The Android Open Source Project | 88b6079 | 2009-03-03 19:28:42 -0800 | [diff] [blame] | 1 | #include <stdio.h> |
| 2 | #include <common.h> |
| 3 | #include <debug.h> |
| 4 | #include <libelf.h> |
| 5 | #include <libebl.h> |
| 6 | #ifdef ARM_SPECIFIC_HACKS |
| 7 | #include <libebl_arm.h> |
| 8 | #endif/*ARM_SPECIFIC_HACKS*/ |
| 9 | #include <elf.h> |
| 10 | #include <gelf.h> |
| 11 | #include <string.h> |
| 12 | #include <errno.h> |
| 13 | #include <string.h> |
| 14 | #include <sys/types.h> |
| 15 | #include <sys/stat.h> |
| 16 | #include <fcntl.h> |
| 17 | #include <unistd.h> |
| 18 | #include <hash.h> |
| 19 | #include <apriori.h> |
| 20 | #include <source.h> |
| 21 | #include <tweak.h> |
| 22 | #include <rangesort.h> |
| 23 | #include <prelink_info.h> |
| 24 | #include <prelinkmap.h> |
| 25 | #include <libgen.h> |
| 26 | |
| 27 | #ifndef ADJUST_ELF |
| 28 | #error "ADJUST_ELF must be defined!" |
| 29 | #endif |
| 30 | |
| 31 | /* When this macro is defined, apriori sets to ZERO those relocation values for |
| 32 | which it canot find the appropriate referent. |
| 33 | */ |
| 34 | #define PERMISSIVE |
| 35 | #define COPY_SECTION_DATA_BUFFER (0) |
| 36 | /* When this macro is set to a nonzero value, we replace calls to elf_strptr() |
| 37 | on the target ELF handle with code that extracts the strings directly from |
| 38 | the data buffers of that ELF handle. In this case, elf_strptr() does not |
| 39 | work as expected, as it tries to read the data buffer of the associated |
| 40 | string section directly from the file, and that buffer does not exist yet |
| 41 | in the file, since we haven't committed our changes yet. |
| 42 | */ |
| 43 | #define ELF_STRPTR_IS_BROKEN (1) |
| 44 | |
| 45 | /* When the macro below is defined, apriori does not mark for removal those |
| 46 | relocation sections that it fully handles. Instead, apriori just sets their |
| 47 | sizes to zero. This is more for debugging than of any actual use. |
| 48 | |
| 49 | This macro is meaningful only when ADJUST_ELF!=0 |
| 50 | */ |
| 51 | #define REMOVE_HANDLED_SECTIONS |
| 52 | |
| 53 | extern int verbose_flag; |
| 54 | |
| 55 | static source_t *sources = NULL; |
| 56 | |
| 57 | #if defined(DEBUG) && 0 |
| 58 | |
| 59 | static void print_shdr(source_t *source, Elf_Scn *scn) |
| 60 | { |
| 61 | GElf_Shdr shdr_mem, *shdr; |
| 62 | shdr = gelf_getshdr(scn, &shdr_mem); |
| 63 | Elf_Data *data = elf_getdata(scn, NULL); |
| 64 | INFO("\t%02d: data = %p, hdr = { offset = %8lld, size = %lld }, " |
| 65 | "data->d_buf = %p data->d_off = %lld, data->d_size = %d\n", |
| 66 | elf_ndxscn(scn), |
| 67 | data, |
| 68 | shdr->sh_offset, shdr->sh_size, |
| 69 | data->d_buf, data->d_off, data->d_size); |
| 70 | } |
| 71 | |
| 72 | static void print_shdr_idx(source_t *source, Elf *elf, int idx) |
| 73 | { |
| 74 | print_shdr(source, elf_getscn(elf, idx)); |
| 75 | } |
| 76 | |
| 77 | static void print_shdrs(source_t *source) { |
| 78 | Elf_Scn *scn = NULL; |
| 79 | INFO("section offset dump for new ELF\n"); |
| 80 | while ((scn = elf_nextscn (source->elf, scn)) != NULL) |
| 81 | print_shdr(source, scn); |
| 82 | |
| 83 | INFO("\nsection offset dump for original ELF\n"); |
| 84 | while ((scn = elf_nextscn (source->oldelf, scn)) != NULL) |
| 85 | print_shdr(source, scn); |
| 86 | |
| 87 | #if 0 |
| 88 | { |
| 89 | INFO("section offset dump for new ELF\n"); |
| 90 | int i = 0; |
| 91 | for (i = 0; i < source->shnum; i++) { |
| 92 | scn = elf_getscn(source->elf, i); |
| 93 | print_shdr(source, scn); |
| 94 | } |
| 95 | } |
| 96 | #endif |
| 97 | } |
| 98 | |
| 99 | #endif /* DEBUG */ |
| 100 | |
| 101 | static char * find_file(const char *libname, |
| 102 | char **lib_lookup_dirs, |
| 103 | int num_lib_lookup_dirs); |
| 104 | |
| 105 | static inline source_t* find_source(const char *name, |
| 106 | char **lib_lookup_dirs, |
| 107 | int num_lib_lookup_dirs) { |
| 108 | char *full = find_file(name, lib_lookup_dirs, num_lib_lookup_dirs); |
| 109 | if (full) { |
| 110 | source_t *trav = sources; |
| 111 | while (trav) { |
| 112 | if (!strcmp(trav->name, full)) |
| 113 | break; |
| 114 | trav = trav->next; |
| 115 | } |
| 116 | free(full); |
| 117 | return trav; |
| 118 | } |
| 119 | return NULL; |
| 120 | } |
| 121 | |
| 122 | static inline void add_to_sources(source_t *src) { |
| 123 | src->next = sources; |
| 124 | sources = src; |
| 125 | } |
| 126 | |
| 127 | static void handle_range_error(range_error_t err, |
| 128 | range_t *left, range_t *right) { |
| 129 | switch (err) { |
| 130 | case ERROR_CONTAINS: |
| 131 | ERROR("ERROR: section (%lld, %lld bytes) contains " |
| 132 | "section (%lld, %lld bytes)\n", |
| 133 | left->start, left->length, |
| 134 | right->start, right->length); |
| 135 | break; |
| 136 | case ERROR_OVERLAPS: |
| 137 | ERROR("ERROR: Section (%lld, %lld bytes) intersects " |
| 138 | "section (%lld, %lld bytes)\n", |
| 139 | left->start, left->length, |
| 140 | right->start, right->length); |
| 141 | break; |
| 142 | default: |
| 143 | ASSERT(!"Unknown range error code!"); |
| 144 | } |
| 145 | |
| 146 | FAILIF(1, "Range error.\n"); |
| 147 | } |
| 148 | |
| 149 | static void create_elf_sections(source_t *source, Elf *elf) |
| 150 | { |
| 151 | INFO("Creating new ELF sections.\n"); |
| 152 | ASSERT(elf == NULL || source->elf == NULL || source->elf == elf); |
| 153 | if (elf == NULL) { |
| 154 | ASSERT(source->elf != NULL); |
| 155 | elf = source->elf; |
| 156 | } |
| 157 | |
| 158 | int cnt = 1; |
| 159 | Elf_Scn *oldscn = NULL, *scn; |
| 160 | while ((oldscn = elf_nextscn (source->oldelf, oldscn)) != NULL) { |
| 161 | GElf_Shdr *oldshdr, oldshdr_mem; |
| 162 | |
| 163 | scn = elf_newscn(elf); |
| 164 | FAILIF_LIBELF(NULL == scn, elf_newscn); |
| 165 | |
| 166 | oldshdr = gelf_getshdr(oldscn, &oldshdr_mem); |
| 167 | FAILIF_LIBELF(NULL == oldshdr, gelf_getshdr); |
| 168 | /* Set the section header of the new section to be the same as the |
| 169 | headset of the old section by default. */ |
| 170 | gelf_update_shdr(scn, oldshdr); |
| 171 | |
| 172 | /* Copy the section data */ |
| 173 | Elf_Data *olddata = elf_getdata(oldscn, NULL); |
| 174 | FAILIF_LIBELF(NULL == olddata, elf_getdata); |
| 175 | |
| 176 | Elf_Data *data = elf_newdata(scn); |
| 177 | FAILIF_LIBELF(NULL == data, elf_newdata); |
| 178 | *data = *olddata; |
| 179 | #if COPY_SECTION_DATA_BUFFER |
| 180 | if (olddata->d_buf != NULL) { |
| 181 | data->d_buf = MALLOC(data->d_size); |
| 182 | memcpy(data->d_buf, olddata->d_buf, olddata->d_size); |
| 183 | } |
| 184 | #endif |
| 185 | |
| 186 | INFO("\tsection %02d: [%-30s] created\n", |
| 187 | cnt, |
| 188 | elf_strptr(source->oldelf, |
| 189 | source->shstrndx, |
| 190 | oldshdr->sh_name)); |
| 191 | |
| 192 | if (ADJUST_ELF) { |
| 193 | ASSERT(source->shdr_info != NULL); |
| 194 | /* Create a new section. */ |
| 195 | source->shdr_info[cnt].idx = cnt; |
| 196 | source->shdr_info[cnt].newscn = scn; |
| 197 | source->shdr_info[cnt].data = data; |
| 198 | source->shdr_info[cnt]. |
| 199 | use_old_shdr_for_relocation_calculations = 1; |
| 200 | INFO("\tsection [%s] (old offset %lld, old size %lld) " |
| 201 | "will have index %d (was %d).\n", |
| 202 | source->shdr_info[cnt].name, |
| 203 | source->shdr_info[cnt].old_shdr.sh_offset, |
| 204 | source->shdr_info[cnt].old_shdr.sh_size, |
| 205 | source->shdr_info[cnt].idx, |
| 206 | elf_ndxscn(source->shdr_info[cnt].scn)); |
| 207 | /* Same as the next assert */ |
| 208 | ASSERT(elf_ndxscn (source->shdr_info[cnt].newscn) == |
| 209 | source->shdr_info[cnt].idx); |
| 210 | } |
| 211 | |
| 212 | ASSERT(elf_ndxscn(scn) == (size_t)cnt); |
| 213 | cnt++; |
| 214 | } |
| 215 | } |
| 216 | |
| 217 | /* This function sets up the shdr_info[] array of a source_t. We call it only |
| 218 | when ADJUST_ELF is non-zero (i.e., support for adjusting an ELF file for |
| 219 | changes in sizes and numbers of relocation sections is compiled in. Note |
| 220 | that setup_shdr_info() depends only on the information in source->oldelf, |
| 221 | not on source->elf. |
| 222 | */ |
| 223 | |
| 224 | static void setup_shdr_info(source_t *source) |
| 225 | { |
| 226 | if (ADJUST_ELF) |
| 227 | { |
| 228 | /* Allocate the section-header-info buffer. */ |
| 229 | INFO("Allocating section-header info structure (%d) bytes...\n", |
| 230 | source->shnum * sizeof (shdr_info_t)); |
| 231 | |
| 232 | source->shdr_info = (shdr_info_t *)CALLOC(source->shnum, |
| 233 | sizeof (shdr_info_t)); |
| 234 | |
| 235 | /* Mark the SHT_NULL section as handled. */ |
| 236 | source->shdr_info[0].idx = 2; |
| 237 | |
| 238 | int cnt = 1; |
| 239 | Elf_Scn *oldscn = NULL; |
| 240 | while ((oldscn = elf_nextscn (source->oldelf, oldscn)) != NULL) { |
| 241 | /* Copy the section header */ |
| 242 | ASSERT(elf_ndxscn(oldscn) == (size_t)cnt); |
| 243 | |
| 244 | /* Initialized the corresponding shdr_info entry */ |
| 245 | { |
| 246 | /* Mark the section with a non-zero index. Later, when we |
