == scn, elf_newscn); |
| |
| oldshdr = gelf_getshdr(oldscn, &oldshdr_mem); |
| FAILIF_LIBELF(NULL == oldshdr, gelf_getshdr); |
| /* Set the section header of the new section to be the same as the |
| headset of the old section by default. */ |
| gelf_update_shdr(scn, oldshdr); |
| |
| /* Copy the section data */ |
| Elf_Data *olddata = elf_getdata(oldscn, NULL); |
| FAILIF_LIBELF(NULL == olddata, elf_getdata); |
| |
| Elf_Data *data = elf_newdata(scn); |
| FAILIF_LIBELF(NULL == data, elf_newdata); |
| *data = *olddata; |
| #if COPY_SECTION_DATA_BUFFER |
| if (olddata->d_buf != NULL) { |
| data->d_buf = MALLOC(data->d_size); |
| memcpy(data->d_buf, olddata->d_buf, olddata->d_size); |
| } |
| #endif |
| |
| INFO("\tsection %02d: [%-30s] created\n", |
| cnt, |
| elf_strptr(source->oldelf, |
| source->shstrndx, |
| oldshdr->sh_name)); |
| |
| if (ADJUST_ELF) { |
| ASSERT(source->shdr_info != NULL); |
| /* Create a new section. */ |
| source->shdr_info[cnt].idx = cnt; |
| source->shdr_info[cnt].newscn = scn; |
| source->shdr_info[cnt].data = data; |
| source->shdr_info[cnt]. |
| use_old_shdr_for_relocation_calculations = 1; |
| INFO("\tsection [%s] (old offset %lld, old size %lld) " |
| "will have index %d (was %d).\n", |
| source->shdr_info[cnt].name, |
| source->shdr_info[cnt].old_shdr.sh_offset, |
| source->shdr_info[cnt].old_shdr.sh_size, |
| source->shdr_info[cnt].idx, |
| elf_ndxscn(source->shdr_info[cnt].scn)); |
| /* Same as the next assert */ |
| ASSERT(elf_ndxscn (source->shdr_info[cnt].newscn) == |
| source->shdr_info[cnt].idx); |
| } |
| |
| ASSERT(elf_ndxscn(scn) == (size_t)cnt); |
| cnt++; |
| } |
| } |
| |
| /* This function sets up the shdr_info[] array of a source_t. We call it only |
| when ADJUST_ELF is non-zero (i.e., support for adjusting an ELF file for |
| changes in sizes and numbers of relocation sections is compiled in. Note |
| that setup_shdr_info() depends only on the information in source->oldelf, |
| not on source->elf. |
| */ |
| |
| static void setup_shdr_info(source_t *source) |
| { |
| if (ADJUST_ELF) |
| { |
| /* Allocate the section-header-info buffer. */ |
| INFO("Allocating section-header info structure (%d) bytes...\n", |
| source->shnum * sizeof (shdr_info_t)); |
| |
| source->shdr_info = (shdr_info_t *)CALLOC(source->shnum, |
| sizeof (shdr_info_t)); |
| |
| /* Mark the SHT_NULL section as handled. */ |
| source->shdr_info[0].idx = 2; |
| |
| int cnt = 1; |
| Elf_Scn *oldscn = NULL; |
| while ((oldscn = elf_nextscn (source->oldelf, oldscn)) != NULL) { |
| /* Copy the section header */ |
| ASSERT(elf_ndxscn(oldscn) == (size_t)cnt); |
| |
| /* Initialized the corresponding shdr_info entry */ |
| { |
| /* Mark the section with a non-zero index. Later, when we |
| decide to drop a section, we will set its idx to zero, and |
| assign section numbers to the remaining sections. |
| */ |
| source->shdr_info[cnt].idx = 1; |
| |
| source->shdr_info[cnt].scn = oldscn; |
| |
| /* NOTE: Here we pupulate the section-headset struct with the |
| same values as the original section's. After the |
| first run of prelink(), we will update the sh_size |
| fields of those sections that need resizing. |
| */ |
| FAILIF_LIBELF(NULL == |
| gelf_getshdr(oldscn, |
| &source->shdr_info[cnt].shdr), |
| gelf_getshdr); |
| |
| /* Get the name of the section. */ |
| source->shdr_info[cnt].name = |
| elf_strptr (source->oldelf, source->shstrndx, |
| source->shdr_info[cnt].shdr.sh_name); |
| |
| INFO("\tname: %s\n", source->shdr_info[cnt].name); |
| FAILIF(source->shdr_info[cnt].name == NULL, |
| "Malformed file: section %d name is null\n", |
| cnt); |
| |
| /* Remember the shdr.sh_link value. We need to remember this |
| value for those sections that refer to other sections. For |
| example, we need to remember it for relocation-entry |
| sections, because if we modify the symbol table that a |
| relocation-entry section is relative to, then we need to |
| patch the relocation section. By the time we get to |
| deciding whether we need to patch the relocation section, we |
| will have overwritten its header's sh_link field with a new |
| value. |
| */ |
| source->shdr_info[cnt].old_shdr = source->shdr_info[cnt].shdr; |
| INFO("\t\toriginal sh_link: %08d\n", |
| source->shdr_info[cnt].old_shdr.sh_link); |
| INFO("\t\toriginal sh_addr: %lld\n", |
| source->shdr_info[cnt].old_shdr.sh_addr); |
| INFO("\t\toriginal sh_offset: %lld\n", |
| source->shdr_info[cnt].old_shdr.sh_offset); |
| INFO("\t\toriginal sh_size: %lld\n", |
| source->shdr_info[cnt].old_shdr.sh_size); |
| |
| FAILIF(source->shdr_info[cnt].shdr.sh_type == SHT_SYMTAB_SHNDX, |
| "Cannot handle sh_type SHT_SYMTAB_SHNDX!\n"); |
| FAILIF(source->shdr_info[cnt].shdr.sh_type == SHT_GROUP, |
| "Cannot handle sh_type SHT_GROUP!\n"); |
| FAILIF(source->shdr_info[cnt].shdr.sh_type == SHT_GNU_versym, |
| "Cannot handle sh_type SHT_GNU_versym!\n"); |
| } |
| |
| cnt++; |
| } /* for each section */ |
| } /* if (ADJUST_ELF) */ |
| } |
| |
| static Elf * init_elf(source_t *source, bool create_new_sections) |
| { |
| Elf *elf; |
| if (source->output != NULL) { |
| if (source->output_is_dir) { |
| source->output_is_dir++; |
| char *dir = source->output; |
| int dirlen = strlen(dir); |
| /* The main() function maintains a pointer to source->output; it |
| frees the buffer after apriori() returns. |
| */ |
| source->output = MALLOC(dirlen + |
| 1 + /* slash */ |
| strlen(source->name) + |
| 1); /* null terminator */ |
| strcpy(source->output, dir); |
| source->output[dirlen] = '/'; |
| strcpy(source->output + dirlen + 1, |
| basename(source->name)); |
| } |
| |
| /* Save some of the info; needed for retouching (ASLR). */ |
| retouch_init(); |
| |
| source->newelf_fd = open(source->output, |
| O_RDWR | O_CREAT, |
| 0666); |
| FAILIF(source->newelf_fd < 0, "open(%s): %s (%d)\n", |
| source->output, |
| strerror(errno), |
| errno); |
| elf = elf_begin(source->newelf_fd, ELF_C_WRITE, NULL); |
| FAILIF_LIBELF(elf == NULL, elf_begin); |
| } else { |
| elf = elf_clone(source->oldelf, ELF_C_EMPTY); |
| FAILIF_LIBELF(elf == NULL, elf_clone); |
| } |
| |
| GElf_Ehdr *oldehdr = gelf_getehdr(source->oldelf, &source->old_ehdr_mem); |
| FAILIF_LIBELF(NULL == oldehdr, gelf_getehdr); |
| |
| /* Create new ELF and program headers for the elf file */ |
| INFO("Creating empty ELF and program headers...\n"); |
| FAILIF_LIBELF(gelf_newehdr (elf, gelf_getclass (source->oldelf)) == 0, |
| gelf_newehdr); |
| FAILIF_LIBELF(oldehdr->e_type != ET_REL |
| && gelf_newphdr (elf, |
| oldehdr->e_phnum) == 0, |
| gelf_newphdr); |
| |
| /* Copy the elf header */ |
| INFO("Copying ELF header...\n"); |
| GElf_Ehdr *ehdr = gelf_getehdr(elf, &source->ehdr_mem); |
| FAILIF_LIBELF(NULL == ehdr, gelf_getehdr); |
| memcpy(ehdr, oldehdr, sizeof(GElf_Ehdr)); |
| FAILIF_LIBELF(!gelf_update_ehdr(elf, ehdr), gelf_update_ehdr); |
| |
| /* Copy out the old program header: notice that if the ELF file does not |
| have a program header, this loop won't execute. |
| */ |
| INFO("Copying ELF program header...\n"); |
| { |
| int cnt; |
| source->phdr_info = (GElf_Phdr *)CALLOC(ehdr->e_phnum, |
| sizeof(GElf_Phdr)); |
| for (cnt = 0; cnt < ehdr->e_phnum; ++cnt) { |
| INFO("\tRetrieving entry %d\n", cnt); |
| FAILIF_LIBELF(NULL == |
| gelf_getphdr(source->oldelf, cnt, |
| source->phdr_info + cnt), |
| gelf_getphdr); |
| FAILIF_LIBELF(gelf_update_phdr (elf, cnt, |
| source->phdr_info + cnt) == 0, |
| gelf_update_phdr); |
| } |
| } |
| |
| /* Copy the sections and the section headers. */ |
| if (create_new_sections) |
| { |
| create_elf_sections(source, elf); |
| } |
| |
| /* The ELF library better follows our layout when this is not a |
| relocatable object file. */ |
| elf_flagelf (elf, ELF_C_SET, (ehdr->e_type != ET_REL ? ELF_F_LAYOUT : 0)); |
| |
| return elf; |
| } |
| |
| static shdr_info_t *lookup_shdr_info_by_new_section( |
| source_t *source, |
| const char *sname, |
| Elf_Scn *newscn) |
| { |
| if (source->shdr_info == NULL) return NULL; |
| int cnt; |
| for (cnt = 0; cnt < source->shnum; cnt++) { |
| if (source->shdr_info[cnt].newscn == newscn) { |
| INFO("\t\tnew section at %p matches shdr_info[%d], " |
| "section [%s]!\n", |
| newscn, |
| cnt, |
| source->shdr_info[cnt].name); |
| FAILIF(strcmp(sname, source->shdr_info[cnt].name), |
| "Matched section's name [%s] does not match " |
| "looked-up section's name [%s]!\n", |
| source->shdr_info[cnt].name, |
| sname); |
| return source->shdr_info + cnt; |
| } |
| } |
| return NULL; |
| } |
| |
| static bool do_init_source(source_t *source, unsigned base) |
| { |
| /* Find various sections. */ |
| size_t scnidx; |
| Elf_Scn *scn; |
| GElf_Shdr *shdr, shdr_mem; |
| source->sorted_sections = init_range_list(); |
| INFO("Processing [%s]'s sections...\n", source->name); |
| for (scnidx = 1; scnidx < (size_t)source->shnum; scnidx++) { |
| INFO("\tGetting section index %d...\n", scnidx); |
| scn = elf_getscn(source->elf, scnidx); |
| if (NULL == scn) { |
| /* If we get an error from elf_getscn(), it means that a section |
| at the requested index does not exist. This may happen when |
| we remove sections. Since we do not update source->shnum |
| (we can't, since we need to know the original number of sections |
| to know source->shdr_info[]'s length), we will attempt to |
| retrieve a section for an index that no longer exists in the |
| new ELF file. */ |
| INFO("\tThere is no section at index %d anymore, continuing.\n", |
| scnidx); |
| continue; |
| } |
| shdr = gelf_getshdr(scn, &shdr_mem); |
| FAILIF_LIBELF(NULL == shdr, gelf_getshdr); |
| |
| /* We haven't modified the shstrtab section, and so shdr->sh_name |
| has the same value as before. Thus we look up the name based |
| on the old ELF handle. We cannot use shstrndx on the new ELF |
| handle because the index of the shstrtab section may have |
| changed (and calling elf_getshstrndx() returns the same section |
| index, so libelf can't handle thise ither). |
| */ |
| const char *sname = |
| elf_strptr(source->oldelf, source->shstrndx, shdr->sh_name); |
| ASSERT(sname); |
| |
| INFO("\tAdding [%s] (%lld, %lld)...\n", |
| sname, |
| shdr->sh_addr, |
| shdr->sh_addr + shdr->sh_size); |
| if ((shdr->sh_flags & SHF_ALLOC) == SHF_ALLOC) { |
| add_unique_range_nosort(source->sorted_sections, |
| shdr->sh_addr, |
| shdr->sh_size, |
| scn, |
| handle_range_error, |
| NULL); /* no user-data destructor */ |
| } |
| |
| if (shdr->sh_type == SHT_DYNSYM) { |
| source->symtab.scn = scn; |
| source->symtab.data = elf_getdata(scn, NULL); |
| FAILIF_LIBELF(NULL == source->symtab.data, elf_getdata); |
| memcpy(&source->symtab.shdr, shdr, sizeof(GElf_Shdr)); |
| source->symtab.info = lookup_shdr_info_by_new_section( |
| source, sname, scn); |
| ASSERT(source->shdr_info == NULL || source->symtab.info != NULL); |
| |
| /* The sh_link field of the section header of the symbol table |
| contains the index of the associated strings table. */ |
| source->strtab.scn = elf_getscn(source->elf, |
| source->symtab.shdr.sh_link); |
| FAILIF_LIBELF(NULL == source->strtab.scn, elf_getscn); |
| FAILIF_LIBELF(NULL == gelf_getshdr(source->strtab.scn, |
| &source->strtab.shdr), |
| gelf_getshdr); |
| source->strtab.data = elf_getdata(source->strtab.scn, NULL); |
| FAILIF_LIBELF(NULL == source->strtab.data, elf_getdata); |
| source->strtab.info = lookup_shdr_info_by_new_section( |
| source, |
| elf_strptr(source->oldelf, source->shstrndx, |
| source->strtab.shdr.sh_name), |
| source->strtab.scn); |
| ASSERT(source->shdr_info == NULL || source->strtab.info != NULL); |
| } else if (shdr->sh_type == SHT_DYNAMIC) { |
| source->dynamic.scn = scn; |
| source->dynamic.data = elf_getdata(scn, NULL); |
| FAILIF_LIBELF(NULL == source->dynamic.data, elf_getdata); |
| memcpy(&source->dynamic.shdr, shdr, sizeof(GElf_Shdr)); |
| source->dynamic.info = lookup_shdr_info_by_new_section( |
| source, sname, scn); |
| ASSERT(source->shdr_info == NULL || source->dynamic.info != NULL); |
| } else if (shdr->sh_type == SHT_HASH) { |
| source->hash.scn = scn; |
| source->hash.data = elf_getdata(scn, NULL); |
| FAILIF_LIBELF(NULL == source->hash.data, elf_getdata); |
| memcpy(&source->hash.shdr, shdr, sizeof(GElf_Shdr)); |
| source->hash.info = lookup_shdr_info_by_new_section( |
| source, sname, scn); |
| ASSERT(source->shdr_info == NULL || source->hash.info != NULL); |
| } else if (shdr->sh_type == SHT_REL || shdr->sh_type == SHT_RELA) { |
| if (source->num_relocation_sections == |
| source->relocation_sections_size) { |
| source->relocation_sections_size += 5; |
| source->relocation_sections = |
| (section_info_t *)REALLOC(source->relocation_sections, |
| source->relocation_sections_size * |
| sizeof(section_info_t)); |
| } |
| section_info_t *reloc = |
| source->relocation_sections + source->num_relocation_sections; |
| reloc->scn = scn; |
| reloc->info = lookup_shdr_info_by_new_section(source, sname, scn); |
| ASSERT(source->shdr_info == NULL || reloc->info != NULL); |
| reloc->data = elf_getdata(scn, NULL); |
| FAILIF_LIBELF(NULL == reloc->data, elf_getdata); |
| memcpy(&reloc->shdr, shdr, sizeof(GElf_Shdr)); |
| source->num_relocation_sections++; |
| } else if (!strcmp(sname, ".bss")) { |
| source->bss.scn = scn; |
| source->bss.data = elf_getdata(scn, NULL); |
| source->bss.info = lookup_shdr_info_by_new_section( |
| source, sname, scn); |
| ASSERT(source->shdr_info == NULL || source->bss.info != NULL); |
| /* The BSS section occupies no space in the ELF file. */ |
| FAILIF_LIBELF(NULL == source->bss.data, elf_getdata) |
| FAILIF(NULL != source->bss.data->d_buf, |
| "Enexpected: section [%s] has data!", |
| sname); |
| memcpy(&source->bss.shdr, shdr, sizeof(GElf_Shdr)); |
| } |
| } |
| sort_ranges(source->sorted_sections); |
| |
| source->unfinished = |
| (unfinished_relocation_t *)CALLOC(source->num_relocation_sections, |
| sizeof(unfinished_relocation_t)); |
| |
| if (source->dynamic.scn == NULL) { |
| INFO("File [%s] does not have a dynamic section!\n", source->name); |
| /* If this is a static executable, we won't update anything. */ |
| source->dry_run = 1; |
| return false; |
| } |
| |
| FAILIF(source->symtab.scn == NULL, |
| "File [%s] does not have a dynamic symbol table!\n", |
| source->name); |
| FAILIF(source->hash.scn == NULL, |
| "File [%s] does not have a hash table!\n", |
| source->name); |
| FAILIF(source->hash.shdr.sh_link != elf_ndxscn(source->symtab.scn), |
| "Hash points to section %d, not to %d as expected!\n", |
| source->hash.shdr.sh_link, |
| elf_ndxscn(source->symtab.scn)); |
| |
| /* Now, find out how many symbols we have and allocate the array of |
| satisfied symbols. |
| |
| NOTE: We don't count the number of undefined symbols here; we will |
| iterate over the symbol table later, and count them then, when it is |
| more convenient. |
| */ |
| size_t symsize = gelf_fsize (source->elf, |
| ELF_T_SYM, |
| 1, source->elf_hdr.e_version); |
| ASSERT(symsize); |
| |
| source->num_syms = source->symtab.data->d_size / symsize; |
| source->base = (source->oldelf_hdr.e_type == ET_DYN) ? base : 0; |
| INFO("Relink base for [%s]: 0x%lx\n", source->name, source->base); |
| FAILIF(source->base == -1, |
| "Can't prelink [%s]: it's a shared library and you did not " |
| "provide a prelink address!\n", |
| source->name); |
| #ifdef SUPPORT_ANDROID_PRELINK_TAGS |
| FAILIF(source->prelinked && source->base != source->prelink_base, |
| "ERROR: file [%s] has already been prelinked for 0x%08lx. " |
| "Cannot change to 0x%08lx!\n", |
| source->name, |
| source->prelink_base, |
| source->base); |
| #endif/*SUPPORT_ANDROID_PRELINK_TAGS*/ |
| |
| return true; |
| } |
| |
| static source_t* init_source(const char *full_path, |
| const char *output, int is_file, |
| int base, int dry_run) |
| { |
| source_t *source = (source_t *)CALLOC(1, sizeof(source_t)); |
| |
| ASSERT(full_path); |
| source->name = full_path; |
| source->output = output; |
| source->output_is_dir = !is_file; |
| |
| source->newelf_fd = -1; |
| source->elf_fd = -1; |
| INFO("Opening %s...\n", full_path); |
| source->elf_fd = |
| open(full_path, ((dry_run || output != NULL) ? O_RDONLY : O_RDWR)); |
| FAILIF(source->elf_fd < 0, "open(%s): %s (%d)\n", |
| full_path, |
| strerror(errno), |
| errno); |
| |
| FAILIF(fstat(source->elf_fd, &source->elf_file_info) < 0, |
| "fstat(%s(fd %d)): %s (%d)\n", |
| source->name, |
| source->elf_fd, |
| strerror(errno), |
| errno); |
| INFO("File [%s]'s size is %lld bytes!\n", |
| source->name, |
| source->elf_file_info.st_size); |
| |
| INFO("Calling elf_begin(%s)...\n", full_path); |
| |
| source->oldelf = |
| elf_begin(source->elf_fd, |
| (dry_run || output != NULL) ? ELF_C_READ : ELF_C_RDWR, |
| NULL); |
| FAILIF_LIBELF(source->oldelf == NULL, elf_begin); |
| |
| /* libelf can recognize COFF and A.OUT formats, but we handle only ELF. */ |
| if(elf_kind(source->oldelf) != ELF_K_ELF) { |
| ERROR("Input file %s is not in ELF format!\n", full_path); |
| return NULL; |
| } |
| |
| /* Make sure this is a shared library or an executable. */ |
| { |
| INFO("Making sure %s is a shared library or an executable...\n", |
| full_path); |
| FAILIF_LIBELF(0 == gelf_getehdr(source->oldelf, &source->oldelf_hdr), |
| gelf_getehdr); |
| FAILIF(source->oldelf_hdr.e_type != ET_DYN && |
| source->oldelf_hdr.e_type != ET_EXEC, |
| "%s must be a shared library (elf type is %d, expecting %d).\n", |
| full_path, |
| source->oldelf_hdr.e_type, |
| ET_DYN); |
| } |
| |
| #ifdef SUPPORT_ANDROID_PRELINK_TAGS |
| /* First, check to see if the file has been prelinked. */ |
| source->prelinked = |
| check_prelinked(source->name, |
| source->oldelf_hdr.e_ident[EI_DATA] == ELFDATA2LSB, |
| &source->prelink_base); |
| /* Note that in the INFO() below we need to use oldelf_hdr because we |
| haven't cloned the ELF file yet, and source->elf_hdr is not defined. */ |
| if (source->prelinked) { |
| PRINT("%s [%s] is already prelinked at 0x%08lx!\n", |
| (source->oldelf_hdr.e_type == ET_EXEC ? |
| "Executable" : "Shared library"), |
| source->name, |
| source->prelink_base); |
| /* Force a dry run when the file has already been prelinked */ |
| source->dry_run = dry_run = 1; |
| } |
| else { |
| INFO("%s [%s] is not prelinked!\n", |
| (source->oldelf_hdr.e_type == ET_EXEC ? |
| "Executable" : "Shared library"), |
| source->name); |
| source->dry_run = dry_run; |
| } |
| #endif/*SUPPORT_ANDROID_PRELINK_TAGS*/ |
| |
| /* Get the index of the section-header-strings-table section. */ |
| FAILIF_LIBELF(elf_getshstrndx (source->oldelf, &source->shstrndx) < 0, |
| elf_getshstrndx); |
| |
| FAILIF_LIBELF(elf_getshnum (source->oldelf, (size_t *)&source->shnum) < 0, |
| elf_getshnum); |
| |
| /* When we have a dry run, or when ADJUST_ELF is enabled, we use |
| source->oldelf for source->elf, because the former is mmapped privately, |
| so changes to it have no effect. With ADJUST_ELF, the first run of |
| prelink() is a dry run. We will reopen the elf file for write access |
| after that dry run, before we call adjust_elf. */ |
| |
| source->elf = (ADJUST_ELF || source->dry_run) ? |
| source->oldelf : init_elf(source, ADJUST_ELF == 0); |
| |
| FAILIF_LIBELF(0 == gelf_getehdr(source->elf, &source->elf_hdr), |
| gelf_getehdr); |
| #ifdef DEBUG |
| ASSERT(!memcmp(&source->oldelf_hdr, |
| &source->elf_hdr, |
| sizeof(source->elf_hdr))); |
| #endif |
| |
| /* Get the EBL handling. The -g option is currently the only reason |
| we need EBL so dont open the backend unless necessary. */ |
| source->ebl = ebl_openbackend (source->elf); |
| FAILIF_LIBELF(NULL == source->ebl, ebl_openbackend); |
| #ifdef ARM_SPECIFIC_HACKS |
| FAILIF_LIBELF(0 != arm_init(source->elf, source->elf_hdr.e_machine, |
| source->ebl, sizeof(Ebl)), |
| arm_init); |
| #endif/*ARM_SPECIFIC_HACKS*/ |
| |
| add_to_sources(source); |
| if (do_init_source(source, base) == false) return NULL; |
| return source; |
| } |
| |
| /* complements do_init_source() */ |
| static void do_destroy_source(source_t *source) |
| { |
| int cnt; |
| destroy_range_list(source->sorted_sections); |
| source->sorted_sections = NULL; |
| for (cnt = 0; cnt < source->num_relocation_sections; cnt++) { |
| FREEIF(source->unfinished[cnt].rels); |
| source->unfinished[cnt].rels = NULL; |
| source->unfinished[cnt].num_rels = 0; |
| source->unfinished[cnt].rels_size = 0; |
| } |
| if (source->jmprel.sections != NULL) { |
| destroy_range_list(source->jmprel.sections); |
| source->jmprel.sections = NULL; |
| } |
| if (source->rel.sections != NULL) { |