| 247 | decide to drop a section, we will set its idx to zero, and |
| 248 | assign section numbers to the remaining sections. |
| 249 | */ |
| 250 | source->shdr_info[cnt].idx = 1; |
| 251 | |
| 252 | source->shdr_info[cnt].scn = oldscn; |
| 253 | |
| 254 | /* NOTE: Here we pupulate the section-headset struct with the |
| 255 | same values as the original section's. After the |
| 256 | first run of prelink(), we will update the sh_size |
| 257 | fields of those sections that need resizing. |
| 258 | */ |
| 259 | FAILIF_LIBELF(NULL == |
| 260 | gelf_getshdr(oldscn, |
| 261 | &source->shdr_info[cnt].shdr), |
| 262 | gelf_getshdr); |
| 263 | |
| 264 | /* Get the name of the section. */ |
| 265 | source->shdr_info[cnt].name = |
| 266 | elf_strptr (source->oldelf, source->shstrndx, |
| 267 | source->shdr_info[cnt].shdr.sh_name); |
| 268 | |
| 269 | INFO("\tname: %s\n", source->shdr_info[cnt].name); |
| 270 | FAILIF(source->shdr_info[cnt].name == NULL, |
| 271 | "Malformed file: section %d name is null\n", |
| 272 | cnt); |
| 273 | |
| 274 | /* Remember the shdr.sh_link value. We need to remember this |
| 275 | value for those sections that refer to other sections. For |
| 276 | example, we need to remember it for relocation-entry |
| 277 | sections, because if we modify the symbol table that a |
| 278 | relocation-entry section is relative to, then we need to |
| 279 | patch the relocation section. By the time we get to |
| 280 | deciding whether we need to patch the relocation section, we |
| 281 | will have overwritten its header's sh_link field with a new |
| 282 | value. |
| 283 | */ |
| 284 | source->shdr_info[cnt].old_shdr = source->shdr_info[cnt].shdr; |
| 285 | INFO("\t\toriginal sh_link: %08d\n", |
| 286 | source->shdr_info[cnt].old_shdr.sh_link); |
| 287 | INFO("\t\toriginal sh_addr: %lld\n", |
| 288 | source->shdr_info[cnt].old_shdr.sh_addr); |
| 289 | INFO("\t\toriginal sh_offset: %lld\n", |
| 290 | source->shdr_info[cnt].old_shdr.sh_offset); |
| 291 | INFO("\t\toriginal sh_size: %lld\n", |
| 292 | source->shdr_info[cnt].old_shdr.sh_size); |
| 293 | |
| 294 | FAILIF(source->shdr_info[cnt].shdr.sh_type == SHT_SYMTAB_SHNDX, |
| 295 | "Cannot handle sh_type SHT_SYMTAB_SHNDX!\n"); |
| 296 | FAILIF(source->shdr_info[cnt].shdr.sh_type == SHT_GROUP, |
| 297 | "Cannot handle sh_type SHT_GROUP!\n"); |
| 298 | FAILIF(source->shdr_info[cnt].shdr.sh_type == SHT_GNU_versym, |
| 299 | "Cannot handle sh_type SHT_GNU_versym!\n"); |
| 300 | } |
| 301 | |
| 302 | cnt++; |
| 303 | } /* for each section */ |
| 304 | } /* if (ADJUST_ELF) */ |
| 305 | } |
| 306 | |
| 307 | static Elf * init_elf(source_t *source, bool create_new_sections) |
| 308 | { |
| 309 | Elf *elf; |
| 310 | if (source->output != NULL) { |
| 311 | if (source->output_is_dir) { |
| 312 | source->output_is_dir++; |
| 313 | char *dir = source->output; |
| 314 | int dirlen = strlen(dir); |
| 315 | /* The main() function maintains a pointer to source->output; it |
| 316 | frees the buffer after apriori() returns. |
| 317 | */ |
| 318 | source->output = MALLOC(dirlen + |
| 319 | 1 + /* slash */ |
| 320 | strlen(source->name) + |
| 321 | 1); /* null terminator */ |
| 322 | strcpy(source->output, dir); |
| 323 | source->output[dirlen] = '/'; |
| 324 | strcpy(source->output + dirlen + 1, |
| 325 | basename(source->name)); |
| 326 | } |
| 327 | |
| 328 | source->newelf_fd = open(source->output, |
| 329 | O_RDWR | O_CREAT, |
| 330 | 0666); |
| 331 | FAILIF(source->newelf_fd < 0, "open(%s): %s (%d)\n", |
| 332 | source->output, |
| 333 | strerror(errno), |
| 334 | errno); |
| 335 | elf = elf_begin(source->newelf_fd, ELF_C_WRITE, NULL); |
| 336 | FAILIF_LIBELF(elf == NULL, elf_begin); |
| 337 | } else { |
| 338 | elf = elf_clone(source->oldelf, ELF_C_EMPTY); |
| 339 | FAILIF_LIBELF(elf == NULL, elf_clone); |
| 340 | } |
| 341 | |
| 342 | GElf_Ehdr *oldehdr = gelf_getehdr(source->oldelf, &source->old_ehdr_mem); |
| 343 | FAILIF_LIBELF(NULL == oldehdr, gelf_getehdr); |
| 344 | |
| 345 | /* Create new ELF and program headers for the elf file */ |
| 346 | INFO("Creating empty ELF and program headers...\n"); |
| 347 | FAILIF_LIBELF(gelf_newehdr (elf, gelf_getclass (source->oldelf)) == 0, |
| 348 | gelf_newehdr); |
| 349 | FAILIF_LIBELF(oldehdr->e_type != ET_REL |
| 350 | && gelf_newphdr (elf, |
| 351 | oldehdr->e_phnum) == 0, |
| 352 | gelf_newphdr); |
| 353 | |
| 354 | /* Copy the elf header */ |
| 355 | INFO("Copying ELF header...\n"); |
| 356 | GElf_Ehdr *ehdr = gelf_getehdr(elf, &source->ehdr_mem); |
| 357 | FAILIF_LIBELF(NULL == ehdr, gelf_getehdr); |
| 358 | memcpy(ehdr, oldehdr, sizeof(GElf_Ehdr)); |
| 359 | FAILIF_LIBELF(!gelf_update_ehdr(elf, ehdr), gelf_update_ehdr); |
| 360 | |
| 361 | /* Copy out the old program header: notice that if the ELF file does not |
| 362 | have a program header, this loop won't execute. |
| 363 | */ |
| 364 | INFO("Copying ELF program header...\n"); |
| 365 | { |
| 366 | int cnt; |
| 367 | source->phdr_info = (GElf_Phdr *)CALLOC(ehdr->e_phnum, |
| 368 | sizeof(GElf_Phdr)); |
| 369 | for (cnt = 0; cnt < ehdr->e_phnum; ++cnt) { |
| 370 | INFO("\tRetrieving entry %d\n", cnt); |
| 371 | FAILIF_LIBELF(NULL == |
| 372 | gelf_getphdr(source->oldelf, cnt, |
| 373 | source->phdr_info + cnt), |
| 374 | gelf_getphdr); |
| 375 | FAILIF_LIBELF(gelf_update_phdr (elf, cnt, |
| 376 | source->phdr_info + cnt) == 0, |
| 377 | gelf_update_phdr); |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | /* Copy the sections and the section headers. */ |
| 382 | if (create_new_sections) |
| 383 | { |
| 384 | create_elf_sections(source, elf); |
| 385 | } |
| 386 | |
| 387 | /* The ELF library better follows our layout when this is not a |
| 388 | relocatable object file. */ |
| 389 | elf_flagelf (elf, ELF_C_SET, (ehdr->e_type != ET_REL ? ELF_F_LAYOUT : 0)); |
| 390 | |
| 391 | return elf; |
| 392 | } |
| 393 | |
| 394 | static shdr_info_t *lookup_shdr_info_by_new_section( |
| 395 | source_t *source, |
| 396 | const char *sname, |
| 397 | Elf_Scn *newscn) |
| 398 | { |
| 399 | if (source->shdr_info == NULL) return NULL; |
| 400 | int cnt; |
| 401 | for (cnt = 0; cnt < source->shnum; cnt++) { |
| 402 | if (source->shdr_info[cnt].newscn == newscn) { |
| 403 | INFO("\t\tnew section at %p matches shdr_info[%d], " |
| 404 | "section [%s]!\n", |
| 405 | newscn, |
| 406 | cnt, |
| 407 | source->shdr_info[cnt].name); |
| 408 | FAILIF(strcmp(sname, source->shdr_info[cnt].name), |
| 409 | "Matched section's name [%s] does not match " |
| 410 | "looked-up section's name [%s]!\n", |
| 411 | source->shdr_info[cnt].name, |
| 412 | sname); |
| 413 | return source->shdr_info + cnt; |
| 414 | } |
| 415 | } |
| 416 | return NULL; |
| 417 | } |
| 418 | |
| 419 | static bool do_init_source(source_t *source, unsigned base) |
| 420 | { |
| 421 | /* Find various sections. */ |
| 422 | size_t scnidx; |
| 423 | Elf_Scn *scn; |
| 424 | GElf_Shdr *shdr, shdr_mem; |
| 425 | source->sorted_sections = init_range_list(); |
| 426 | INFO("Processing [%s]'s sections...\n", source->name); |
| 427 | for (scnidx = 1; scnidx < (size_t)source->shnum; scnidx++) { |
| 428 | INFO("\tGetting section index %d...\n", scnidx); |
| 429 | scn = elf_getscn(source->elf, scnidx); |
| 430 | if (NULL == scn) { |
| 431 | /* If we get an error from elf_getscn(), it means that a section |
| 432 | at the requested index does not exist. This may happen when |
| 433 | we remove sections. Since we do not update source->shnum |
| 434 | (we can't, since we need to know the original number of sections |
| 435 | to know source->shdr_info[]'s length), we will attempt to |
| 436 | retrieve a section for an index that no longer exists in the |
| 437 | new ELF file. */ |
| 438 | INFO("\tThere is no section at index %d anymore, continuing.\n", |
| 439 | scnidx); |
| 440 | continue; |
| 441 | } |
| 442 | shdr = gelf_getshdr(scn, &shdr_mem); |
| 443 | FAILIF_LIBELF(NULL == shdr, gelf_getshdr); |
| 444 | |
| 445 | /* We haven't modified the shstrtab section, and so shdr->sh_name |
| 446 | has the same value as before. Thus we look up the name based |
| 447 | on the old ELF handle. We cannot use shstrndx on the new ELF |
| 448 | handle because the index of the shstrtab section may have |
| 449 | changed (and calling elf_getshstrndx() returns the same section |
| 450 | index, so libelf can't handle thise ither). |
| 451 | */ |
| 452 | const char *sname = |
| 453 | elf_strptr(source->oldelf, source->shstrndx, shdr->sh_name); |
| 454 | ASSERT(sname); |
| 455 | |
| 456 | INFO("\tAdding [%s] (%lld, %lld)...\n", |
| 457 | sname, |
| 458 | shdr->sh_addr, |
| 459 | shdr->sh_addr + shdr->sh_size); |
| 460 | if ((shdr->sh_flags & SHF_ALLOC) == SHF_ALLOC) { |
| 461 | add_unique_range_nosort(source->sorted_sections, |
| 462 | shdr->sh_addr, |
| 463 | shdr->sh_size, |
| 464 | scn, |
| 465 | handle_range_error, |
| 466 | NULL); /* no user-data destructor */ |
| 467 | } |
| 468 | |
| 469 | if (shdr->sh_type == SHT_DYNSYM) { |