| destroy_range_list(source->rel.sections); |
| source->rel.sections = NULL; |
| } |
| FREE(source->unfinished); /* do_init_source() */ |
| source->unfinished = NULL; |
| FREE(source->relocation_sections); /* do_init_source() */ |
| source->relocation_sections = NULL; |
| source->num_relocation_sections = source->relocation_sections_size = 0; |
| } |
| |
| static void destroy_source(source_t *source) |
| { |
| /* Is this a little-endian ELF file? */ |
| if (source->oldelf != source->elf) { |
| /* If it's a dynamic executable, this must not be a dry run. */ |
| if (!source->dry_run && source->dynamic.scn != NULL) |
| { |
| FAILIF_LIBELF(elf_update(source->elf, ELF_C_WRITE) == -1, |
| elf_update); |
| } |
| FAILIF_LIBELF(elf_end(source->oldelf), elf_end); |
| } |
| ebl_closebackend(source->ebl); |
| FAILIF_LIBELF(elf_end(source->elf), elf_end); |
| FAILIF(close(source->elf_fd) < 0, "Could not close file %s: %s (%d)!\n", |
| source->name, strerror(errno), errno); |
| FAILIF((source->newelf_fd >= 0) && (close(source->newelf_fd) < 0), |
| "Could not close output file: %s (%d)!\n", strerror(errno), errno); |
| |
| #ifdef SUPPORT_ANDROID_PRELINK_TAGS |
| if (!source->dry_run) { |
| if (source->dynamic.scn != NULL && |
| source->elf_hdr.e_type != ET_EXEC) |
| { |
| /* For some reason, trying to write directly to source->elf_fd |
| causes a "bad file descriptor" error because of something libelf |
| does. We just close the file descriptor and open a new one in |
| function setup_prelink_info() below. */ |
| INFO("%s: setting up prelink tag at end of file.\n", |
| source->output ? source->output : source->name); |
| retouch_encode(-1, source->base); |
| retouch_dump(source->output ? source->output : source->name, |
| source->elf_hdr.e_ident[EI_DATA] == ELFDATA2LSB, |
| retouch_byte_cnt, |
| retouch_buf); |
| setup_prelink_info(source->output ? source->output : source->name, |
| source->elf_hdr.e_ident[EI_DATA] == ELFDATA2LSB, |
| source->base); |
| } |
| else INFO("%s: executable, NOT setting up prelink tag.\n", |
| source->name); |
| } |
| #endif/*SUPPORT_ANDROID_PRELINK_TAGS*/ |
| |
| do_destroy_source(source); |
| if (retouch_buf != NULL) { free(retouch_buf); retouch_buf = NULL; } |
| |
| if (source->shstrtab_data != NULL) |
| FREEIF(source->shstrtab_data->d_buf); /* adjust_elf */ |
| |
| FREE(source->lib_deps); /* list of library dependencies (process_file()) */ |
| FREEIF(source->shdr_info); /* setup_shdr_info() */ |
| FREEIF(source->phdr_info); /* init_elf() */ |
| FREE(source->name); /* assigned to by init_source() */ |
| /* If the output is a directory, in init_elf() we allocate a buffer where |
| we copy the directory, a slash, and the file name. Here we free that |
| buffer. |
| */ |
| if (source->output_is_dir > 1) { |
| FREE(source->output); |
| } |
| FREE(source); /* init_source() */ |
| } |
| |
| static void reinit_source(source_t *source) |
| { |
| do_destroy_source(source); |
| do_init_source(source, source->base); |
| |
| { |
| /* We've gathered all the DT_DYNAMIC entries; now we need to figure |
| out which relocation sections fit in which range as described by |
| the entries. Before we do so, however, we will populate the |
| jmprel and rel members of source, as well as their sizes. |
| */ |
| |
| size_t dynidx, numdyn; |
| GElf_Dyn *dyn, dyn_mem; |
| |
| numdyn = source->dynamic.shdr.sh_size / |
| source->dynamic.shdr.sh_entsize; |
| |
| source->rel.idx = source->rel.sz_idx = -1; |
| source->jmprel.idx = source->jmprel.sz_idx = -1; |
| for (dynidx = 0; dynidx < numdyn; dynidx++) { |
| dyn = gelf_getdyn (source->dynamic.data, |
| dynidx, |
| &dyn_mem); |
| FAILIF_LIBELF(NULL == dyn, gelf_getdyn); |
| switch (dyn->d_tag) |
| { |
| case DT_NEEDED: |
| break; |
| case DT_JMPREL: |
| INFO("reinit_source: DT_JMPREL is at index %d, 0x%08llx.\n", |
| dynidx, dyn->d_un.d_ptr); |
| source->jmprel.idx = dynidx; |
| source->jmprel.addr = dyn->d_un.d_ptr; |
| break; |
| case DT_PLTRELSZ: |
| INFO("reinit_source: DT_PLTRELSZ is at index %d, 0x%08llx.\n", |
| dynidx, dyn->d_un.d_val); |
| source->jmprel.sz_idx = dynidx; |
| source->jmprel.size = dyn->d_un.d_val; |
| break; |
| case DT_REL: |
| INFO("reinit_source: DT_REL is at index %d, 0x%08llx.\n", |
| dynidx, dyn->d_un.d_ptr); |
| source->rel.idx = dynidx; |
| source->rel.addr = dyn->d_un.d_ptr; |
| break; |
| case DT_RELSZ: |
| INFO("reinit_source: DT_RELSZ is at index %d, 0x%08llx.\n", |
| dynidx, dyn->d_un.d_val); |
| source->rel.sz_idx = dynidx; |
| source->rel.size = dyn->d_un.d_val; |
| break; |
| case DT_RELA: |
| case DT_RELASZ: |
| FAILIF(1, "Can't handle DT_RELA and DT_RELASZ entries!\n"); |
| break; |
| } /* switch */ |
| } /* for each dynamic entry... */ |
| } |
| } |
| |
| static GElf_Sym *hash_lookup_global_or_weak_symbol(source_t *lib, |
| const char *symname, |
| GElf_Sym *lib_sym_mem) |
| { |
| int lib_symidx = hash_lookup(lib->elf, |
| lib->hash.data, |
| lib->symtab.data, |
| lib->strtab.data, |
| symname); |
| |
| GElf_Sym sym_mem; |
| if (SHN_UNDEF != lib_symidx) { |
| /* We found the symbol--now check to see if it is global |
| or weak. If this is the case, then the symbol satisfies |
| the dependency. */ |
| GElf_Sym *lib_sym = gelf_getsymshndx(lib->symtab.data, |
| NULL, |
| lib_symidx, |
| &sym_mem, |
| NULL); |
| FAILIF_LIBELF(NULL == lib_sym, gelf_getsymshndx); |
| #if ELF_STRPTR_IS_BROKEN |
| ASSERT(!strcmp( |
| symname, |
| ((char *)elf_getdata(elf_getscn(lib->elf, |
| lib->symtab.shdr.sh_link), |
| NULL)->d_buf) + |
| lib_sym->st_name)); |
| #else |
| ASSERT(!strcmp( |
| symname, |
| elf_strptr(lib->elf, lib->symtab.shdr.sh_link, |
| lib_sym->st_name))); |
| #endif |
| if (lib_sym->st_shndx != SHN_UNDEF && |
| (GELF_ST_BIND(lib_sym->st_info) == STB_GLOBAL || |
| GELF_ST_BIND(lib_sym->st_info) == STB_WEAK)) { |
| memcpy(lib_sym_mem, &sym_mem, sizeof(GElf_Sym)); |
| return lib_sym; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static source_t *lookup_symbol_in_dependencies(source_t *source, |
| const char *symname, |
| GElf_Sym *found_sym) |
| { |
| source_t *sym_source = NULL; /* return value */ |
| |
| /* This is an undefined symbol. Go over the list of libraries |
| and look it up. */ |
| size_t libidx; |
| int found = 0; |
| source_t *last_found = NULL; |
| for (libidx = 0; libidx < (size_t)source->num_lib_deps; libidx++) { |
| source_t *lib = source->lib_deps[libidx]; |
| if (hash_lookup_global_or_weak_symbol(lib, symname, found_sym) != NULL) |
| { |
| sym_source = lib; |
| if (found) { |
| if (found == 1) { |
| found++; |
| ERROR("ERROR: multiple definitions found for [%s:%s]!\n", |
| source->name, symname); |
| ERROR("\tthis definition [%s]\n", lib->name); |
| } |
| ERROR("\tprevious definition [%s]\n", last_found->name); |
| } |
| last_found = lib; |
| if (!found) found = 1; |
| } |
| } |
| |
| #if ELF_STRPTR_IS_BROKEN |
| ASSERT(!sym_source || |
| !strcmp(symname, |
| (char *)(elf_getdata(elf_getscn( |
| sym_source->elf, |
| sym_source->symtab.shdr.sh_link), |
| NULL)->d_buf) + |
| found_sym->st_name)); |
| #else |
| ASSERT(!sym_source || |
| !strcmp(symname, |
| elf_strptr(sym_source->elf, |
| sym_source->symtab.shdr.sh_link, |
| found_sym->st_name))); |
| #endif |
| |
| return sym_source; |
| } |
| |
| static int do_prelink(source_t *source, |
| Elf_Data *reloc_scn_data, |
| int reloc_scn_entry_size, |
| unfinished_relocation_t *unfinished, |
| int locals_only, |
| bool dry_run, |
| char **lib_lookup_dirs, int num_lib_lookup_dirs, |
| char **default_libs, int num_default_libs, |
| int *num_unfinished_relocs) |
| { |
| int num_relocations = 0; |
| |
| size_t num_rels; |
| num_rels = reloc_scn_data->d_size / reloc_scn_entry_size; |
| |
| INFO("\tThere are %d relocations.\n", num_rels); |
| |
| int rel_idx; |
| for (rel_idx = 0; rel_idx < (size_t)num_rels; rel_idx++) { |
| GElf_Rel *rel, rel_mem; |
| |
| //INFO("\tHandling relocation %d/%d\n", rel_idx, num_rels); |
| |
| rel = gelf_getrel(reloc_scn_data, rel_idx, &rel_mem); |
| FAILIF_LIBELF(rel == NULL, gelf_getrel); |
| GElf_Sym *sym = NULL, sym_mem; |
| unsigned sym_idx = GELF_R_SYM(rel->r_info); |
| source_t *sym_source = NULL; |
| /* found_sym points to found_sym_mem, when sym_source != NULL, and |
| to sym, when the sybmol is locally defined. If the symbol is |
| not locally defined and sym_source == NULL, then sym is not |
| defined either. */ |
| GElf_Sym *found_sym = NULL, found_sym_mem; |
| const char *symname = NULL; |
| int sym_is_local = 1; |
| if (sym_idx) { |
| sym = gelf_getsymshndx(source->symtab.data, |
| NULL, |
| sym_idx, |
| &sym_mem, |
| NULL); |
| FAILIF_LIBELF(NULL == sym, gelf_getsymshndx); |
| #if ELF_STRPTR_IS_BROKEN |
| symname = |
| ((char *)source->strtab.data->d_buf) + |
| sym->st_name; |
| #else |
| symname = elf_strptr(source->elf, |
| elf_ndxscn(source->strtab.scn), |
| sym->st_name); |
| #endif |
| |
| /* If the symbol is defined and is either not in the BSS |
| section, or if it is in the BSS then the relocation is |
| not a copy relocation, then the symbol's source is this |
| library (i.e., it is locally-defined). Otherwise, the |
| symbol is imported. |
| */ |
| |
| sym_is_local = 0; |
| if (sym->st_shndx != SHN_UNDEF && |
| (source->bss.scn == NULL || |
| sym->st_shndx != elf_ndxscn(source->bss.scn) || |
| #ifdef ARM_SPECIFIC_HACKS |
| GELF_R_TYPE(rel->r_info) != R_ARM_COPY |
| #else |
| 1 |
| #endif |
| )) |
| { |
| sym_is_local = 1; |
| } |
| |
| if (sym_is_local) { |
| INFO("\t\tSymbol [%s:%s] is defined locally.\n", |
| source->name, |
| symname); |
| sym_source = source; |
| found_sym = sym; |
| } |
| else if (!locals_only) { |
| sym_source = lookup_symbol_in_dependencies(source, |
| symname, |
| &found_sym_mem); |
| |
| /* The symbol was not in the list of dependencies, which by |
| itself is an error: it means either that the symbol does |
| not exist anywhere, or that the library which has the symbol |
| has not been listed as a dependency in this library or |
| executable. It could also mean (for a library) that the |
| symbol is defined in the executable that links agsinst it, |
| which is obviously not a good thing. These are bad things, |
| but they do happen, which is why we have the ability to |
| provide a list of default dependencies, including |