| 470 | source->symtab.scn = scn; |
| 471 | source->symtab.data = elf_getdata(scn, NULL); |
| 472 | FAILIF_LIBELF(NULL == source->symtab.data, elf_getdata); |
| 473 | memcpy(&source->symtab.shdr, shdr, sizeof(GElf_Shdr)); |
| 474 | source->symtab.info = lookup_shdr_info_by_new_section( |
| 475 | source, sname, scn); |
| 476 | ASSERT(source->shdr_info == NULL || source->symtab.info != NULL); |
| 477 | |
| 478 | /* The sh_link field of the section header of the symbol table |
| 479 | contains the index of the associated strings table. */ |
| 480 | source->strtab.scn = elf_getscn(source->elf, |
| 481 | source->symtab.shdr.sh_link); |
| 482 | FAILIF_LIBELF(NULL == source->strtab.scn, elf_getscn); |
| 483 | FAILIF_LIBELF(NULL == gelf_getshdr(source->strtab.scn, |
| 484 | &source->strtab.shdr), |
| 485 | gelf_getshdr); |
| 486 | source->strtab.data = elf_getdata(source->strtab.scn, NULL); |
| 487 | FAILIF_LIBELF(NULL == source->strtab.data, elf_getdata); |
| 488 | source->strtab.info = lookup_shdr_info_by_new_section( |
| 489 | source, |
| 490 | elf_strptr(source->oldelf, source->shstrndx, |
| 491 | source->strtab.shdr.sh_name), |
| 492 | source->strtab.scn); |
| 493 | ASSERT(source->shdr_info == NULL || source->strtab.info != NULL); |
| 494 | } else if (shdr->sh_type == SHT_DYNAMIC) { |
| 495 | source->dynamic.scn = scn; |
| 496 | source->dynamic.data = elf_getdata(scn, NULL); |
| 497 | FAILIF_LIBELF(NULL == source->dynamic.data, elf_getdata); |
| 498 | memcpy(&source->dynamic.shdr, shdr, sizeof(GElf_Shdr)); |
| 499 | source->dynamic.info = lookup_shdr_info_by_new_section( |
| 500 | source, sname, scn); |
| 501 | ASSERT(source->shdr_info == NULL || source->dynamic.info != NULL); |
| 502 | } else if (shdr->sh_type == SHT_HASH) { |
| 503 | source->hash.scn = scn; |
| 504 | source->hash.data = elf_getdata(scn, NULL); |
| 505 | FAILIF_LIBELF(NULL == source->hash.data, elf_getdata); |
| 506 | memcpy(&source->hash.shdr, shdr, sizeof(GElf_Shdr)); |
| 507 | source->hash.info = lookup_shdr_info_by_new_section( |
| 508 | source, sname, scn); |
| 509 | ASSERT(source->shdr_info == NULL || source->hash.info != NULL); |
| 510 | } else if (shdr->sh_type == SHT_REL || shdr->sh_type == SHT_RELA) { |
| 511 | if (source->num_relocation_sections == |
| 512 | source->relocation_sections_size) { |
| 513 | source->relocation_sections_size += 5; |
| 514 | source->relocation_sections = |
| 515 | (section_info_t *)REALLOC(source->relocation_sections, |
| 516 | source->relocation_sections_size * |
| 517 | sizeof(section_info_t)); |
| 518 | } |
| 519 | section_info_t *reloc = |
| 520 | source->relocation_sections + source->num_relocation_sections; |
| 521 | reloc->scn = scn; |
| 522 | reloc->info = lookup_shdr_info_by_new_section(source, sname, scn); |
| 523 | ASSERT(source->shdr_info == NULL || reloc->info != NULL); |
| 524 | reloc->data = elf_getdata(scn, NULL); |
| 525 | FAILIF_LIBELF(NULL == reloc->data, elf_getdata); |
| 526 | memcpy(&reloc->shdr, shdr, sizeof(GElf_Shdr)); |
| 527 | source->num_relocation_sections++; |
| 528 | } else if (!strcmp(sname, ".bss")) { |
| 529 | source->bss.scn = scn; |
| 530 | source->bss.data = elf_getdata(scn, NULL); |
| 531 | source->bss.info = lookup_shdr_info_by_new_section( |
| 532 | source, sname, scn); |
| 533 | ASSERT(source->shdr_info == NULL || source->bss.info != NULL); |
| 534 | /* The BSS section occupies no space in the ELF file. */ |
| 535 | FAILIF_LIBELF(NULL == source->bss.data, elf_getdata) |
| 536 | FAILIF(NULL != source->bss.data->d_buf, |
| 537 | "Enexpected: section [%s] has data!", |
| 538 | sname); |
| 539 | memcpy(&source->bss.shdr, shdr, sizeof(GElf_Shdr)); |
| 540 | } |
| 541 | } |
| 542 | sort_ranges(source->sorted_sections); |
| 543 | |
| 544 | source->unfinished = |
| 545 | (unfinished_relocation_t *)CALLOC(source->num_relocation_sections, |
| 546 | sizeof(unfinished_relocation_t)); |
| 547 | |
| 548 | if (source->dynamic.scn == NULL) { |
| 549 | INFO("File [%s] does not have a dynamic section!\n", source->name); |
| 550 | /* If this is a static executable, we won't update anything. */ |
| 551 | source->dry_run = 1; |
| 552 | return false; |
| 553 | } |
| 554 | |
| 555 | FAILIF(source->symtab.scn == NULL, |
| 556 | "File [%s] does not have a dynamic symbol table!\n", |
| 557 | source->name); |
| 558 | FAILIF(source->hash.scn == NULL, |
| 559 | "File [%s] does not have a hash table!\n", |
| 560 | source->name); |
| 561 | FAILIF(source->hash.shdr.sh_link != elf_ndxscn(source->symtab.scn), |
| 562 | "Hash points to section %d, not to %d as expected!\n", |
| 563 | source->hash.shdr.sh_link, |
| 564 | elf_ndxscn(source->symtab.scn)); |
| 565 | |
| 566 | /* Now, find out how many symbols we have and allocate the array of |
| 567 | satisfied symbols. |
| 568 | |
| 569 | NOTE: We don't count the number of undefined symbols here; we will |
| 570 | iterate over the symbol table later, and count them then, when it is |
| 571 | more convenient. |
| 572 | */ |
| 573 | size_t symsize = gelf_fsize (source->elf, |
| 574 | ELF_T_SYM, |
| 575 | 1, source->elf_hdr.e_version); |
| 576 | ASSERT(symsize); |
| 577 | |
| 578 | source->num_syms = source->symtab.data->d_size / symsize; |
| 579 | source->base = (source->oldelf_hdr.e_type == ET_DYN) ? base : 0; |
| 580 | INFO("Relink base for [%s]: 0x%lx\n", source->name, source->base); |
| 581 | FAILIF(source->base == -1, |
| 582 | "Can't prelink [%s]: it's a shared library and you did not " |
| 583 | "provide a prelink address!\n", |
| 584 | source->name); |
| 585 | #ifdef SUPPORT_ANDROID_PRELINK_TAGS |
| 586 | FAILIF(source->prelinked && source->base != source->prelink_base, |
| 587 | "ERROR: file [%s] has already been prelinked for 0x%08lx. " |
| 588 | "Cannot change to 0x%08lx!\n", |
| 589 | source->name, |
| 590 | source->prelink_base, |
| 591 | source->base); |
| 592 | #endif/*SUPPORT_ANDROID_PRELINK_TAGS*/ |
| 593 | |
| 594 | return true; |
| 595 | } |
| 596 | |
| 597 | static source_t* init_source(const char *full_path, |
| 598 | const char *output, int is_file, |
| 599 | int base, int dry_run) |
| 600 | { |
| 601 | source_t *source = (source_t *)CALLOC(1, sizeof(source_t)); |
| 602 | |
| 603 | ASSERT(full_path); |
| 604 | source->name = full_path; |
| 605 | source->output = output; |
| 606 | source->output_is_dir = !is_file; |
| 607 | |
| 608 | source->newelf_fd = -1; |
| 609 | source->elf_fd = -1; |
| 610 | INFO("Opening %s...\n", full_path); |
| 611 | source->elf_fd = |
| 612 | open(full_path, ((dry_run || output != NULL) ? O_RDONLY : O_RDWR)); |
| 613 | FAILIF(source->elf_fd < 0, "open(%s): %s (%d)\n", |
| 614 | full_path, |
| 615 | strerror(errno), |
| 616 | errno); |
| 617 | |
| 618 | FAILIF(fstat(source->elf_fd, &source->elf_file_info) < 0, |
| 619 | "fstat(%s(fd %d)): %s (%d)\n", |
| 620 | source->name, |
| 621 | source->elf_fd, |
| 622 | strerror(errno), |
| 623 | errno); |
| 624 | INFO("File [%s]'s size is %lld bytes!\n", |
| 625 | source->name, |
| 626 | source->elf_file_info.st_size); |
| 627 | |
| 628 | INFO("Calling elf_begin(%s)...\n", full_path); |
| 629 | |
| 630 | source->oldelf = |
| 631 | elf_begin(source->elf_fd, |
| 632 | (dry_run || output != NULL) ? ELF_C_READ : ELF_C_RDWR, |
| 633 | NULL); |
| 634 | FAILIF_LIBELF(source->oldelf == NULL, elf_begin); |
| 635 | |
| 636 | /* libelf can recognize COFF and A.OUT formats, but we handle only ELF. */ |
| 637 | if(elf_kind(source->oldelf) != ELF_K_ELF) { |
| 638 | ERROR("Input file %s is not in ELF format!\n", full_path); |
| 639 | return NULL; |
| 640 | } |
| 641 | |
| 642 | /* Make sure this is a shared library or an executable. */ |
| 643 | { |
| 644 | INFO("Making sure %s is a shared library or an executable...\n", |
| 645 | full_path); |
| 646 | FAILIF_LIBELF(0 == gelf_getehdr(source->oldelf, &source->oldelf_hdr), |
| 647 | gelf_getehdr); |
| 648 | FAILIF(source->oldelf_hdr.e_type != ET_DYN && |
| 649 | source->oldelf_hdr.e_type != ET_EXEC, |
| 650 | "%s must be a shared library (elf type is %d, expecting %d).\n", |
| 651 | full_path, |
| 652 | source->oldelf_hdr.e_type, |
| 653 | ET_DYN); |
| 654 | } |
| 655 | |
| 656 | #ifdef SUPPORT_ANDROID_PRELINK_TAGS |
| 657 | /* First, check to see if the file has been prelinked. */ |
| 658 | source->prelinked = |
| 659 | check_prelinked(source->name, |
| 660 | source->oldelf_hdr.e_ident[EI_DATA] == ELFDATA2LSB, |
| 661 | &source->prelink_base); |
| 662 | /* Note that in the INFO() below we need to use oldelf_hdr because we |
| 663 | haven't cloned the ELF file yet, and source->elf_hdr is not defined. */ |
| 664 | if (source->prelinked) { |
| 665 | PRINT("%s [%s] is already prelinked at 0x%08lx!\n", |
| 666 | (source->oldelf_hdr.e_type == ET_EXEC ? |
| 667 | "Executable" : "Shared library"), |
| 668 | source->name, |
| 669 | source->prelink_base); |
| 670 | /* Force a dry run when the file has already been prelinked */ |
| 671 | source->dry_run = dry_run = 1; |
| 672 | } |
| 673 | else { |