| executables. Here we check to see if the symbol has been |
| defined in any of them. |
| */ |
| if (NULL == sym_source) { |
| INFO("\t\tChecking default dependencies...\n"); |
| int i; |
| source_t *lib, *old_sym_source = NULL; |
| int printed_initial_error = 0; |
| for (i = 0; i < num_default_libs; i++) { |
| INFO("\tChecking in [%s].\n", default_libs[i]); |
| lib = find_source(default_libs[i], |
| lib_lookup_dirs, |
| num_lib_lookup_dirs); |
| FAILIF(NULL == lib, |
| "Can't find default library [%s]!\n", |
| default_libs[i]); |
| if (hash_lookup_global_or_weak_symbol(lib, |
| symname, |
| &found_sym_mem)) { |
| found_sym = &found_sym_mem; |
| sym_source = lib; |
| #if ELF_STRPTR_IS_BROKEN |
| ASSERT(!strcmp(symname, |
| (char *)(elf_getdata( |
| elf_getscn( |
| sym_source->elf, |
| sym_source->symtab. |
| shdr.sh_link), |
| NULL)->d_buf) + |
| found_sym->st_name)); |
| #else |
| ASSERT(!strcmp(symname, |
| elf_strptr(sym_source->elf, |
| sym_source->symtab.shdr.sh_link, |
| found_sym->st_name))); |
| |
| #endif |
| INFO("\tFound symbol [%s] in [%s]!\n", |
| symname, lib->name); |
| if (old_sym_source) { |
| if (printed_initial_error == 0) { |
| printed_initial_error = 1; |
| ERROR("Multiple definition of [%s]:\n" |
| "\t[%s]\n", |
| symname, |
| old_sym_source->name); |
| } |
| ERROR("\t[%s]\n", sym_source->name); |
| } |
| old_sym_source = sym_source; |
| } else { |
| INFO("\tCould not find symbol [%s] in default " |
| "lib [%s]!\n", symname, lib->name); |
| } |
| } |
| if (sym_source) { |
| ERROR("ERROR: Could not find [%s:%s] in dependent " |
| "libraries (but found in default [%s])!\n", |
| source->name, |
| symname, |
| sym_source->name); |
| } |
| } else { |
| found_sym = &found_sym_mem; |
| /* We found the symbol in a dependency library. */ |
| INFO("\t\tSymbol [%s:%s, value %lld] is imported from [%s]\n", |
| source->name, |
| symname, |
| found_sym->st_value, |
| sym_source->name); |
| } |
| } /* if symbol is defined in this library... */ |
| |
| if (!locals_only) { |
| /* If a symbol is weak and we haven't found it, then report |
| an error. We really need to find a way to set its value |
| to zero. The problem is that it needs to refer to some |
| section. */ |
| |
| FAILIF(NULL == sym_source && |
| GELF_ST_BIND(sym->st_info) == STB_WEAK, |
| "Cannot handle weak symbols yet (%s:%s <- %s).\n", |
| source->name, |
| symname, |
| sym_source->name); |
| #ifdef PERMISSIVE |
| if (GELF_ST_BIND(sym->st_info) != STB_WEAK && |
| NULL == sym_source) { |
| ERROR("ERROR: Can't find symbol [%s:%s] in dependent or " |
| "default libraries!\n", source->name, symname); |
| } |
| #else |
| FAILIF(GELF_ST_BIND(sym->st_info) != STB_WEAK && |
| NULL == sym_source, |
| "Can't find symbol [%s:%s] in dependent or default " |
| "libraries!\n", |
| source->name, |
| symname); |
| #endif |
| } /* if (!locals_only) */ |
| } |
| #if 0 // too chatty |
| else |
| INFO("\t\tno symbol is associated with this relocation\n"); |
| #endif |
| |
| |
| // We prelink only local symbols when locals_only == 1. |
| |
| bool can_relocate = true; |
| if (!sym_is_local && |
| (symname[0] == 'd' && symname[1] == 'l' && symname[2] != '\0' && |
| (!strcmp(symname + 2, "open") || |
| !strcmp(symname + 2, "close") || |
| !strcmp(symname + 2, "sym") || |
| !strcmp(symname + 2, "error")))) { |
| INFO("********* NOT RELOCATING LIBDL SYMBOL [%s]\n", symname); |
| can_relocate = false; |
| } |
| |
| if (can_relocate && (sym_is_local || !locals_only)) |
| { |
| GElf_Shdr shdr_mem; Elf_Scn *scn; Elf_Data *data; |
| find_section(source, rel->r_offset, &scn, &shdr_mem, &data); |
| unsigned *dest = |
| (unsigned*)(((char *)data->d_buf) + |
| (rel->r_offset - shdr_mem.sh_addr)); |
| unsigned rel_type = GELF_R_TYPE(rel->r_info); |
| char buf[64]; |
| INFO("\t\t%-15s ", |
| ebl_reloc_type_name(source->ebl, |
| GELF_R_TYPE(rel->r_info), |
| buf, |
| sizeof(buf))); |
| |
| /* Section-name offsets do not change, so we use oldelf to get the |
| strings. This makes a difference in the second pass of the |
| perlinker, after the call to adjust_elf, because |
| source->shstrndx no longer contains the index of the |
| section-header-strings table. |
| */ |
| const char *sname = elf_strptr( |
| source->oldelf, source->shstrndx, shdr_mem.sh_name); |
| |
| switch (rel_type) { |
| case R_ARM_JUMP_SLOT: |
| case R_ARM_GLOB_DAT: |
| case R_ARM_ABS32: |
| ASSERT(data->d_buf != NULL); |
| ASSERT(data->d_size >= rel->r_offset - shdr_mem.sh_addr); |
| #ifdef PERMISSIVE |
| if (sym_source == NULL) { |
| ERROR("ERROR: Permissive relocation " |
| "[%-15s] [%s:%s]: [0x%llx] = ZERO\n", |
| ebl_reloc_type_name(source->ebl, |
| GELF_R_TYPE(rel->r_info), |
| buf, |
| sizeof(buf)), |
| sname, |
| symname, |
| rel->r_offset); |
| if (!dry_run) |
| *dest = 0; |
| } else |
| #endif |
| { |
| ASSERT(sym_source); |
| INFO("[%s:%s]: [0x%llx] = 0x%llx + 0x%lx\n", |
| sname, |
| symname, |
| rel->r_offset, |
| found_sym->st_value, |
| sym_source->base); |
| if (!dry_run) { |
| PRINT("WARNING: Relocation type not supported " |
| "for retouching!"); |
| *dest = found_sym->st_value + sym_source->base; |
| } |
| } |
| num_relocations++; |
| break; |
| case R_ARM_RELATIVE: |
| ASSERT(data->d_buf != NULL); |
| ASSERT(data->d_size >= rel->r_offset - shdr_mem.sh_addr); |
| FAILIF(sym != NULL, |
| "Unsupported RELATIVE form (symbol != 0)...\n"); |
| INFO("[%s:%s]: [0x%llx] = 0x%x + 0x%lx\n", |
| sname, |
| symname ?: "(symbol has no name)", |
| rel->r_offset, *dest, source->base); |
| if (!dry_run) { |
| *dest += source->base; |
| |
| /* Output an entry for the ASLR touch-up process. */ |
| retouch_encode(rel->r_offset |
| -shdr_mem.sh_addr |
| +shdr_mem.sh_offset, |
| *dest); |
| } |
| num_relocations++; |
| break; |
| case R_ARM_COPY: |
| #ifdef PERMISSIVE |
| if (sym_source == NULL) { |
| ERROR("ERROR: Permissive relocation " |
| "[%-15s] [%s:%s]: NOT PERFORMING\n", |
| ebl_reloc_type_name(source->ebl, |
| GELF_R_TYPE(rel->r_info), |
| buf, |
| sizeof(buf)), |
| sname, |
| symname); |
| } else |
| #endif |
| { |
| ASSERT(sym); |
| ASSERT(sym_source); |
| GElf_Shdr src_shdr_mem; |
| Elf_Scn *src_scn; |
| Elf_Data *src_data; |
| find_section(sym_source, found_sym->st_value, |
| &src_scn, |
| &src_shdr_mem, |
| &src_data); |
| INFO("Found [%s:%s (%lld)] in section [%s] .\n", |
| sym_source->name, |
| symname, |
| found_sym->st_value, |
| #if ELF_STRPTR_IS_BROKEN |
| (((char *)elf_getdata( |
| elf_getscn(sym_source->elf, |
| sym_source->shstrndx), |
| NULL)->d_buf) + src_shdr_mem.sh_name) |
| #else |
| elf_strptr(sym_source->elf, |
| sym_source->shstrndx, |
| src_shdr_mem.sh_name) |
| #endif |
| ); |
| |
| unsigned *src = NULL; |
| if (src_data->d_buf == NULL) |
| { |
| #ifdef PERMISSIVE |
| if (sym_source->bss.scn == NULL || |
| elf_ndxscn(src_scn) != |
| elf_ndxscn(sym_source->bss.scn)) { |
| ERROR("ERROR: Permissive relocation (NULL source " |
| "not from .bss) [%-15s] [%s:%s]: " |
| "NOT PERFORMING\n", |
| ebl_reloc_type_name(source->ebl, |
| GELF_R_TYPE(rel->r_info), |
| buf, |
| sizeof(buf)), |
| sname, |
| symname); |
| } |
| #endif |
| } |
| else { |
| ASSERT(src_data->d_size >= |
| found_sym->st_value - src_shdr_mem.sh_addr); |
| src = (unsigned*)(((char *)src_data->d_buf) + |
| (found_sym->st_value - |
| src_shdr_mem.sh_addr)); |
| } |
| ASSERT(symname); |
| INFO("[%s:%s]: [0x%llx] <- [0x%llx] size %lld\n", |
| sname, |
| symname, rel->r_offset, |
| found_sym->st_value, |
| found_sym->st_size); |
| |
| #ifdef PERMISSIVE |
| if (src_data->d_buf != NULL || |
| (sym_source->bss.scn != NULL && |
| elf_ndxscn(src_scn) == |
| elf_ndxscn(sym_source->bss.scn))) |
| #endif/*PERMISSIVE*/ |
| { |
| if (data->d_buf == NULL) { |
| INFO("Incomplete relocation [%-15s] of [%s:%s].\n", |
| ebl_reloc_type_name(source->ebl, |
| GELF_R_TYPE(rel->r_info), |
| buf, |
| sizeof(buf)), |
| sname, |
| symname); |
| FAILIF(unfinished == NULL, |
| "You passed unfinished as NULL expecting " |
| "to handle all relocations, " |
| "but at least one cannot be handled!\n"); |
| if (unfinished->num_rels == unfinished->rels_size) { |
| unfinished->rels_size += 10; |
| unfinished->rels = (GElf_Rel *)REALLOC( |
| unfinished->rels, |
| unfinished->rels_size * |
| sizeof(GElf_Rel)); |
| } |
| unfinished->rels[unfinished->num_rels++] = *rel; |
| num_relocations--; |
| (*num_unfinished_relocs)++; |
| } |
| else { |
| if (src_data->d_buf != NULL) |
| { |
| ASSERT(data->d_buf != NULL); |
| ASSERT(data->d_size >= rel->r_offset - |
| shdr_mem.sh_addr); |
| if (!dry_run) { |
| PRINT("WARNING: Relocation type not supported " |
| "for retouching!"); |
| memcpy(dest, src, found_sym->st_size); |
| } |
| } |
| else { |
| ASSERT(src == NULL); |
| ASSERT(elf_ndxscn(src_scn) == |
| elf_ndxscn(sym_source->bss.scn)); |
| if (!dry_run) { |
| PRINT("WARNING: Relocation type not supported " |
| "for retouching!"); |
| memset(dest, 0, found_sym->st_size); |
| } |
| } |
| } |
| } |
| num_relocations++; |
| } |
| break; |
| default: |
| FAILIF(1, "Unknown relocation type %d!\n", rel_type); |
| } // switch |
| } // relocate |
| else { |
| INFO("\t\tNot relocating symbol [%s]%s\n", |
| symname, |
| (can_relocate ? ", relocating only locals" : |
| ", which is a libdl symbol")); |
| FAILIF(unfinished == NULL, |
| "You passed unfinished as NULL expecting to handle all " |
| "relocations, but at least one cannot be handled!\n"); |
| if (unfinished->num_rels == unfinished->rels_size) { |
| unfinished->rels_size += 10; |
| unfinished->rels = (GElf_Rel *)REALLOC( |
| unfinished->rels, |
| unfinished->rels_size * |
| sizeof(GElf_Rel)); |
| } |
| unfinished->rels[unfinished->num_rels++] = *rel; |
| (*num_unfinished_relocs)++; |
| } |
| } // for each relocation entry |
| |
| return num_relocations; |
| } |
| |
| static int prelink(source_t *source, |
| int locals_only, |
| bool dry_run, |
| char **lib_lookup_dirs, int num_lib_lookup_dirs, |
| char **default_libs, int num_default_libs, |
| int *num_unfinished_relocs) |
| { |
| INFO("Prelinking [%s] (number of relocation sections: %d)%s...\n", |
| source->name, source->num_relocation_sections, |
| (dry_run ? " (dry run)" : "")); |
| int num_relocations = 0; |
| int rel_scn_idx; |
| for (rel_scn_idx = 0; rel_scn_idx < source->num_relocation_sections; |
| rel_scn_idx++) |
| { |
| section_info_t *reloc_scn = source->relocation_sections + rel_scn_idx; |
| unfinished_relocation_t *unfinished = source->unfinished + rel_scn_idx; |
| |
| /* We haven't modified the shstrtab section, and so shdr->sh_name has |
| the same value as before. Thus we look up the name based on the old |
| ELF handle. We cannot use shstrndx on the new ELF handle because |
| the index of the shstrtab section may have changed (and calling |
| elf_getshstrndx() returns the same section index, so libelf can't |
| handle thise ither). |
| |
| If reloc_scn->info is available, we can assert that the |
| section-name has not changed. If this assertion fails, |
| then we cannot use the elf_strptr() trick below to get |
| the section name. One solution would be to save it in |
| the section_info_t structure. |
| */ |
| ASSERT(reloc_scn->info == NULL || |
| reloc_scn->shdr.sh_name == reloc_scn->info->old_shdr.sh_name); |
| const char *sname = |
| elf_strptr(source->oldelf, |
| source->shstrndx, |
| reloc_scn->shdr.sh_name); |
| ASSERT(sname != NULL); |
| |
| INFO("\n\tIterating relocation section [%s]...\n", sname); |
| |
| /* In general, the new size of the section differs from the original |
| size of the section, because we can handle some of the relocations. |
| This was communicated to adjust_elf, which modified the ELF file |
| according to the new section sizes. Now, when prelink() does the |
| actual work of prelinking, it needs to know the original size of the |
| relocation section so that it can see all of the original relocation |
| entries! |
| */ |
| size_t d_size = reloc_scn->data->d_size; |
| if (reloc_scn->info != NULL && |
| reloc_scn->data->d_size != reloc_scn->info->old_shdr.sh_size) |
| { |
| INFO("Setting size of section [%s] to from new size %d to old " |
| "size %lld temporarily (so prelinker can see all " |
| "relocations).\n", |
| reloc_scn->info->name, |
| d_size, |
| reloc_scn->info->old_shdr.sh_size); |
| reloc_scn->data->d_size = reloc_scn->info->old_shdr.sh_size; |
| } |
| |
| num_relocations += |
| do_prelink(source, |
| reloc_scn->data, reloc_scn->shdr.sh_entsize, |
| unfinished, |
| locals_only, dry_run, |
| lib_lookup_dirs, num_lib_lookup_dirs, |
| default_libs, num_default_libs, |
| num_unfinished_relocs); |
| |
| if (reloc_scn->data->d_size != d_size) |
| { |
| ASSERT(reloc_scn->info != NULL); |
| INFO("Resetting size of section [%s] to %d\n", |
| reloc_scn->info->name, |
| d_size); |
| reloc_scn->data->d_size = d_size; |
| } |
| } |
| |
| /* Now prelink those relocation sections which were fully handled, and |
| therefore removed. They are not a part of the |
| source->relocation_sections[] array anymore, but we can find them by |
| scanning source->shdr_info[] and looking for sections with idx == 0. |
| */ |
| |
| if (ADJUST_ELF && source->shdr_info != NULL) { |
| /* Walk over the shdr_info[] array to see if we've removed any |
| relocation sections. prelink() those sections as well. |
| */ |
| int i; |
| for (i = 0; i < source->shnum; i++) { |
| shdr_info_t *info = source->shdr_info + i; |
| if (info->idx == 0 && |
| (info->shdr.sh_type == SHT_REL || |
| info->shdr.sh_type == SHT_RELA)) { |
| |
| Elf_Data *data = elf_getdata(info->scn, NULL); |
| ASSERT(data->d_size == 0); |
| data->d_size = info->old_shdr.sh_size; |
| |
| INFO("\n\tIterating relocation section [%s], which was " |
| "discarded (size %d, entry size %lld).\n", |
| info->name, |
| data->d_size, |
| info->old_shdr.sh_entsize); |
| |
| num_relocations += |
| do_prelink(source, |
| data, info->old_shdr.sh_entsize, |
| NULL, /* the section was fully handled */ |
| locals_only, dry_run, |
| lib_lookup_dirs, num_lib_lookup_dirs, |
| default_libs, num_default_libs, |
| num_unfinished_relocs); |
| |
| data->d_size = 0; |
| } |
| } |
| } |
| return num_relocations; |
| } |
| |
| static char * find_file(const char *libname, |
| char **lib_lookup_dirs, |
| int num_lib_lookup_dirs) { |
| if (libname[0] == '/') { |
| /* This is an absolute path name--just return it. */ |
| /* INFO("ABSOLUTE PATH: [%s].\n", libname); */ |
| return strdup(libname); |
| } else { |
| /* First try the working directory. */ |
| int fd; |
| if ((fd = open(libname, O_RDONLY)) > 0) { |
| close(fd); |
| /* INFO("FOUND IN CURRENT DIR: [%s].\n", libname); */ |
| return strdup(libname); |
| } else { |
| /* Iterate over all library paths. For each path, append the file |
| name and see if there is a file at that place. If that fails, |
| bail out. */ |
| |
| char *name; |
| while (num_lib_lookup_dirs--) { |
| size_t lib_len = strlen(*lib_lookup_dirs); |
| /* one extra character for the slash, and another for the |
| terminating NULL. */ |
| name = (char *)MALLOC(lib_len + strlen(libname) + 2); |
| strcpy(name, *lib_lookup_dirs); |
| name[lib_len] = '/'; |
| strcpy(name + lib_len + 1, libname); |
| if ((fd = open(name, O_RDONLY)) > 0) { |
| close(fd); |
| /* INFO("FOUND: [%s] in [%s].\n", libname, name); */ |
| return name; |
| } |
| INFO("NOT FOUND: [%s] in [%s].\n", libname, name); |
| free(name); |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| static void adjust_dynamic_segment_entry_size(source_t *source, |
| dt_rel_info_t *dyn) |
| { |
| /* Update the size entry in the DT_DYNAMIC segment. */ |
| GElf_Dyn *dyn_entry, dyn_entry_mem; |
| dyn_entry = gelf_getdyn(source->dynamic.data, |
| dyn->sz_idx, |
| &dyn_entry_mem); |
| FAILIF_LIBELF(NULL == dyn_entry, gelf_getdyn); |
| /* If we are calling this function to adjust the size of the dynamic entry, |
| then there should be some unfinished relocations remaining. If there |
| are none, then we should remove the entry from the dynamic section |
| altogether. |
| */ |
| ASSERT(dyn->num_unfinished_relocs); |
| |
| size_t relsize = gelf_fsize(source->elf, |
| ELF_T_REL, |
| 1, |
| source->elf_hdr.e_version); |
| |
| if (unlikely(verbose_flag)) { |
| char buf[64]; |
| INFO("Updating entry %d: [%-10s], %08llx --> %08x\n", |
| dyn->sz_idx, |
| ebl_dynamic_tag_name (source->ebl, dyn_entry->d_tag, |
| buf, sizeof (buf)), |
| dyn_entry->d_un.d_val, |
| dyn->num_unfinished_relocs * relsize); |
| } |
| |
| dyn_entry->d_un.d_val = dyn->num_unfinished_relocs * relsize; |
| |
| FAILIF_LIBELF(!gelf_update_dyn(source->dynamic.data, |
| dyn->sz_idx, |
| dyn_entry), |
| gelf_update_dyn); |
| } |
| |
| static void adjust_dynamic_segment_entries(source_t *source) |
| { |
| /* This function many remove entries from the dynamic segment, but it won't |
| resize the relevant section. It'll just fill the remainted with empty |
| DT entries. |
| |
| FIXME: This is not guaranteed right now. If a dynamic segment does not |
| end with null DT entries, I think this will break. |
| */ |
| FAILIF(source->rel.processed, |
| "More than one section matches DT_REL entry in dynamic segment!\n"); |
| FAILIF(source->jmprel.processed, |
| "More than one section matches DT_JMPREL entry in " |
| "dynamic segment!\n"); |
| source->rel.processed = |
| source->jmprel.processed = 1; |
| |
| if (source->rel.num_unfinished_relocs > 0) |
| adjust_dynamic_segment_entry_size(source, &source->rel); |
| |
| if (source->jmprel.num_unfinished_relocs > 0) |
| adjust_dynamic_segment_entry_size(source, &source->jmprel); |
| |
| /* If at least one of the entries is empty, then we need to remove it. We |
| have already adjusted the size of the other. |
| */ |
| if (source->rel.num_unfinished_relocs == 0 || |
| source->jmprel.num_unfinished_relocs == 0) |
| { |
| /* We need to delete the DT_REL/DT_RELSZ and DT_PLTREL/DT_PLTRELSZ |
| entries from the dynamic segment. */ |
| |
| GElf_Dyn *dyn_entry, dyn_entry_mem; |
| size_t dynidx, updateidx; |
| |
| size_t numdyn = |
| source->dynamic.shdr.sh_size / |
| source->dynamic.shdr.sh_entsize; |
| |
| for (updateidx = dynidx = 0; dynidx < numdyn; dynidx++) |
| { |
| dyn_entry = gelf_getdyn(source->dynamic.data, |
| dynidx, |
| &dyn_entry_mem); |
| FAILIF_LIBELF(NULL == dyn_entry, gelf_getdyn); |
| if ((source->rel.num_unfinished_relocs == 0 && |
| (dynidx == source->rel.idx || |
| dynidx == source->rel.sz_idx)) || |
| (source->jmprel.num_unfinished_relocs == 0 && |
| (dynidx == source->jmprel.idx || |
| dynidx == source->jmprel.sz_idx))) |
| { |
| if (unlikely(verbose_flag)) { |
| char buf[64]; |
| INFO("\t(!)\tRemoving entry %02d: [%-10s], %08llx\n", |
| dynidx, |
| ebl_dynamic_tag_name (source->ebl, dyn_entry->d_tag, |
| buf, sizeof (buf)), |
| dyn_entry->d_un.d_val); |
| } |
| continue; |
| } |
| |
| if (unlikely(verbose_flag)) { |
| char buf[64]; |
| INFO("\t\tKeeping entry %02d: [%-10s], %08llx\n", |
| dynidx, |
| ebl_dynamic_tag_name (source->ebl, dyn_entry->d_tag, |
| buf, sizeof (buf)), |
| dyn_entry->d_un.d_val); |
| } |
| |
| gelf_update_dyn(source->dynamic.data, |
| updateidx, |
| &dyn_entry_mem); |
| updateidx++; |
| } |
| } |
| } /* adjust_dynamic_segment_entries */ |
| |
| static bool adjust_dynamic_segment_for(source_t *source, |
| dt_rel_info_t *dyn, |
| bool adjust_section_size_only) |
| { |
| bool dropped_sections = false; |
| |
| /* Go over the sections that belong to this dynamic range. */ |
| dyn->num_unfinished_relocs = 0; |
| if (dyn->sections) { |
| int num_scns, idx; |
| range_t *scns = get_sorted_ranges(dyn->sections, &num_scns); |
| |
| INFO("\tdynamic range %s:[%lld, %lld) contains %d sections.\n", |
| source->name, |
| dyn->addr, |
| dyn->addr + dyn->size, |
| num_scns); |
| |
| ASSERT(scns); |
| int next_idx = 0, next_rel_off = 0; |
| /* The total number of unfinished relocations for this dynamic |
| * entry. */ |
| section_info_t *next = (section_info_t *)scns[next_idx].user; |
| section_info_t *first = next; |
| ASSERT(first); |
| for (idx = 0; idx < num_scns; idx++) { |
| section_info_t *reloc_scn = (section_info_t *)scns[idx].user; |
| size_t rel_scn_idx = reloc_scn - source->relocation_sections; |
| ASSERT(rel_scn_idx < (size_t)source->num_relocation_sections); |
| unfinished_relocation_t *unfinished = |
| &source->unfinished[rel_scn_idx]; |
| int unf_idx; |
| |
| ASSERT(reloc_scn->info == NULL || |
| reloc_scn->shdr.sh_name == |
| reloc_scn->info->old_shdr.sh_name); |
| const char *sname = |
| elf_strptr(source->oldelf, |
| source->shstrndx, |
| reloc_scn->shdr.sh_name); |
| |
| INFO("\tsection [%s] contains %d unfinished relocs.\n", |