| 674 | INFO("%s [%s] is not prelinked!\n", |
| 675 | (source->oldelf_hdr.e_type == ET_EXEC ? |
| 676 | "Executable" : "Shared library"), |
| 677 | source->name); |
| 678 | source->dry_run = dry_run; |
| 679 | } |
| 680 | #endif/*SUPPORT_ANDROID_PRELINK_TAGS*/ |
| 681 | |
| 682 | /* Get the index of the section-header-strings-table section. */ |
| 683 | FAILIF_LIBELF(elf_getshstrndx (source->oldelf, &source->shstrndx) < 0, |
| 684 | elf_getshstrndx); |
| 685 | |
| 686 | FAILIF_LIBELF(elf_getshnum (source->oldelf, (size_t *)&source->shnum) < 0, |
| 687 | elf_getshnum); |
| 688 | |
| 689 | /* When we have a dry run, or when ADJUST_ELF is enabled, we use |
| 690 | source->oldelf for source->elf, because the former is mmapped privately, |
| 691 | so changes to it have no effect. With ADJUST_ELF, the first run of |
| 692 | prelink() is a dry run. We will reopen the elf file for write access |
| 693 | after that dry run, before we call adjust_elf. */ |
| 694 | |
| 695 | source->elf = (ADJUST_ELF || source->dry_run) ? |
| 696 | source->oldelf : init_elf(source, ADJUST_ELF == 0); |
| 697 | |
| 698 | FAILIF_LIBELF(0 == gelf_getehdr(source->elf, &source->elf_hdr), |
| 699 | gelf_getehdr); |
| 700 | #ifdef DEBUG |
| 701 | ASSERT(!memcmp(&source->oldelf_hdr, |
| 702 | &source->elf_hdr, |
| 703 | sizeof(source->elf_hdr))); |
| 704 | #endif |
| 705 | |
| 706 | /* Get the EBL handling. The -g option is currently the only reason |
| 707 | we need EBL so dont open the backend unless necessary. */ |
| 708 | source->ebl = ebl_openbackend (source->elf); |
| 709 | FAILIF_LIBELF(NULL == source->ebl, ebl_openbackend); |
| 710 | #ifdef ARM_SPECIFIC_HACKS |
| 711 | FAILIF_LIBELF(0 != arm_init(source->elf, source->elf_hdr.e_machine, |
| 712 | source->ebl, sizeof(Ebl)), |
| 713 | arm_init); |
| 714 | #endif/*ARM_SPECIFIC_HACKS*/ |
| 715 | |
| 716 | add_to_sources(source); |
| 717 | if (do_init_source(source, base) == false) return NULL; |
| 718 | return source; |
| 719 | } |
| 720 | |
| 721 | /* complements do_init_source() */ |
| 722 | static void do_destroy_source(source_t *source) |
| 723 | { |
| 724 | int cnt; |
| 725 | destroy_range_list(source->sorted_sections); |
| 726 | source->sorted_sections = NULL; |
| 727 | for (cnt = 0; cnt < source->num_relocation_sections; cnt++) { |
| 728 | FREEIF(source->unfinished[cnt].rels); |
| 729 | source->unfinished[cnt].rels = NULL; |
| 730 | source->unfinished[cnt].num_rels = 0; |
| 731 | source->unfinished[cnt].rels_size = 0; |
| 732 | } |
| 733 | if (source->jmprel.sections != NULL) { |
| 734 | destroy_range_list(source->jmprel.sections); |
| 735 | source->jmprel.sections = NULL; |
| 736 | } |
| 737 | if (source->rel.sections != NULL) { |
| 738 | destroy_range_list(source->rel.sections); |
| 739 | source->rel.sections = NULL; |
| 740 | } |
| 741 | FREE(source->unfinished); /* do_init_source() */ |
| 742 | source->unfinished = NULL; |
| 743 | FREE(source->relocation_sections); /* do_init_source() */ |
| 744 | source->relocation_sections = NULL; |
| 745 | source->num_relocation_sections = source->relocation_sections_size = 0; |
| 746 | } |
| 747 | |
| 748 | static void destroy_source(source_t *source) |
| 749 | { |
| 750 | /* Is this a little-endian ELF file? */ |
| 751 | if (source->oldelf != source->elf) { |
| 752 | /* If it's a dynamic executable, this must not be a dry run. */ |
| 753 | if (!source->dry_run && source->dynamic.scn != NULL) |
| 754 | { |
| 755 | FAILIF_LIBELF(elf_update(source->elf, ELF_C_WRITE) == -1, |
| 756 | elf_update); |
| 757 | } |
| 758 | FAILIF_LIBELF(elf_end(source->oldelf), elf_end); |
| 759 | } |
| 760 | ebl_closebackend(source->ebl); |
| 761 | FAILIF_LIBELF(elf_end(source->elf), elf_end); |
| 762 | FAILIF(close(source->elf_fd) < 0, "Could not close file %s: %s (%d)!\n", |
| 763 | source->name, strerror(errno), errno); |
| 764 | FAILIF((source->newelf_fd >= 0) && (close(source->newelf_fd) < 0), |
| 765 | "Could not close output file: %s (%d)!\n", strerror(errno), errno); |
| 766 | |
| 767 | #ifdef SUPPORT_ANDROID_PRELINK_TAGS |
| 768 | if (!source->dry_run) { |
| 769 | if (source->dynamic.scn != NULL && |
| 770 | source->elf_hdr.e_type != ET_EXEC) |
| 771 | { |
| 772 | /* For some reason, trying to write directly to source->elf_fd |
| 773 | causes a "bad file descriptor" error because of something libelf |
| 774 | does. We just close the file descriptor and open a new one in |
| 775 | function setup_prelink_info() below. */ |
| 776 | INFO("%s: setting up prelink tag at end of file.\n", |
| 777 | source->output ? source->output : source->name); |
| 778 | setup_prelink_info(source->output ? source->output : source->name, |
| 779 | source->elf_hdr.e_ident[EI_DATA] == ELFDATA2LSB, |
| 780 | source->base); |
| 781 | } |
| 782 | else INFO("%s: executable, NOT setting up prelink tag.\n", |
| 783 | source->name); |
| 784 | } |
| 785 | #endif/*SUPPORT_ANDROID_PRELINK_TAGS*/ |
| 786 | |
| 787 | do_destroy_source(source); |
| 788 | |
| 789 | if (source->shstrtab_data != NULL) |
| 790 | FREEIF(source->shstrtab_data->d_buf); /* adjust_elf */ |
| 791 | |
| 792 | FREE(source->lib_deps); /* list of library dependencies (process_file()) */ |
| 793 | FREEIF(source->shdr_info); /* setup_shdr_info() */ |
| 794 | FREEIF(source->phdr_info); /* init_elf() */ |
| 795 | FREE(source->name); /* assigned to by init_source() */ |
| 796 | /* If the output is a directory, in init_elf() we allocate a buffer where |
| 797 | we copy the directory, a slash, and the file name. Here we free that |
| 798 | buffer. |
| 799 | */ |
| 800 | if (source->output_is_dir > 1) { |
| 801 | FREE(source->output); |
| 802 | } |
| 803 | FREE(source); /* init_source() */ |
| 804 | } |
| 805 | |
| 806 | static void reinit_source(source_t *source) |
| 807 | { |
| 808 | do_destroy_source(source); |
| 809 | do_init_source(source, source->base); |
| 810 | |
| 811 | { |
| 812 | /* We've gathered all the DT_DYNAMIC entries; now we need to figure |
| 813 | out which relocation sections fit in which range as described by |
| 814 | the entries. Before we do so, however, we will populate the |
| 815 | jmprel and rel members of source, as well as their sizes. |
| 816 | */ |
| 817 | |
| 818 | size_t dynidx, numdyn; |
| 819 | GElf_Dyn *dyn, dyn_mem; |
| 820 | |
| 821 | numdyn = source->dynamic.shdr.sh_size / |
| 822 | source->dynamic.shdr.sh_entsize; |
| 823 | |
| 824 | source->rel.idx = source->rel.sz_idx = -1; |
| 825 | source->jmprel.idx = source->jmprel.sz_idx = -1; |
| 826 | for (dynidx = 0; dynidx < numdyn; dynidx++) { |
| 827 | dyn = gelf_getdyn (source->dynamic.data, |
| 828 | dynidx, |
| 829 | &dyn_mem); |
| 830 | FAILIF_LIBELF(NULL == dyn, gelf_getdyn); |
| 831 | switch (dyn->d_tag) |
| 832 | { |
| 833 | case DT_NEEDED: |
| 834 | break; |
| 835 | case DT_JMPREL: |
| 836 | INFO("reinit_source: DT_JMPREL is at index %d, 0x%08llx.\n", |
| 837 | dynidx, dyn->d_un.d_ptr); |
| 838 | source->jmprel.idx = dynidx; |
| 839 | source->jmprel.addr = dyn->d_un.d_ptr; |
| 840 | break; |
| 841 | case DT_PLTRELSZ: |
| 842 | INFO("reinit_source: DT_PLTRELSZ is at index %d, 0x%08llx.\n", |
| 843 | dynidx, dyn->d_un.d_val); |
| 844 | source->jmprel.sz_idx = dynidx; |
| 845 | source->jmprel.size = dyn->d_un.d_val; |
| 846 | break; |
| 847 | case DT_REL: |
| 848 | INFO("reinit_source: DT_REL is at index %d, 0x%08llx.\n", |
| 849 | dynidx, dyn->d_un.d_ptr); |
| 850 | source->rel.idx = dynidx; |
| 851 | source->rel.addr = dyn->d_un.d_ptr; |
| 852 | break; |
| 853 | case DT_RELSZ: |
| 854 | INFO("reinit_source: DT_RELSZ is at index %d, 0x%08llx.\n", |
| 855 | dynidx, dyn->d_un.d_val); |
| 856 | source->rel.sz_idx = dynidx; |
| 857 | source->rel.size = dyn->d_un.d_val; |
| 858 | break; |
| 859 | case DT_RELA: |
| 860 | case DT_RELASZ: |
| 861 | FAILIF(1, "Can't handle DT_RELA and DT_RELASZ entries!\n"); |
| 862 | break; |
| 863 | } /* switch */ |
| 864 | } /* for each dynamic entry... */ |
| 865 | } |
| 866 | } |
| 867 | |
| 868 | static GElf_Sym *hash_lookup_global_or_weak_symbol(source_t *lib, |
| 869 | const char *symname, |
| 870 | GElf_Sym *lib_sym_mem) |
| 871 | { |
| 872 | int lib_symidx = hash_lookup(lib->elf, |
| 873 | lib->hash.data, |
| 874 | lib->symtab.data, |
| 875 | lib->strtab.data, |
| 876 | symname); |
| 877 | |
| 878 | GElf_Sym sym_mem; |
| 879 | if (SHN_UNDEF != lib_symidx) { |
| 880 | /* We found the symbol--now check to see if it is global |
| 881 | or weak. If this is the case, then the symbol satisfies |
| 882 | the dependency. */ |
| 883 | GElf_Sym *lib_sym = gelf_getsymshndx(lib->symtab.data, |
| 884 | NULL, |
| 885 | lib_symidx, |
| 886 | &sym_mem, |
| 887 | NULL); |
| 888 | FAILIF_LIBELF(NULL == lib_sym, gelf_getsymshndx); |
| 889 | #if ELF_STRPTR_IS_BROKEN |
| 890 | ASSERT(!strcmp( |
| 891 | symname, |
| 892 | ((char *)elf_getdata(elf_getscn(lib->elf, |
| 893 | lib->symtab.shdr.sh_link), |
| 894 | NULL)->d_buf) + |
| 895 | lib_sym->st_name)); |
| 896 | #else |
| 897 | ASSERT(!strcmp( |