| sname, |
| unfinished->num_rels); |
| |
| for (unf_idx = 0; unf_idx < unfinished->num_rels; unf_idx++) |
| { |
| /* There are unfinished relocations. Copy them forward to the |
| lowest section we can. */ |
| |
| while (next_rel_off == |
| (int)(next->shdr.sh_size/next->shdr.sh_entsize)) |
| { |
| INFO("\tsection [%s] has filled up with %d unfinished " |
| "relocs.\n", |
| sname, |
| next_rel_off); |
| |
| next_idx++; |
| ASSERT(next_idx <= idx); |
| next = (section_info_t *)scns[next_idx].user; |
| next_rel_off = 0; |
| } |
| |
| if (!adjust_section_size_only) { |
| INFO("\t\tmoving unfinished relocation %2d to [%s:%d]\n", |
| unf_idx, |
| sname, |
| next_rel_off); |
| FAILIF_LIBELF(0 == |
| gelf_update_rel(next->data, |
| next_rel_off, |
| &unfinished->rels[unf_idx]), |
| gelf_update_rel); |
| } |
| |
| next_rel_off++; |
| dyn->num_unfinished_relocs++; |
| } |
| } /* for */ |
| |
| /* Set the size of the last section, and mark all subsequent |
| sections for removal. At this point, next is the section |
| to which we last wrote data, next_rel_off is the offset before |
| which we wrote the last relocation, and so next_rel_off * |
| relsize is the new size of the section. |
| */ |
| |
| bool adjust_file = ADJUST_ELF && source->elf_hdr.e_type != ET_EXEC; |
| if (adjust_file && !source->dry_run) |
| { |
| size_t relsize = gelf_fsize(source->elf, |
| ELF_T_REL, |
| 1, |
| source->elf_hdr.e_version); |
| |
| ASSERT(next->info == NULL || |
| next->shdr.sh_name == next->info->old_shdr.sh_name); |
| const char *sname = |
| elf_strptr(source->oldelf, |
| source->shstrndx, |
| next->shdr.sh_name); |
| |
| INFO("\tsection [%s] (index %d) has %d unfinished relocs, " |
| "changing its size to %ld bytes (from %ld bytes).\n", |
| sname, |
| elf_ndxscn(next->scn), |
| next_rel_off, |
| (long)(next_rel_off * relsize), |
| (long)(next->shdr.sh_size)); |
| |
| /* source->shdr_info[] must be allocated prior to calling this |
| function. This is in fact done in process_file(), by calling |
| setup_shdr_info() just before we call adjust_dynamic_segment(). |
| */ |
| ASSERT(source->shdr_info != NULL); |
| |
| /* We do not update the data field of shdr_info[], because it does |
| not exist yet (with ADJUST_ELF != 0). We create the new section |
| and section data after the first call to prelink(). For now, we |
| save the results of our analysis by modifying the sh_size field |
| of the section header. When we create the new sections' data, |
| we set the size of the data from the sh_size fields of the |
| section headers. |
| |
| NOTE: The assertion applies only to the first call of |
| adjust_dynamic_segment (which calls this function). By |
| the second call, we've already created the data for the |
| new sections. The only sections for which we haven't |
| created data are the relocation sections we are removing. |
| */ |
| #ifdef DEBUG |
| ASSERT((!adjust_section_size_only && |
| (source->shdr_info[elf_ndxscn(next->scn)].idx > 0)) || |
| source->shdr_info[elf_ndxscn(next->scn)].data == NULL); |
| #endif |
| |
| //FIXME: what else do we need to do here? Do we need to update |
| // another copy of the shdr so that it's picked up when we |
| // commit the file? |
| next->shdr.sh_size = next_rel_off * relsize; |
| source->shdr_info[elf_ndxscn(next->scn)].shdr.sh_size = |
| next->shdr.sh_size; |
| if (next_rel_off * relsize == 0) { |
| #ifdef REMOVE_HANDLED_SECTIONS |
| INFO("\tsection [%s] (index %d) is now empty, marking for " |
| "removal.\n", |
| sname, |
| elf_ndxscn(next->scn)); |
| source->shdr_info[elf_ndxscn(next->scn)].idx = 0; |
| dropped_sections = true; |
| #endif |
| } |
| |
| while (++next_idx < num_scns) { |
| next = (section_info_t *)scns[next_idx].user; |
| #ifdef REMOVE_HANDLED_SECTIONS |
| ASSERT(next->info == NULL || |
| next->shdr.sh_name == next->info->old_shdr.sh_name); |
| const char *sname = |
| elf_strptr(source->oldelf, |
| source->shstrndx, |
| next->shdr.sh_name); |
| INFO("\tsection [%s] (index %d) is now empty, marking for " |
| "removal.\n", |
| sname, |
| elf_ndxscn(next->scn)); |
| /* mark for removal */ |
| source->shdr_info[elf_ndxscn(next->scn)].idx = 0; |
| dropped_sections = true; |
| #endif |
| } |
| } |
| |
| } /* if (dyn->sections) */ |
| else { |
| /* The dynamic entry won't have any sections when it itself doesn't |
| exist. This could happen when we remove all relocation sections |
| from a dynamic entry because we have managed to handle all |
| relocations in them. |
| */ |
| INFO("\tNo section for dynamic entry!\n"); |
| } |
| |
| return dropped_sections; |
| } |
| |
| static bool adjust_dynamic_segment(source_t *source, |
| bool adjust_section_size_only) |
| { |
| bool dropped_section; |
| INFO("Adjusting dynamic segment%s.\n", |
| (adjust_section_size_only ? " (section sizes only)" : "")); |
| INFO("\tadjusting dynamic segment REL.\n"); |
| dropped_section = |
| adjust_dynamic_segment_for(source, &source->rel, |
| adjust_section_size_only); |
| INFO("\tadjusting dynamic segment JMPREL.\n"); |
| dropped_section = |
| adjust_dynamic_segment_for(source, &source->jmprel, |
| adjust_section_size_only) || |
| dropped_section; |
| if (!adjust_section_size_only) |
| adjust_dynamic_segment_entries(source); |
| return dropped_section; |
| } |
| |
| static void match_relocation_sections_to_dynamic_ranges(source_t *source) |
| { |
| /* We've gathered all the DT_DYNAMIC entries; now we need to figure out |
| which relocation sections fit in which range as described by the |
| entries. |
| */ |
| |
| int relidx; |
| for (relidx = 0; relidx < source->num_relocation_sections; relidx++) { |
| section_info_t *reloc_scn = &source->relocation_sections[relidx]; |
| |
| int index = elf_ndxscn(reloc_scn->scn); |
| |
| ASSERT(reloc_scn->info == NULL || |
| reloc_scn->shdr.sh_name == reloc_scn->info->old_shdr.sh_name); |
| const char *sname = |
| elf_strptr(source->oldelf, |
| source->shstrndx, |
| reloc_scn->shdr.sh_name); |
| |
| INFO("Checking section [%s], index %d, for match to dynamic ranges\n", |
| sname, index); |
| if (source->shdr_info == NULL || reloc_scn->info->idx > 0) { |
| if (source->rel.addr && |
| source->rel.addr <= reloc_scn->shdr.sh_addr && |
| reloc_scn->shdr.sh_addr < source->rel.addr + source->rel.size) |
| { |
| /* The entire section must fit in the dynamic range. */ |
| if((reloc_scn->shdr.sh_addr + reloc_scn->shdr.sh_size) > |
| (source->rel.addr + source->rel.size)) |
| { |
| PRINT("WARNING: In [%s], section %s:[%lld,%lld) " |
| "is not fully contained in dynamic range " |
| "[%lld,%lld)!\n", |
| source->name, |
| sname, |
| reloc_scn->shdr.sh_addr, |
| reloc_scn->shdr.sh_addr + |
| reloc_scn->shdr.sh_size, |
| source->rel.addr, |
| source->rel.addr + source->rel.size); |
| } |
| |
| if (NULL == source->rel.sections) { |
| source->rel.sections = init_range_list(); |
| ASSERT(source->rel.sections); |
| } |
| add_unique_range_nosort(source->rel.sections, |
| reloc_scn->shdr.sh_addr, |
| reloc_scn->shdr.sh_size, |
| reloc_scn, |
| NULL, |
| NULL); |
| INFO("\tSection [%s] matches dynamic range REL.\n", |
| sname); |
| } |
| else if (source->jmprel.addr && |
| source->jmprel.addr <= reloc_scn->shdr.sh_addr && |
| reloc_scn->shdr.sh_addr <= source->jmprel.addr + |
| source->jmprel.size) |
| { |
| if((reloc_scn->shdr.sh_addr + reloc_scn->shdr.sh_size) > |
| (source->jmprel.addr + source->jmprel.size)) |
| { |
| PRINT("WARNING: In [%s], section %s:[%lld,%lld) " |
| "is not fully " |
| "contained in dynamic range [%lld,%lld)!\n", |
| source->name, |
| sname, |
| reloc_scn->shdr.sh_addr, |
| reloc_scn->shdr.sh_addr + |
| reloc_scn->shdr.sh_size, |
| source->jmprel.addr, |
| source->jmprel.addr + source->jmprel.size); |
| } |
| |
| if (NULL == source->jmprel.sections) { |
| source->jmprel.sections = init_range_list(); |
| ASSERT(source->jmprel.sections); |
| } |
| add_unique_range_nosort(source->jmprel.sections, |
| reloc_scn->shdr.sh_addr, |
| reloc_scn->shdr.sh_size, |
| reloc_scn, |
| NULL, |
| NULL); |
| INFO("\tSection [%s] matches dynamic range JMPREL.\n", |
| sname); |
| } |
| else |
| PRINT("WARNING: Relocation section [%s:%s] does not match " |
| "any DT_ entry.\n", |
| source->name, |
| sname); |
| } |
| else { |
| INFO("Section [%s] was removed, not matching it to dynamic " |
| "ranges.\n", |
| sname); |
| } |
| } /* for ... */ |
| |
| if (source->rel.sections) sort_ranges(source->rel.sections); |
| if (source->jmprel.sections) sort_ranges(source->jmprel.sections); |
| } |
| |
| static void drop_sections(source_t *source) |
| { |
| INFO("We are dropping some sections from [%s]--creating section entries " |
| "only for remaining sections.\n", |
| source->name); |
| /* Renumber the sections. The numbers for the sections after those we are |
| dropping will be shifted back by the number of dropped sections. */ |
| int cnt, idx; |
| for (cnt = idx = 1; cnt < source->shnum; ++cnt) { |
| if (source->shdr_info[cnt].idx > 0) { |
| source->shdr_info[cnt].idx = idx++; |
| |
| /* Create a new section. */ |
| FAILIF_LIBELF((source->shdr_info[cnt].newscn = |
| elf_newscn(source->elf)) == NULL, elf_newscn); |
| ASSERT(elf_ndxscn (source->shdr_info[cnt].newscn) == |
| source->shdr_info[cnt].idx); |
| |
| /* Copy the section data */ |
| Elf_Data *olddata = |
| elf_getdata(source->shdr_info[cnt].scn, // old section |
| NULL); |
| FAILIF_LIBELF(NULL == olddata, elf_getdata); |
| Elf_Data *data = |
| elf_newdata(source->shdr_info[cnt].newscn); |
| FAILIF_LIBELF(NULL == data, elf_newdata); |
| *data = *olddata; |
| #if COPY_SECTION_DATA_BUFFER |
| if (olddata->d_buf != NULL) { |
| data->d_buf = MALLOC(data->d_size); |
| memcpy(data->d_buf, olddata->d_buf, olddata->d_size); |
| } |
| #endif |
| source->shdr_info[cnt].data = data; |
| |
| if (data->d_size != |
| source->shdr_info[cnt].shdr.sh_size) { |
| INFO("Trimming new-section data from %d to %lld bytes " |
| "(as calculated by adjust_dynamic_segment()).\n", |
| data->d_size, |
| source->shdr_info[cnt].shdr.sh_size); |
| data->d_size = |
| source->shdr_info[cnt].shdr.sh_size; |
| } |
| |
| INFO("\tsection [%s] (old offset %lld, old size %lld) " |
| "will have index %d (was %d), new size %d\n", |
| source->shdr_info[cnt].name, |
| source->shdr_info[cnt].old_shdr.sh_offset, |