| 898 | symname, |
| 899 | elf_strptr(lib->elf, lib->symtab.shdr.sh_link, |
| 900 | lib_sym->st_name))); |
| 901 | #endif |
| 902 | if (lib_sym->st_shndx != SHN_UNDEF && |
| 903 | (GELF_ST_BIND(lib_sym->st_info) == STB_GLOBAL || |
| 904 | GELF_ST_BIND(lib_sym->st_info) == STB_WEAK)) { |
| 905 | memcpy(lib_sym_mem, &sym_mem, sizeof(GElf_Sym)); |
| 906 | return lib_sym; |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | return NULL; |
| 911 | } |
| 912 | |
| 913 | static source_t *lookup_symbol_in_dependencies(source_t *source, |
| 914 | const char *symname, |
| 915 | GElf_Sym *found_sym) |
| 916 | { |
| 917 | source_t *sym_source = NULL; /* return value */ |
| 918 | |
| 919 | /* This is an undefined symbol. Go over the list of libraries |
| 920 | and look it up. */ |
| 921 | size_t libidx; |
| 922 | int found = 0; |
| 923 | source_t *last_found = NULL; |
| 924 | for (libidx = 0; libidx < (size_t)source->num_lib_deps; libidx++) { |
| 925 | source_t *lib = source->lib_deps[libidx]; |
| 926 | if (hash_lookup_global_or_weak_symbol(lib, symname, found_sym) != NULL) |
| 927 | { |
| 928 | sym_source = lib; |
| 929 | if (found) { |
| 930 | if (found == 1) { |
| 931 | found++; |
| 932 | ERROR("ERROR: multiple definitions found for [%s:%s]!\n", |
| 933 | source->name, symname); |
| 934 | ERROR("\tthis definition [%s]\n", lib->name); |
| 935 | } |
| 936 | ERROR("\tprevious definition [%s]\n", last_found->name); |
| 937 | } |
| 938 | last_found = lib; |
| 939 | if (!found) found = 1; |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | #if ELF_STRPTR_IS_BROKEN |
| 944 | ASSERT(!sym_source || |
| 945 | !strcmp(symname, |
| 946 | (char *)(elf_getdata(elf_getscn( |
| 947 | sym_source->elf, |
| 948 | sym_source->symtab.shdr.sh_link), |
| 949 | NULL)->d_buf) + |
| 950 | found_sym->st_name)); |
| 951 | #else |
| 952 | ASSERT(!sym_source || |
| 953 | !strcmp(symname, |
| 954 | elf_strptr(sym_source->elf, |
| 955 | sym_source->symtab.shdr.sh_link, |
| 956 | found_sym->st_name))); |
| 957 | #endif |
| 958 | |
| 959 | return sym_source; |
| 960 | } |
| 961 | |
| 962 | static int do_prelink(source_t *source, |
| 963 | Elf_Data *reloc_scn_data, |
| 964 | int reloc_scn_entry_size, |
| 965 | unfinished_relocation_t *unfinished, |
| 966 | int locals_only, |
| 967 | bool dry_run, |
| 968 | char **lib_lookup_dirs, int num_lib_lookup_dirs, |
| 969 | char **default_libs, int num_default_libs, |
| 970 | int *num_unfinished_relocs) |
| 971 | { |
| 972 | int num_relocations = 0; |
| 973 | |
| 974 | size_t num_rels; |
| 975 | num_rels = reloc_scn_data->d_size / reloc_scn_entry_size; |
| 976 | |
| 977 | INFO("\tThere are %d relocations.\n", num_rels); |
| 978 | |
| 979 | int rel_idx; |
| 980 | for (rel_idx = 0; rel_idx < (size_t)num_rels; rel_idx++) { |
| 981 | GElf_Rel *rel, rel_mem; |
| 982 | |
| 983 | //INFO("\tHandling relocation %d/%d\n", rel_idx, num_rels); |
| 984 | |
| 985 | rel = gelf_getrel(reloc_scn_data, rel_idx, &rel_mem); |
| 986 | FAILIF_LIBELF(rel == NULL, gelf_getrel); |
| 987 | GElf_Sym *sym = NULL, sym_mem; |
| 988 | unsigned sym_idx = GELF_R_SYM(rel->r_info); |
| 989 | source_t *sym_source = NULL; |
| 990 | /* found_sym points to found_sym_mem, when sym_source != NULL, and |
| 991 | to sym, when the sybmol is locally defined. If the symbol is |
| 992 | not locally defined and sym_source == NULL, then sym is not |
| 993 | defined either. */ |
| 994 | GElf_Sym *found_sym = NULL, found_sym_mem; |
| 995 | const char *symname = NULL; |
| 996 | int sym_is_local = 1; |
| 997 | if (sym_idx) { |
| 998 | sym = gelf_getsymshndx(source->symtab.data, |
| 999 | NULL, |
| 1000 | sym_idx, |
| 1001 | &sym_mem, |
| 1002 | NULL); |
| 1003 | FAILIF_LIBELF(NULL == sym, gelf_getsymshndx); |
| 1004 | #if ELF_STRPTR_IS_BROKEN |
| 1005 | symname = |
| 1006 | ((char *)source->strtab.data->d_buf) + |
| 1007 | sym->st_name; |
| 1008 | #else |
| 1009 | symname = elf_strptr(source->elf, |
| 1010 | elf_ndxscn(source->strtab.scn), |
| 1011 | sym->st_name); |
| 1012 | #endif |
| 1013 | |
| 1014 | /* If the symbol is defined and is either not in the BSS |
| 1015 | section, or if it is in the BSS then the relocation is |
| 1016 | not a copy relocation, then the symbol's source is this |
| 1017 | library (i.e., it is locally-defined). Otherwise, the |
| 1018 | symbol is imported. |
| 1019 | */ |
| 1020 | |
| 1021 | sym_is_local = 0; |
| 1022 | if (sym->st_shndx != SHN_UNDEF && |
| 1023 | (source->bss.scn == NULL || |
| 1024 | sym->st_shndx != elf_ndxscn(source->bss.scn) || |
| 1025 | #ifdef ARM_SPECIFIC_HACKS |
| 1026 | GELF_R_TYPE(rel->r_info) != R_ARM_COPY |
| 1027 | #else |
| 1028 | 1 |
| 1029 | #endif |
| 1030 | )) |
| 1031 | { |
| 1032 | sym_is_local = 1; |
| 1033 | } |
| 1034 | |
| 1035 | if (sym_is_local) { |
| 1036 | INFO("\t\tSymbol [%s:%s] is defined locally.\n", |
| 1037 | source->name, |
| 1038 | symname); |
| 1039 | sym_source = source; |
| 1040 | found_sym = sym; |
| 1041 | } |
| 1042 | else if (!locals_only) { |
| 1043 | sym_source = lookup_symbol_in_dependencies(source, |
| 1044 | symname, |
| 1045 | &found_sym_mem); |
| 1046 | |
| 1047 | /* The symbol was not in the list of dependencies, which by |
| 1048 | itself is an error: it means either that the symbol does |
| 1049 | not exist anywhere, or that the library which has the symbol |
| 1050 | has not been listed as a dependency in this library or |
| 1051 | executable. It could also mean (for a library) that the |
| 1052 | symbol is defined in the executable that links agsinst it, |
| 1053 | which is obviously not a good thing. These are bad things, |
| 1054 | but they do happen, which is why we have the ability to |
| 1055 | provide a list of default dependencies, including |
| 1056 | executables. Here we check to see if the symbol has been |
| 1057 | defined in any of them. |
| 1058 | */ |
| 1059 | if (NULL == sym_source) { |
| 1060 | INFO("\t\tChecking default dependencies...\n"); |
| 1061 | int i; |
| 1062 | source_t *lib, *old_sym_source = NULL; |
| 1063 | int printed_initial_error = 0; |
| 1064 | for (i = 0; i < num_default_libs; i++) { |
| 1065 | INFO("\tChecking in [%s].\n", default_libs[i]); |
| 1066 | lib = find_source(default_libs[i], |
| 1067 | lib_lookup_dirs, |
| 1068 | num_lib_lookup_dirs); |
| 1069 | FAILIF(NULL == lib, |
| 1070 | "Can't find default library [%s]!\n", |
| 1071 | default_libs[i]); |
| 1072 | if (hash_lookup_global_or_weak_symbol(lib, |
| 1073 | symname, |
| 1074 | &found_sym_mem)) { |
| 1075 | found_sym = &found_sym_mem; |
| 1076 | sym_source = lib; |
| 1077 | #if ELF_STRPTR_IS_BROKEN |
| 1078 | ASSERT(!strcmp(symname, |
| 1079 | (char *)(elf_getdata( |
| 1080 | elf_getscn( |
| 1081 | sym_source->elf, |
| 1082 | sym_source->symtab. |
| 1083 | shdr.sh_link), |
| 1084 | NULL)->d_buf) + |
| 1085 | found_sym->st_name)); |
| 1086 | #else |
| 1087 | ASSERT(!strcmp(symname, |
| 1088 | elf_strptr(sym_source->elf, |
| 1089 | sym_source->symtab.shdr.sh_link, |
| 1090 | found_sym->st_name))); |
| 1091 | |
| 1092 | #endif |
| 1093 | INFO("\tFound symbol [%s] in [%s]!\n", |
| 1094 | symname, lib->name); |
| 1095 | if (old_sym_source) { |
| 1096 | if (printed_initial_error == 0) { |
| 1097 | printed_initial_error = 1; |
| 1098 | ERROR("Multiple definition of [%s]:\n" |
| 1099 | "\t[%s]\n", |
| 1100 | symname, |
| 1101 | old_sym_source->name); |
| 1102 | } |
| 1103 | ERROR("\t[%s]\n", sym_source->name); |
| 1104 | } |
| 1105 | old_sym_source = sym_source; |
| 1106 | } else { |
| 1107 | INFO("\tCould not find symbol [%s] in default " |
| 1108 | "lib [%s]!\n", symname, lib->name); |
| 1109 | } |
| 1110 | } |
| 1111 | if (sym_source) { |
| 1112 | ERROR("ERROR: Could not find [%s:%s] in dependent " |
| 1113 | "libraries (but found in default [%s])!\n", |
| 1114 | source->name, |
| 1115 | symname, |
| 1116 | sym_source->name); |
| 1117 | } |
| 1118 | } else { |
| 1119 | found_sym = &found_sym_mem; |
| 1120 | /* We found the symbol in a dependency library. */ |
| 1121 | INFO("\t\tSymbol [%s:%s, value %lld] is imported from [%s]\n", |
| 1122 | source->name, |
| 1123 | symname, |
| 1124 | found_sym->st_value, |
| 1125 | sym_source->name); |
| 1126 | } |
| 1127 | } /* if symbol is defined in this library... */ |
| 1128 | |
| 1129 | if (!locals_only) { |
| 1130 | /* If a symbol is weak and we haven't found it, then report |
| 1131 | an error. We really need to find a way to set its value |
| 1132 | to zero. The problem is that it needs to refer to some |
| 1133 | section. */ |
| 1134 | |
| 1135 | FAILIF(NULL == sym_source && |
| 1136 | GELF_ST_BIND(sym->st_info) == STB_WEAK, |
| 1137 | "Cannot handle weak symbols yet (%s:%s <- %s).\n", |
| 1138 | source->name, |
| 1139 | symname, |
| 1140 | sym_source->name); |
| 1141 | #ifdef PERMISSIVE |
| 1142 | if (GELF_ST_BIND(sym->st_info) != STB_WEAK && |
| 1143 | NULL == sym_source) { |
| 1144 | ERROR("ERROR: Can't find symbol [%s:%s] in dependent or " |
| 1145 | "default libraries!\n", source->name, symname); |
| 1146 | } |
| 1147 | #else |
| 1148 | FAILIF(GELF_ST_BIND(sym->st_info) != STB_WEAK && |
| 1149 | NULL == sym_source, |
| 1150 | "Can't find symbol [%s:%s] in dependent or default " |
| 1151 | "libraries!\n", |
| 1152 | source->name, |
| 1153 | symname); |
| 1154 | #endif |
| 1155 | } /* if (!locals_only) */ |
| 1156 | } |
| 1157 | #if 0 // too chatty |
| 1158 | else |
| 1159 | INFO("\t\tno symbol is associated with this relocation\n"); |
| 1160 | #endif |
| 1161 | |
| 1162 | |
| 1163 | // We prelink only local symbols when locals_only == 1. |
| 1164 | |
| 1165 | bool can_relocate = true; |
| 1166 | if (!sym_is_local && |
| 1167 | (symname[0] == 'd' && symname[1] == 'l' && symname[2] != '\0' && |
| 1168 | (!strcmp(symname + 2, "open") || |
| 1169 | !strcmp(symname + 2, "close") || |
| 1170 | !strcmp(symname + 2, "sym") || |
| 1171 | !strcmp(symname + 2, "error")))) { |
| 1172 | INFO("********* NOT RELOCATING LIBDL SYMBOL [%s]\n", symname); |
| 1173 | can_relocate = false; |
| 1174 | } |
| 1175 | |
| 1176 | if (can_relocate && (sym_is_local || !locals_only)) |
| 1177 | { |
| 1178 | GElf_Shdr shdr_mem; Elf_Scn *scn; Elf_Data *data; |
| 1179 | find_section(source, rel->r_offset, &scn, &shdr_mem, &data); |
| 1180 | unsigned *dest = |
| 1181 | (unsigned*)(((char *)data->d_buf) + |
| 1182 | (rel->r_offset - shdr_mem.sh_addr)); |
| 1183 | unsigned rel_type = GELF_R_TYPE(rel->r_info); |
| 1184 | char buf[64]; |
| 1185 | INFO("\t\t%-15s ", |
| 1186 | ebl_reloc_type_name(source->ebl, |
| 1187 | GELF_R_TYPE(rel->r_info), |
| 1188 | buf, |
| 1189 | sizeof(buf))); |
| 1190 | |
| 1191 | /* Section-name offsets do not change, so we use oldelf to get the |
| 1192 | strings. This makes a difference in the second pass of the |
| 1193 | perlinker, after the call to adjust_elf, because |
| 1194 | source->shstrndx no longer contains the index of the |
| 1195 | section-header-strings table. |
| 1196 | */ |
| 1197 | const char *sname = elf_strptr( |
| 1198 | source->oldelf, source->shstrndx, shdr_mem.sh_name); |
| 1199 | |
| 1200 | switch (rel_type) { |
| 1201 | case R_ARM_JUMP_SLOT: |
| 1202 | case R_ARM_GLOB_DAT: |
| 1203 | case R_ARM_ABS32: |
| 1204 | ASSERT(data->d_buf != NULL); |
| 1205 | ASSERT(data->d_size >= rel->r_offset - shdr_mem.sh_addr); |
| 1206 | #ifdef PERMISSIVE |
| 1207 | if (sym_source == NULL) { |
| 1208 | ERROR("ERROR: Permissive relocation " |
| 1209 | "[%-15s] [%s:%s]: [0x%llx] = ZERO\n", |
| 1210 | ebl_reloc_type_name(source->ebl, |
| 1211 | GELF_R_TYPE(rel->r_info), |
| 1212 | buf, |
| 1213 | sizeof(buf)), |
| 1214 | sname, |
| 1215 | symname, |
| 1216 | rel->r_offset); |
| 1217 | if (!dry_run) |
| 1218 | *dest = 0; |
| 1219 | } else |
| 1220 | #endif |
| 1221 | { |
| 1222 | ASSERT(sym_source); |
| 1223 | INFO("[%s:%s]: [0x%llx] = 0x%llx + 0x%lx\n", |
| 1224 | sname, |
| 1225 | symname, |
| 1226 | rel->r_offset, |
| 1227 | found_sym->st_value, |
| 1228 | sym_source->base); |
| 1229 | if (!dry_run) |
| 1230 | *dest = found_sym->st_value + sym_source->base; |
| 1231 | } |
| 1232 | num_relocations++; |
| 1233 | break; |
| 1234 | case R_ARM_RELATIVE: |
| 1235 | ASSERT(data->d_buf != NULL); |
| 1236 | ASSERT(data->d_size >= rel->r_offset - shdr_mem.sh_addr); |
| 1237 | FAILIF(sym != NULL, |
| 1238 | "Unsupported RELATIVE form (symbol != 0)...\n"); |
| 1239 | INFO("[%s:%s]: [0x%llx] = 0x%x + 0x%lx\n", |
| 1240 | sname, |
| 1241 | symname ?: "(symbol has no name)", |
| 1242 | rel->r_offset, *dest, source->base); |
| 1243 | if (!dry_run) |
| 1244 | *dest += source->base; |
| 1245 | num_relocations++; |
| 1246 | break; |
| 1247 | case R_ARM_COPY: |
| 1248 | #ifdef PERMISSIVE |
| 1249 | if (sym_source == NULL) { |
| 1250 | ERROR("ERROR: Permissive relocation " |
| 1251 | "[%-15s] [%s:%s]: NOT PERFORMING\n", |
| 1252 | ebl_reloc_type_name(source->ebl, |
| 1253 | GELF_R_TYPE(rel->r_info), |
| 1254 | buf, |
| 1255 | sizeof(buf)), |
| 1256 | sname, |
| 1257 | symname); |
| 1258 | } else |
| 1259 | #endif |
| 1260 | { |
| 1261 | ASSERT(sym); |
| 1262 | ASSERT(sym_source); |
| 1263 | GElf_Shdr src_shdr_mem; |
| 1264 | Elf_Scn *src_scn; |
| 1265 | Elf_Data *src_data; |
| 1266 | find_section(sym_source, found_sym->st_value, |
| 1267 | &src_scn, |
| 1268 | &src_shdr_mem, |
| 1269 | &src_data); |
| 1270 | INFO("Found [%s:%s (%lld)] in section [%s] .\n", |
| 1271 | sym_source->name, |
| 1272 | symname, |
| 1273 | found_sym->st_value, |
| 1274 | #if ELF_STRPTR_IS_BROKEN |
| 1275 | (((char *)elf_getdata( |
| 1276 | elf_getscn(sym_source->elf, |
| 1277 | sym_source->shstrndx), |
| 1278 | NULL)->d_buf) + src_shdr_mem.sh_name) |
| 1279 | #else |
| 1280 | elf_strptr(sym_source->elf, |
| 1281 | sym_source->shstrndx, |
| 1282 | src_shdr_mem.sh_name) |
| 1283 | #endif |
| 1284 | ); |
| 1285 | |
| 1286 | unsigned *src = NULL; |
| 1287 | if (src_data->d_buf == NULL) |
| 1288 | { |
| 1289 | #ifdef PERMISSIVE |
| 1290 | if (sym_source->bss.scn == NULL || |
| 1291 | elf_ndxscn(src_scn) != |
| 1292 | elf_ndxscn(sym_source->bss.scn)) { |
| 1293 | ERROR("ERROR: Permissive relocation (NULL source " |
| 1294 | "not from .bss) [%-15s] [%s:%s]: " |
| 1295 | "NOT PERFORMING\n", |
| 1296 | ebl_reloc_type_name(source->ebl, |
| 1297 | GELF_R_TYPE(rel->r_info), |
| 1298 | buf, |
| 1299 | sizeof(buf)), |
| 1300 | sname, |
| 1301 | symname); |
| 1302 | } |
| 1303 | #endif |
| 1304 | } |
| 1305 | else { |
| 1306 | ASSERT(src_data->d_size >= |
| 1307 | found_sym->st_value - src_shdr_mem.sh_addr); |
| 1308 | src = (unsigned*)(((char *)src_data->d_buf) + |
| 1309 | (found_sym->st_value - |
| 1310 | src_shdr_mem.sh_addr)); |
| 1311 | } |
| 1312 | ASSERT(symname); |
| 1313 | INFO("[%s:%s]: [0x%llx] <- [0x%llx] size %lld\n", |
| 1314 | sname, |
| 1315 | symname, rel->r_offset, |
| 1316 | found_sym->st_value, |
| 1317 | found_sym->st_size); |
| 1318 | |
| 1319 | #ifdef PERMISSIVE |
| 1320 | if (src_data->d_buf != NULL || |
| 1321 | (sym_source->bss.scn != NULL && |
| 1322 | elf_ndxscn(src_scn) == |
| 1323 | elf_ndxscn(sym_source->bss.scn))) |
| 1324 | #endif/*PERMISSIVE*/ |
| 1325 | { |
| 1326 | if (data->d_buf == NULL) { |
| 1327 | INFO("Incomplete relocation [%-15s] of [%s:%s].\n", |
| 1328 | ebl_reloc_type_name(source->ebl, |
| 1329 | GELF_R_TYPE(rel->r_info), |
| 1330 | buf, |
| 1331 | sizeof(buf)), |
| 1332 | sname, |
| 1333 | symname); |
| 1334 | FAILIF(unfinished == NULL, |
| 1335 | "You passed unfinished as NULL expecting " |
| 1336 | "to handle all relocations, " |
| 1337 | "but at least one cannot be handled!\n"); |
| 1338 | if (unfinished->num_rels == unfinished->rels_size) { |
| 1339 | unfinished->rels_size += 10; |
| 1340 | unfinished->rels = (GElf_Rel *)REALLOC( |
| 1341 | unfinished->rels, |
| 1342 | unfinished->rels_size * |
| 1343 | sizeof(GElf_Rel)); |
| 1344 | } |
| 1345 | unfinished->rels[unfinished->num_rels++] = *rel; |
| 1346 | num_relocations--; |
| 1347 | (*num_unfinished_relocs)++; |
| 1348 | } |
| 1349 | else { |
| 1350 | if (src_data->d_buf != NULL) |
| 1351 | { |
| 1352 | ASSERT(data->d_buf != NULL); |
| 1353 | ASSERT(data->d_size >= rel->r_offset - |
| 1354 | shdr_mem.sh_addr); |
| 1355 | if (!dry_run) |
| 1356 | memcpy(dest, src, found_sym->st_size); |
| 1357 | } |
| 1358 | else { |
| 1359 | ASSERT(src == NULL); |
| 1360 | ASSERT(elf_ndxscn(src_scn) == |
| 1361 | elf_ndxscn(sym_source->bss.scn)); |
| 1362 | if (!dry_run) |
| 1363 | memset(dest, 0, found_sym->st_size); |
| 1364 | } |
| 1365 | } |
| 1366 | } |
| 1367 | num_relocations++; |
| 1368 | } |
| 1369 | break; |
| 1370 | default: |
| 1371 | FAILIF(1, "Unknown relocation type %d!\n", rel_type); |
| 1372 | } // switch |
| 1373 | } // relocate |
| 1374 | else { |
| 1375 | INFO("\t\tNot relocating symbol [%s]%s\n", |
| 1376 | symname, |
| 1377 | (can_relocate ? ", relocating only locals" : |
| 1378 | ", which is a libdl symbol")); |
| 1379 | FAILIF(unfinished == NULL, |
| 1380 | "You passed unfinished as NULL expecting to handle all " |
| 1381 | "relocations, but at least one cannot be handled!\n"); |
| 1382 | if (unfinished->num_rels == unfinished->rels_size) { |
| 1383 | unfinished->rels_size += 10; |
| 1384 | unfinished->rels = (GElf_Rel *)REALLOC( |
| 1385 | unfinished->rels, |
| 1386 | unfinished->rels_size * |
| 1387 | sizeof(GElf_Rel)); |
| 1388 | } |
| 1389 | unfinished->rels[unfinished->num_rels++] = *rel; |
| 1390 | (*num_unfinished_relocs)++; |
| 1391 | } |
| 1392 | } // for each relocation entry |
| 1393 | |
| 1394 | return num_relocations; |
| 1395 | } |
| 1396 | |
| 1397 | static int prelink(source_t *source, |
| 1398 | int locals_only, |
| 1399 | bool dry_run, |
| 1400 | char **lib_lookup_dirs, int num_lib_lookup_dirs, |
| 1401 | char **default_libs, int num_default_libs, |
| 1402 | int *num_unfinished_relocs) |
| 1403 | { |
| 1404 | INFO("Prelinking [%s] (number of relocation sections: %d)%s...\n", |
| 1405 | source->name, source->num_relocation_sections, |
| 1406 | (dry_run ? " (dry run)" : "")); |