| source->shdr_info[cnt].old_shdr.sh_size, |
| source->shdr_info[cnt].idx, |
| elf_ndxscn(source->shdr_info[cnt].scn), |
| data->d_size); |
| } else { |
| INFO("\tIgnoring section [%s] (offset %lld, size %lld, index %d), " |
| "it will be discarded.\n", |
| source->shdr_info[cnt].name, |
| source->shdr_info[cnt].shdr.sh_offset, |
| source->shdr_info[cnt].shdr.sh_size, |
| elf_ndxscn(source->shdr_info[cnt].scn)); |
| } |
| |
| /* NOTE: We mark use_old_shdr_for_relocation_calculations even for the |
| sections we are removing. adjust_elf has an assertion that makes |
| sure that if the values for the size of a section according to its |
| header and its data structure differ, then we are using explicitly |
| the old section header for calculations, and that the section in |
| question is a relocation section. |
| */ |
| source->shdr_info[cnt].use_old_shdr_for_relocation_calculations = true; |
| } /* for */ |
| } |
| |
| static source_t* process_file(const char *filename, |
| const char *output, int is_file, |
| void (*report_library_size_in_memory)( |
| const char *name, off_t fsize), |
| unsigned (*get_next_link_address)( |
| const char *name), |
| int locals_only, |
| char **lib_lookup_dirs, |
| int num_lib_lookup_dirs, |
| char **default_libs, |
| int num_default_libs, |
| int dry_run, |
| int *total_num_handled_relocs, |
| int *total_num_unhandled_relocs) |
| { |
| /* Look up the file in the list of already-handles files, which are |
| represented by source_t structs. If we do not find the file, then we |
| haven't prelinked it yet. If we find it, then we have, so we do |
| nothing. Keep in mind that apriori operates on an entire collection |
| of files, and if application A used library L, and so does application |
| B, if we process A first, then by the time we get to B we will have |
| prelinked L already; that's why we check first to see if a library has |
| been prelinked. |
| */ |
| source_t *source = |
| find_source(filename, lib_lookup_dirs, num_lib_lookup_dirs); |
| if (NULL == source) { |
| /* If we could not find the source, then it hasn't been processed yet, |
| so we go ahead and process it! */ |
| INFO("Processing [%s].\n", filename); |
| char *full = find_file(filename, lib_lookup_dirs, num_lib_lookup_dirs); |
| FAILIF(NULL == full, |
| "Could not find [%s] in the current directory or in any of " |
| "the search paths!\n", filename); |
| |
| unsigned base = get_next_link_address(full); |
| |
| source = init_source(full, output, is_file, base, dry_run); |
| |
| if (source == NULL) { |
| INFO("File [%s] is a static executable.\n", filename); |
| return NULL; |
| } |
| ASSERT(source->dynamic.scn != NULL); |
| |
| /* We need to increment the next prelink address only when the file we |
| are currently handing is a shared library. Executables do not need |
| to be prelinked at a different address, they are always at address |
| zero. |
| |
| Also, if we are prelinking locals only, then we are handling a |
| single file per invokation of apriori, so there is no need to |
| increment the prelink address unless there is a global prelink map, |
| in which case we do need to check to see if the library isn't |
| running into its neighbouts in the prelink map. |
| */ |
| if (source->oldelf_hdr.e_type != ET_EXEC && |
| (!locals_only || |
| report_library_size_in_memory == |
| pm_report_library_size_in_memory)) { |
| /* This sets the next link address only if an increment was not |
| specified by the user. If an address increment was specified, |
| then we just check to make sure that the file size is less than |
| the increment. |
| |
| NOTE: The file size is the absolute highest number of bytes that |
| the file may occupy in memory, if the entire file is loaded, but |
| this is almost next the case. A file will often have sections |
| which are not loaded, which could add a lot of size. That's why |
| we start off with the file size and then subtract the size of |
| the biggest sections that will not get loaded, which are the |
| varios DWARF sections, all of which of which are named starting |
| with ".debug_". |
| |
| We could do better than this (by caculating exactly how many |
| bytes from that file will be loaded), but that's an overkill. |
| Unless the prelink-address increment becomes too small, the file |
| size after subtracting the sizes of the DWARF section will be a |
| good-enough upper bound. |
| */ |
| |
| unsigned long fsize = source->elf_file_info.st_size; |
| INFO("Calculating loadable file size for next link address. " |
| "Starting with %ld.\n", fsize); |
| if (true) { |
| Elf_Scn *scn = NULL; |
| GElf_Shdr shdr_mem, *shdr; |
| const char *scn_name; |
| while ((scn = elf_nextscn (source->oldelf, scn)) != NULL) { |
| shdr = gelf_getshdr(scn, &shdr_mem); |
| FAILIF_LIBELF(NULL == shdr, gelf_getshdr); |
| scn_name = elf_strptr (source->oldelf, |
| source->shstrndx, shdr->sh_name); |
| ASSERT(scn_name != NULL); |
| |
| if (!(shdr->sh_flags & SHF_ALLOC)) { |
| INFO("\tDecrementing by %lld on account of section " |
| "[%s].\n", |
| shdr->sh_size, |
| scn_name); |
| fsize -= shdr->sh_size; |
| } |
| } |
| } |
| INFO("Done calculating loadable file size for next link address: " |
| "Final value is %ld.\n", fsize); |
| report_library_size_in_memory(source->name, fsize); |
| } |
| |
| /* Identify the dynamic segment and process it. Specifically, we find |
| out what dependencies, if any, this file has. Whenever we encounter |
| such a dependency, we process it recursively; we find out where the |
| various relocation information sections are stored. */ |
| |
| size_t dynidx; |
| GElf_Dyn *dyn, dyn_mem; |
| size_t numdyn = |
| source->dynamic.shdr.sh_size / |
| source->dynamic.shdr.sh_entsize; |
| ASSERT(source->dynamic.shdr.sh_size == source->dynamic.data->d_size); |
| |
| source->rel.idx = source->rel.sz_idx = -1; |
| source->jmprel.idx = source->jmprel.sz_idx = -1; |
| |
| for (dynidx = 0; dynidx < numdyn; dynidx++) { |
| dyn = gelf_getdyn (source->dynamic.data, |
| dynidx, |
| &dyn_mem); |
| FAILIF_LIBELF(NULL == dyn, gelf_getdyn); |
| /* When we are processing only the local relocations in a file, |
| we don't need to handle any of the dependencies. It won't |
| hurt if we do, but we will be doing unnecessary work. |
| */ |
| switch (dyn->d_tag) |
| { |
| case DT_NEEDED: |
| if (!locals_only) { |
| /* Process the needed library recursively. |
| */ |
| const char *dep_lib = |
| #if ELF_STRPTR_IS_BROKEN |
| (((char *)elf_getdata( |
| elf_getscn(source->elf, |
| source->dynamic.shdr.sh_link), |
| NULL)->d_buf) + dyn->d_un.d_val); |
| #else |
| elf_strptr (source->elf, |
| source->dynamic.shdr.sh_link, |
| dyn->d_un.d_val); |
| #endif |
| ASSERT(dep_lib != NULL); |
| INFO("[%s] depends on [%s].\n", filename, dep_lib); |
| ASSERT(output == NULL || is_file == 0); |
| source_t *dep = process_file(dep_lib, |
| output, is_file, |
| report_library_size_in_memory, |
| get_next_link_address, |
| locals_only, |
| lib_lookup_dirs, |
| num_lib_lookup_dirs, |
| default_libs, |
| num_default_libs, |
| dry_run, |
| total_num_handled_relocs, |
| total_num_unhandled_relocs); |
| |
| /* Add the library to the dependency list. */ |
| if (source->num_lib_deps == source->lib_deps_size) { |
| source->lib_deps_size += 10; |
| source->lib_deps = REALLOC(source->lib_deps, |
| source->lib_deps_size * |
| sizeof(source_t *)); |
| } |
| source->lib_deps[source->num_lib_deps++] = dep; |
| } |
| break; |
| case DT_JMPREL: |
| source->jmprel.idx = dynidx; |
| source->jmprel.addr = dyn->d_un.d_ptr; |
| break; |
| case DT_PLTRELSZ: |
| source->jmprel.sz_idx = dynidx; |
| source->jmprel.size = dyn->d_un.d_val; |
| break; |
| case DT_REL: |
| source->rel.idx = dynidx; |
| source->rel.addr = dyn->d_un.d_ptr; |
| break; |
| case DT_RELSZ: |
| source->rel.sz_idx = dynidx; |
| source->rel.size = dyn->d_un.d_val; |
| break; |
| case DT_RELA: |
| case DT_RELASZ: |
| FAILIF(1, "Can't handle DT_RELA and DT_RELASZ entries!\n"); |
| break; |
| } /* switch */ |
| } /* for each dynamic entry... */ |
| |
| INFO("Handling [%s].\n", filename); |
| |
| #ifdef SUPPORT_ANDROID_PRELINK_TAGS |
| if (!source->prelinked) |
| #endif |
| { |
| /* When ADJUST_ELF is defined, this call to prelink is a dry run |
| intended to calculate the number of relocations that could not |
| be handled. This, in turn, allows us to calculate the amount by |
| which we can shrink the various relocation sections before we |
| call adjust_elf. After we've adjusted the sections, we will |
| call prelink() one more time to do the actual work. |
| |
| NOTE: Even when ADJUST_ELF != 0, we cannot adjust an ELF file |
| that is an executabe, because an executable is not PIC. |
| */ |
| |
| int num_unfinished_relocs = 0; |
| bool adjust_file = ADJUST_ELF && source->elf_hdr.e_type != ET_EXEC; |
| INFO("\n\n\tPRELINKING %s\n\n", |
| adjust_file ? |
| "(CALCULATE NUMBER OF HANDLED RELOCATIONS)" : |
| "(ACTUAL)"); |
| int num_relocs = prelink(source, locals_only, |
| adjust_file || dry_run, |
| lib_lookup_dirs, num_lib_lookup_dirs, |
| default_libs, num_default_libs, |
| &num_unfinished_relocs); |
| INFO("[%s]: (calculate changes) handled %d, could not handle %d " |
| "relocations.\n", |
| source->name, |
| num_relocs, |
| num_unfinished_relocs); |
| |
| if (adjust_file && !dry_run) |
| { |
| /* Find out the new section sizes of the relocation sections, |
| but do not move any relocations around, because adjust_elf |
| needs to know about all relocations in order to adjust the |
| file correctly. |
| */ |
| match_relocation_sections_to_dynamic_ranges(source); |
| |
| /* We haven't set up source->shdr_info[] yet, so we do it now. |
| |
| NOTE: setup_shdr_info() depends only on source->oldelf, not |
| on source->elf! source->elf is not even defined yet. We |
| initialize source->shdr_info[] based on the section |
| information of the unmodified ELF file, and then make our |
| modifications in the call to adjust_dynamic_segment() based |
| on this information. adjust_dynamic_segment() will |
| rearrange the unhandled relocations in the beginning of |
| their relocation sections, and adjust the size of those |
| relocation sections. In the case when a relocation section |
| is completely handled, adjust_dynamic_segment() will mark it |