| 1407 | int num_relocations = 0; |
| 1408 | int rel_scn_idx; |
| 1409 | for (rel_scn_idx = 0; rel_scn_idx < source->num_relocation_sections; |
| 1410 | rel_scn_idx++) |
| 1411 | { |
| 1412 | section_info_t *reloc_scn = source->relocation_sections + rel_scn_idx; |
| 1413 | unfinished_relocation_t *unfinished = source->unfinished + rel_scn_idx; |
| 1414 | |
| 1415 | /* We haven't modified the shstrtab section, and so shdr->sh_name has |
| 1416 | the same value as before. Thus we look up the name based on the old |
| 1417 | ELF handle. We cannot use shstrndx on the new ELF handle because |
| 1418 | the index of the shstrtab section may have changed (and calling |
| 1419 | elf_getshstrndx() returns the same section index, so libelf can't |
| 1420 | handle thise ither). |
| 1421 | |
| 1422 | If reloc_scn->info is available, we can assert that the |
| 1423 | section-name has not changed. If this assertion fails, |
| 1424 | then we cannot use the elf_strptr() trick below to get |
| 1425 | the section name. One solution would be to save it in |
| 1426 | the section_info_t structure. |
| 1427 | */ |
| 1428 | ASSERT(reloc_scn->info == NULL || |
| 1429 | reloc_scn->shdr.sh_name == reloc_scn->info->old_shdr.sh_name); |
| 1430 | const char *sname = |
| 1431 | elf_strptr(source->oldelf, |
| 1432 | source->shstrndx, |
| 1433 | reloc_scn->shdr.sh_name); |
| 1434 | ASSERT(sname != NULL); |
| 1435 | |
| 1436 | INFO("\n\tIterating relocation section [%s]...\n", sname); |
| 1437 | |
| 1438 | /* In general, the new size of the section differs from the original |
| 1439 | size of the section, because we can handle some of the relocations. |
| 1440 | This was communicated to adjust_elf, which modified the ELF file |
| 1441 | according to the new section sizes. Now, when prelink() does the |
| 1442 | actual work of prelinking, it needs to know the original size of the |
| 1443 | relocation section so that it can see all of the original relocation |
| 1444 | entries! |
| 1445 | */ |
| 1446 | size_t d_size = reloc_scn->data->d_size; |
| 1447 | if (reloc_scn->info != NULL && |
| 1448 | reloc_scn->data->d_size != reloc_scn->info->old_shdr.sh_size) |
| 1449 | { |
| 1450 | INFO("Setting size of section [%s] to from new size %d to old " |
| 1451 | "size %lld temporarily (so prelinker can see all " |
| 1452 | "relocations).\n", |
| 1453 | reloc_scn->info->name, |
| 1454 | d_size, |
| 1455 | reloc_scn->info->old_shdr.sh_size); |
| 1456 | reloc_scn->data->d_size = reloc_scn->info->old_shdr.sh_size; |
| 1457 | } |
| 1458 | |
| 1459 | num_relocations += |
| 1460 | do_prelink(source, |
| 1461 | reloc_scn->data, reloc_scn->shdr.sh_entsize, |
| 1462 | unfinished, |
| 1463 | locals_only, dry_run, |
| 1464 | lib_lookup_dirs, num_lib_lookup_dirs, |
| 1465 | default_libs, num_default_libs, |
| 1466 | num_unfinished_relocs); |
| 1467 | |
| 1468 | if (reloc_scn->data->d_size != d_size) |
| 1469 | { |
| 1470 | ASSERT(reloc_scn->info != NULL); |
| 1471 | INFO("Resetting size of section [%s] to %d\n", |
| 1472 | reloc_scn->info->name, |
| 1473 | d_size); |
| 1474 | reloc_scn->data->d_size = d_size; |
| 1475 | } |
| 1476 | } |
| 1477 | |
| 1478 | /* Now prelink those relocation sections which were fully handled, and |
| 1479 | therefore removed. They are not a part of the |
| 1480 | source->relocation_sections[] array anymore, but we can find them by |
| 1481 | scanning source->shdr_info[] and looking for sections with idx == 0. |
| 1482 | */ |
| 1483 | |
| 1484 | if (ADJUST_ELF && source->shdr_info != NULL) { |
| 1485 | /* Walk over the shdr_info[] array to see if we've removed any |
| 1486 | relocation sections. prelink() those sections as well. |
| 1487 | */ |
| 1488 | int i; |
| 1489 | for (i = 0; i < source->shnum; i++) { |
| 1490 | shdr_info_t *info = source->shdr_info + i; |
| 1491 | if (info->idx == 0 && |
| 1492 | (info->shdr.sh_type == SHT_REL || |
| 1493 | info->shdr.sh_type == SHT_RELA)) { |
| 1494 | |
| 1495 | Elf_Data *data = elf_getdata(info->scn, NULL); |
| 1496 | ASSERT(data->d_size == 0); |
| 1497 | data->d_size = info->old_shdr.sh_size; |
| 1498 | |
| 1499 | INFO("\n\tIterating relocation section [%s], which was " |
| 1500 | "discarded (size %d, entry size %lld).\n", |
| 1501 | info->name, |
| 1502 | data->d_size, |
| 1503 | info->old_shdr.sh_entsize); |
| 1504 | |
| 1505 | num_relocations += |
| 1506 | do_prelink(source, |
| 1507 | data, info->old_shdr.sh_entsize, |
| 1508 | NULL, /* the section was fully handled */ |
| 1509 | locals_only, dry_run, |
| 1510 | lib_lookup_dirs, num_lib_lookup_dirs, |
| 1511 | default_libs, num_default_libs, |
| 1512 | num_unfinished_relocs); |
| 1513 | |
| 1514 | data->d_size = 0; |
| 1515 | } |
| 1516 | } |
| 1517 | } |
| 1518 | return num_relocations; |
| 1519 | } |
| 1520 | |
| 1521 | static char * find_file(const char *libname, |
| 1522 | char **lib_lookup_dirs, |
| 1523 | int num_lib_lookup_dirs) { |
| 1524 | if (libname[0] == '/') { |
| 1525 | /* This is an absolute path name--just return it. */ |
| 1526 | /* INFO("ABSOLUTE PATH: [%s].\n", libname); */ |
| 1527 | return strdup(libname); |
| 1528 | } else { |
| 1529 | /* First try the working directory. */ |
| 1530 | int fd; |
| 1531 | if ((fd = open(libname, O_RDONLY)) > 0) { |
| 1532 | close(fd); |
| 1533 | /* INFO("FOUND IN CURRENT DIR: [%s].\n", libname); */ |
| 1534 | return strdup(libname); |
| 1535 | } else { |
| 1536 | /* Iterate over all library paths. For each path, append the file |
| 1537 | name and see if there is a file at that place. If that fails, |
| 1538 | bail out. */ |
| 1539 | |
| 1540 | char *name; |
| 1541 | while (num_lib_lookup_dirs--) { |
| 1542 | size_t lib_len = strlen(*lib_lookup_dirs); |
| 1543 | /* one extra character for the slash, and another for the |
| 1544 | terminating NULL. */ |
| 1545 | name = (char *)MALLOC(lib_len + strlen(libname) + 2); |
| 1546 | strcpy(name, *lib_lookup_dirs); |
| 1547 | name[lib_len] = '/'; |
| 1548 | strcpy(name + lib_len + 1, libname); |
| 1549 | if ((fd = open(name, O_RDONLY)) > 0) { |
| 1550 | close(fd); |
| 1551 | /* INFO("FOUND: [%s] in [%s].\n", libname, name); */ |
| 1552 | return name; |
| 1553 | } |
| 1554 | INFO("NOT FOUND: [%s] in [%s].\n", libname, name); |
| 1555 | free(name); |
| 1556 | } |
| 1557 | } |
| 1558 | } |
| 1559 | return NULL; |
| 1560 | } |
| 1561 | |
| 1562 | static void adjust_dynamic_segment_entry_size(source_t *source, |
| 1563 | dt_rel_info_t *dyn) |
| 1564 | { |
| 1565 | /* Update the size entry in the DT_DYNAMIC segment. */ |
| 1566 | GElf_Dyn *dyn_entry, dyn_entry_mem; |
| 1567 | dyn_entry = gelf_getdyn(source->dynamic.data, |
| 1568 | dyn->sz_idx, |
| 1569 | &dyn_entry_mem); |
| 1570 | FAILIF_LIBELF(NULL == dyn_entry, gelf_getdyn); |
| 1571 | /* If we are calling this function to adjust the size of the dynamic entry, |
| 1572 | then there should be some unfinished relocations remaining. If there |
| 1573 | are none, then we should remove the entry from the dynamic section |
| 1574 | altogether. |
| 1575 | */ |
| 1576 | ASSERT(dyn->num_unfinished_relocs); |
| 1577 | |
| 1578 | size_t relsize = gelf_fsize(source->elf, |
| 1579 | ELF_T_REL, |
| 1580 | 1, |
| 1581 | source->elf_hdr.e_version); |
| 1582 | |
| 1583 | if (unlikely(verbose_flag)) { |
| 1584 | char buf[64]; |
| 1585 | INFO("Updating entry %d: [%-10s], %08llx --> %08x\n", |
| 1586 | dyn->sz_idx, |
| 1587 | ebl_dynamic_tag_name (source->ebl, dyn_entry->d_tag, |
| 1588 | buf, sizeof (buf)), |
| 1589 | dyn_entry->d_un.d_val, |
| 1590 | dyn->num_unfinished_relocs * relsize); |
| 1591 | } |
| 1592 | |
| 1593 | dyn_entry->d_un.d_val = dyn->num_unfinished_relocs * relsize; |
| 1594 | |
| 1595 | FAILIF_LIBELF(!gelf_update_dyn(source->dynamic.data, |
| 1596 | dyn->sz_idx, |
| 1597 | dyn_entry), |
| 1598 | gelf_update_dyn); |
| 1599 | } |
| 1600 | |
| 1601 | static void adjust_dynamic_segment_entries(source_t *source) |
| 1602 | { |
| 1603 | /* This function many remove entries from the dynamic segment, but it won't |
| 1604 | resize the relevant section. It'll just fill the remainted with empty |
| 1605 | DT entries. |
| 1606 | |
| 1607 | FIXME: This is not guaranteed right now. If a dynamic segment does not |
| 1608 | end with null DT entries, I think this will break. |
| 1609 | */ |
| 1610 | FAILIF(source->rel.processed, |
| 1611 | "More than one section matches DT_REL entry in dynamic segment!\n"); |
| 1612 | FAILIF(source->jmprel.processed, |
| 1613 | "More than one section matches DT_JMPREL entry in " |
| 1614 | "dynamic segment!\n"); |
| 1615 | source->rel.processed = |
| 1616 | source->jmprel.processed = 1; |
| 1617 | |
| 1618 | if (source->rel.num_unfinished_relocs > 0) |
| 1619 | adjust_dynamic_segment_entry_size(source, &source->rel); |
| 1620 | |
| 1621 | if (source->jmprel.num_unfinished_relocs > 0) |
| 1622 | adjust_dynamic_segment_entry_size(source, &source->jmprel); |
| 1623 | |
| 1624 | /* If at least one of the entries is empty, then we need to remove it. We |