| for removal by function adjust_elf. |
| */ |
| |
| ASSERT(source->elf == source->oldelf); |
| ASSERT(source->shdr_info == NULL); |
| setup_shdr_info(source); |
| ASSERT(source->shdr_info != NULL); |
| |
| INFO("\n\n\tADJUSTING DYNAMIC SEGMENT " |
| "(CALCULATE CHANGES)\n\n"); |
| bool drop_some_sections = adjust_dynamic_segment(source, true); |
| |
| /* Reopen the elf file! Note that we are not doing a dry run |
| (the if statement above makes sure of that.) |
| |
| NOTE: We call init_elf() after we called |
| adjust_dynamic_segment() in order to have |
| adjust_dynamic_segment() refer to source->oldelf when |
| it refers to source->elf. Since |
| adjust_dynamic_segment doesn't actually write to the |
| ELF file, this is OK. adjust_dynamic_segment() |
| updates the sh_size fields of saved section headers |
| and optionally marks sections for removal. |
| |
| Having adjust_dynamic_segment() refer to |
| source->oldelf means that we'll have access to |
| section-name strings so we can print them out in our |
| logging and debug output. |
| */ |
| source->elf = init_elf(source, false); |
| |
| /* This is the same code as in init_source() after the call to |
| * init_elf(). */ |
| ASSERT(source->elf != source->oldelf); |
| ebl_closebackend(source->ebl); |
| source->ebl = ebl_openbackend (source->elf); |
| FAILIF_LIBELF(NULL == source->ebl, ebl_openbackend); |
| #ifdef ARM_SPECIFIC_HACKS |
| FAILIF_LIBELF(0 != arm_init(source->elf, |
| source->elf_hdr.e_machine, |
| source->ebl, sizeof(Ebl)), |
| arm_init); |
| #endif/*ARM_SPECIFIC_HACKS*/ |
| |
| if (drop_some_sections) |
| drop_sections(source); |
| else { |
| INFO("All sections remain in [%s]--we are changing at " |
| "most section sizes.\n", source->name); |
| create_elf_sections(source, NULL); |
| int cnt, idx; |
| for (cnt = idx = 1; cnt < source->shnum; ++cnt) { |
| Elf_Data *data = elf_getdata( |
| source->shdr_info[cnt].newscn, // new section |
| NULL); |
| if (data->d_size != |
| source->shdr_info[cnt].shdr.sh_size) { |
| INFO("Trimming new-section data from %d to %lld " |
| "bytes (as calculated by " |
| "adjust_dynamic_segment()).\n", |
| data->d_size, |
| source->shdr_info[cnt].shdr.sh_size); |
| data->d_size = source->shdr_info[cnt].shdr.sh_size; |
| } |
| } |
| } |
| |
| /* Shrink it! */ |
| INFO("\n\n\tADJUSTING ELF\n\n"); |
| adjust_elf( |
| source->oldelf, source->name, |
| source->elf, source->name, |
| source->ebl, |
| &source->old_ehdr_mem, |
| NULL, 0, // no symbol filter |
| source->shdr_info, // information on how to adjust the ELF |
| source->shnum, // length of source->shdr_info[] |
| source->phdr_info, // program-header info |
| source->shnum, // irrelevant--we're not rebuilding shstrtab |
| source->shnum, // number of sections in file |
| source->shstrndx, // index of shstrtab (both in |
| // shdr_info[] and as a section index) |
| NULL, // irrelevant, since we are not rebuilding shstrtab |
| drop_some_sections, // some sections are being dropped |
| elf_ndxscn(source->dynamic.scn), // index of .dynamic |
| elf_ndxscn(source->symtab.scn), // index of .dynsym |
| 1, // allow shady business |
| &source->shstrtab_data, |
| true, |
| false); // do not rebuild shstrtab |
| |
| INFO("\n\n\tREINITIALIZING STRUCTURES " |
| "(TO CONTAIN ADJUSTMENTS)\n\n"); |
| reinit_source(source); |
| |
| INFO("\n\n\tPRELINKING (ACTUAL)\n\n"); |
| #ifdef DEBUG |
| int old_num_unfinished_relocs = num_unfinished_relocs; |
| #endif |
| num_unfinished_relocs = 0; |
| #ifdef DEBUG |
| int num_relocs_take_two = |
| #endif |
| prelink(source, locals_only, |
| false, /* not a dry run */ |
| lib_lookup_dirs, num_lib_lookup_dirs, |
| default_libs, num_default_libs, |
| &num_unfinished_relocs); |
| |
| /* The numbers for the total number of relocations and the |
| number of unhandled relocations between the first and second |
| invokationof prelink() must be the same! The first time we |
| ran prelink() just to calculate the numbers so that we could |
| calculate the adjustments to pass to adjust_elf, and the |
| second time we actually carry out the prelinking; the |
| numbers must stay the same! |
| */ |
| ASSERT(num_relocs == num_relocs_take_two); |
| ASSERT(old_num_unfinished_relocs == num_unfinished_relocs); |
| |
| INFO("[%s]: (actual prelink) handled %d, could not " |
| "handle %d relocations.\n", |
| source->name, |
| num_relocs, |
| num_unfinished_relocs); |
| } /* if (adjust_elf && !dry_run) */ |
| |
| *total_num_handled_relocs += num_relocs; |
| *total_num_unhandled_relocs += num_unfinished_relocs; |
| |
| if(num_unfinished_relocs != 0 && |
| source->elf_hdr.e_type != ET_EXEC && |
| !locals_only) |
| { |
| /* One reason you could have unfinished relocations in an |
| executable file is if this file used dlopen() and friends. |
| We do not adjust relocation entries to those symbols, |
| because libdl is a dummy only--the real functions are |
| provided for by the dynamic linker itsef. |
| |
| NOTE FIXME HACK: This is specific to the Android dynamic |
| linker, and may not be true in other cases. |
| */ |
| PRINT("WARNING: Expecting to have unhandled relocations only " |
| "for executables (%s is not an executable)!\n", |
| source->name); |
| } |
| |
| match_relocation_sections_to_dynamic_ranges(source); |
| |
| /* Now, for each relocation section, check to see if its address |
| matches one of the DT_DYNAMIC relocation pointers. If so, then |
| if the section has no unhandled relocations, simply set the |
| associated DT_DYNAMIC entry's size to zero. If the section does |
| have unhandled entries, then lump them all together at the front |
| of the respective section and update the size of the respective |
| DT_DYNAMIC entry to the new size of the section. A better |
| approach would be do delete a relocation section if it has been |
| fully relocated and to remove its entry from the DT_DYNAMIC |
| array, and for relocation entries that still have some |
| relocations in them, we should shrink the section if that won't |
| violate relative offsets. This is more work, however, and for |
| the speed improvement we expect from a prelinker, just patching |
| up DT_DYNAMIC will suffice. |
| |
| Note: adjust_dynamic_segment() will modify source->shdr_info[] |
| to denote any change in a relocation section's size. This |
| will be picked up by adjust_elf, which will rearrange the |
| file to eliminate the gap created by the decrease in size |
| of the relocation section. We do not need to do this, but |
| the relocation section could be large, and reduced |
| drastically by the prelinking process, so it pays to |
| adjust the file. |
| */ |
| |
| INFO("\n\n\tADJUSTING DYNAMIC SEGMENT (ACTUAL)\n\n"); |
| adjust_dynamic_segment(source, false); |
| } |
| #ifdef SUPPORT_ANDROID_PRELINK_TAGS |
| else INFO("[%s] is already prelinked at 0x%08lx.\n", |
| filename, |
| source->prelink_base); |
| #endif |
| } else INFO("[%s] has been processed already.\n", filename); |
| |
| return source; |
| } |
| |
| void apriori(char **execs, int num_execs, |
| char *output, |
| void (*report_library_size_in_memory)( |
| const char *name, off_t fsize), |
| int (*get_next_link_address)(const char *name), |
| int locals_only, |
| int dry_run, |
| char **lib_lookup_dirs, int num_lib_lookup_dirs, |
| char **default_libs, int num_default_libs, |
| char *mapfile) |
| { |
| source_t *source; /* for general usage */ |
| int input_idx; |
| |
| ASSERT(report_library_size_in_memory != NULL); |
| ASSERT(get_next_link_address != NULL); |
| |
| /* Process and prelink each executable and object file. Function |
| process_file() is called for each executable in the loop below. |
| It calls itself recursively for each library. We prelink each library |
| after prelinking its dependencies. */ |
| int total_num_handled_relocs = 0, total_num_unhandled_relocs = 0; |
| for (input_idx = 0; input_idx < num_execs; input_idx++) { |
| INFO("executable: [%s]\n", execs[input_idx]); |
| /* Here process_file() is actually processing the top-level |
| executable files. */ |
| process_file(execs[input_idx], output, num_execs == 1, |
| report_library_size_in_memory, |
| get_next_link_address, /* executables get a link address |
| of zero, regardless of this |
| value */ |
| locals_only, |
| lib_lookup_dirs, num_lib_lookup_dirs, |
| default_libs, num_default_libs, |
| dry_run, |
| &total_num_handled_relocs, |
| &total_num_unhandled_relocs); |
| /* if source is NULL, then the respective executable is static */ |
| /* Mark the source as an executable */ |
| } /* for each input executable... */ |
| |
| PRINT("Handled %d relocations.\n", total_num_handled_relocs); |
| PRINT("Could not handle %d relocations.\n", total_num_unhandled_relocs); |
| |
| /* We are done! Since the end result of our calculations is a set of |
| symbols for each library that other libraries or executables link |
| against, we iterate over the set of libraries one last time, and for |
| each symbol that is marked as satisfying some dependence, we emit |
| a line with the symbol's name to a text file derived from the library's |
| name by appending the suffix .syms to it. */ |
| |
| if (mapfile != NULL) { |
| const char *mapfile_name = mapfile; |
| FILE *fp; |
| if (*mapfile == '+') { |
| mapfile_name = mapfile + 1; |
| INFO("Opening map file %s for append/write.\n", |
| mapfile_name); |
| fp = fopen(mapfile_name, "a"); |
| } |
| else fp = fopen(mapfile_name, "w"); |
| |
| FAILIF(fp == NULL, "Cannot open file [%s]: %s (%d)!\n", |
| mapfile_name, |
| strerror(errno), |
| errno); |
| source = sources; |
| while (source) { |
| /* If it's a library, print the results. */ |
| if (source->elf_hdr.e_type == ET_DYN) { |
| /* Add to the memory map file. */ |
| fprintf(fp, "%s 0x%08lx %lld\n", |
| basename(source->name), |
| source->base, |
| source->elf_file_info.st_size); |
| } |
| source = source->next; |
| } |
| fclose(fp); |
| } |
| |
| /* Free the resources--you can't do it in the loop above because function |
| print_symbol_references() accesses nodes other than the one being |
| iterated over. |
| */ |
| source = sources; |
| while (source) { |
| source_t *old = source; |
| source = source->next; |
| /* Destroy the evidence. */ |
| destroy_source(old); |
| } |
| } |