| 1625 | have already adjusted the size of the other. |
| 1626 | */ |
| 1627 | if (source->rel.num_unfinished_relocs == 0 || |
| 1628 | source->jmprel.num_unfinished_relocs == 0) |
| 1629 | { |
| 1630 | /* We need to delete the DT_REL/DT_RELSZ and DT_PLTREL/DT_PLTRELSZ |
| 1631 | entries from the dynamic segment. */ |
| 1632 | |
| 1633 | GElf_Dyn *dyn_entry, dyn_entry_mem; |
| 1634 | size_t dynidx, updateidx; |
| 1635 | |
| 1636 | size_t numdyn = |
| 1637 | source->dynamic.shdr.sh_size / |
| 1638 | source->dynamic.shdr.sh_entsize; |
| 1639 | |
| 1640 | for (updateidx = dynidx = 0; dynidx < numdyn; dynidx++) |
| 1641 | { |
| 1642 | dyn_entry = gelf_getdyn(source->dynamic.data, |
| 1643 | dynidx, |
| 1644 | &dyn_entry_mem); |
| 1645 | FAILIF_LIBELF(NULL == dyn_entry, gelf_getdyn); |
| 1646 | if ((source->rel.num_unfinished_relocs == 0 && |
| 1647 | (dynidx == source->rel.idx || |
| 1648 | dynidx == source->rel.sz_idx)) || |
| 1649 | (source->jmprel.num_unfinished_relocs == 0 && |
| 1650 | (dynidx == source->jmprel.idx || |
| 1651 | dynidx == source->jmprel.sz_idx))) |
| 1652 | { |
| 1653 | if (unlikely(verbose_flag)) { |
| 1654 | char buf[64]; |
| 1655 | INFO("\t(!)\tRemoving entry %02d: [%-10s], %08llx\n", |
| 1656 | dynidx, |
| 1657 | ebl_dynamic_tag_name (source->ebl, dyn_entry->d_tag, |
| 1658 | buf, sizeof (buf)), |
| 1659 | dyn_entry->d_un.d_val); |
| 1660 | } |
| 1661 | continue; |
| 1662 | } |
| 1663 | |
| 1664 | if (unlikely(verbose_flag)) { |
| 1665 | char buf[64]; |
| 1666 | INFO("\t\tKeeping entry %02d: [%-10s], %08llx\n", |
| 1667 | dynidx, |
| 1668 | ebl_dynamic_tag_name (source->ebl, dyn_entry->d_tag, |
| 1669 | buf, sizeof (buf)), |
| 1670 | dyn_entry->d_un.d_val); |
| 1671 | } |
| 1672 | |
| 1673 | gelf_update_dyn(source->dynamic.data, |
| 1674 | updateidx, |
| 1675 | &dyn_entry_mem); |
| 1676 | updateidx++; |
| 1677 | } |
| 1678 | } |
| 1679 | } /* adjust_dynamic_segment_entries */ |
| 1680 | |
| 1681 | static bool adjust_dynamic_segment_for(source_t *source, |
| 1682 | dt_rel_info_t *dyn, |
| 1683 | bool adjust_section_size_only) |
| 1684 | { |
| 1685 | bool dropped_sections = false; |
| 1686 | |
| 1687 | /* Go over the sections that belong to this dynamic range. */ |
| 1688 | dyn->num_unfinished_relocs = 0; |
| 1689 | if (dyn->sections) { |
| 1690 | int num_scns, idx; |
| 1691 | range_t *scns = get_sorted_ranges(dyn->sections, &num_scns); |
| 1692 | |
| 1693 | INFO("\tdynamic range %s:[%lld, %lld) contains %d sections.\n", |
| 1694 | source->name, |
| 1695 | dyn->addr, |
| 1696 | dyn->addr + dyn->size, |
| 1697 | num_scns); |
| 1698 | |
| 1699 | ASSERT(scns); |
| 1700 | int next_idx = 0, next_rel_off = 0; |
| 1701 | /* The total number of unfinished relocations for this dynamic |
| 1702 | * entry. */ |
| 1703 | section_info_t *next = (section_info_t *)scns[next_idx].user; |
| 1704 | section_info_t *first = next; |
| 1705 | ASSERT(first); |
| 1706 | for (idx = 0; idx < num_scns; idx++) { |
| 1707 | section_info_t *reloc_scn = (section_info_t *)scns[idx].user; |
| 1708 | size_t rel_scn_idx = reloc_scn - source->relocation_sections; |
| 1709 | ASSERT(rel_scn_idx < (size_t)source->num_relocation_sections); |
| 1710 | unfinished_relocation_t *unfinished = |
| 1711 | &source->unfinished[rel_scn_idx]; |
| 1712 | int unf_idx; |
| 1713 | |
| 1714 | ASSERT(reloc_scn->info == NULL || |
| 1715 | reloc_scn->shdr.sh_name == |
| 1716 | reloc_scn->info->old_shdr.sh_name); |
| 1717 | const char *sname = |
| 1718 | elf_strptr(source->oldelf, |
| 1719 | source->shstrndx, |
| 1720 | reloc_scn->shdr.sh_name); |
| 1721 | |
| 1722 | INFO("\tsection [%s] contains %d unfinished relocs.\n", |
| 1723 | sname, |
| 1724 | unfinished->num_rels); |
| 1725 | |
| 1726 | for (unf_idx = 0; unf_idx < unfinished->num_rels; unf_idx++) |
| 1727 | { |
| 1728 | /* There are unfinished relocations. Copy them forward to the |
| 1729 | lowest section we can. */ |
| 1730 | |
| 1731 | while (next_rel_off == |
| 1732 | (int)(next->shdr.sh_size/next->shdr.sh_entsize)) |
| 1733 | { |
| 1734 | INFO("\tsection [%s] has filled up with %d unfinished " |
| 1735 | "relocs.\n", |
| 1736 | sname, |
| 1737 | next_rel_off); |
| 1738 | |
| 1739 | next_idx++; |
| 1740 | ASSERT(next_idx <= idx); |
| 1741 | next = (section_info_t *)scns[next_idx].user; |
| 1742 | next_rel_off = 0; |
| 1743 | } |
| 1744 | |
| 1745 | if (!adjust_section_size_only) { |
| 1746 | INFO("\t\tmoving unfinished relocation %2d to [%s:%d]\n", |
| 1747 | unf_idx, |
| 1748 | sname, |
| 1749 | next_rel_off); |
| 1750 | FAILIF_LIBELF(0 == |
| 1751 | gelf_update_rel(next->data, |
| 1752 | next_rel_off, |
| 1753 | &unfinished->rels[unf_idx]), |
| 1754 | gelf_update_rel); |
| 1755 | } |
| 1756 | |
| 1757 | next_rel_off++; |
| 1758 | dyn->num_unfinished_relocs++; |
| 1759 | } |
| 1760 | } /* for */ |
| 1761 | |
| 1762 | /* Set the size of the last section, and mark all subsequent |
| 1763 | sections for removal. At this point, next is the section |
| 1764 | to which we last wrote data, next_rel_off is the offset before |
| 1765 | which we wrote the last relocation, and so next_rel_off * |
| 1766 | relsize is the new size of the section. |
| 1767 | */ |
| 1768 | |
| 1769 | bool adjust_file = ADJUST_ELF && source->elf_hdr.e_type != ET_EXEC; |
| 1770 | if (adjust_file && !source->dry_run) |
| 1771 | { |
| 1772 | size_t relsize = gelf_fsize(source->elf, |
| 1773 | ELF_T_REL, |
| 1774 | 1, |
| 1775 | source->elf_hdr.e_version); |
| 1776 | |
| 1777 | ASSERT(next->info == NULL || |
| 1778 | next->shdr.sh_name == next->info->old_shdr.sh_name); |
| 1779 | const char *sname = |
| 1780 | elf_strptr(source->oldelf, |
| 1781 | source->shstrndx, |
| 1782 | next->shdr.sh_name); |
| 1783 | |
| 1784 | INFO("\tsection [%s] (index %d) has %d unfinished relocs, " |
| 1785 | "changing its size to %ld bytes (from %ld bytes).\n", |
| 1786 | sname, |
| 1787 | elf_ndxscn(next->scn), |
| 1788 | next_rel_off, |
| 1789 | (long)(next_rel_off * relsize), |
| 1790 | (long)(next->shdr.sh_size)); |
| 1791 | |
| 1792 | /* source->shdr_info[] must be allocated prior to calling this |
| 1793 | function. This is in fact done in process_file(), by calling |
| 1794 | setup_shdr_info() just before we call adjust_dynamic_segment(). |
| 1795 | */ |
| 1796 | ASSERT(source->shdr_info != NULL); |
| 1797 | |
| 1798 | /* We do not update the data field of shdr_info[], because it does |
| 1799 | not exist yet (with ADJUST_ELF != 0). We create the new section |
| 1800 | and section data after the first call to prelink(). For now, we |
| 1801 | save the results of our analysis by modifying the sh_size field |
| 1802 | of the section header. When we create the new sections' data, |
| 1803 | we set the size of the data from the sh_size fields of the |
| 1804 | section headers. |
| 1805 | |
| 1806 | NOTE: The assertion applies only to the first call of |
| 1807 | adjust_dynamic_segment (which calls this function). By |
| 1808 | the second call, we've already created the data for the |
| 1809 | new sections. The only sections for which we haven't |
| 1810 | created data are the relocation sections we are removing. |
| 1811 | */ |
| 1812 | #ifdef DEBUG |
| 1813 | ASSERT((!adjust_section_size_only && |
| 1814 | (source->shdr_info[elf_ndxscn(next->scn)].idx > 0)) || |
| 1815 | source->shdr_info[elf_ndxscn(next->scn)].data == NULL); |
| 1816 | #endif |
| 1817 | |
| 1818 | //FIXME: what else do we need to do here? Do we need to update |
| 1819 | // another copy of the shdr so that it's picked up when we |
| 1820 | // commit the file? |
| 1821 | next->shdr.sh_size = next_rel_off * relsize; |
| 1822 | source->shdr_info[elf_ndxscn(next->scn)].shdr.sh_size = |
| 1823 | next->shdr.sh_size; |
| 1824 | if (next_rel_off * relsize == 0) { |
| 1825 | #ifdef REMOVE_HANDLED_SECTIONS |
| 1826 | INFO("\tsection [%s] (index %d) is now empty, marking for " |
| 1827 | "removal.\n", |
| 1828 | sname, |
| 1829 | elf_ndxscn(next->scn)); |
| 1830 | source->shdr_info[elf_ndxscn(next->scn)].idx = 0; |
| 1831 | dropped_sections = true; |
| 1832 | #endif |
| 1833 | } |
| 1834 | |
| 1835 | while (++next_idx < num_scns) { |
| 1836 | next = (section_info_t *)scns[next_idx].user; |
| 1837 | #ifdef REMOVE_HANDLED_SECTIONS |
| 1838 | ASSERT(next->info == NULL || |
| 1839 | next->shdr.sh_name == next->info->old_shdr.sh_name); |
| 1840 | const char *sname = |
| 1841 | elf_strptr(source->oldelf, |
| 1842 | source->shstrndx, |
| 1843 | next->shdr.sh_name); |
| 1844 | INFO("\tsection [%s] (index %d) is now empty, marking for " |
| 1845 | "removal.\n", |
| 1846 | sname, |
| 1847 | elf_ndxscn(next->scn)); |
| 1848 | /* mark for removal */ |
| 1849 | source->shdr_info[elf_ndxscn(next->scn)].idx = 0; |
| 1850 | dropped_sections = true; |
| 1851 | #endif |
| 1852 | } |
| 1853 | } |
| 1854 | |
| 1855 | } /* if (dyn->sections) */ |
| 1856 | else { |
| 1857 | /* The dynamic entry won't have any sections when it itself doesn't |
| 1858 | exist. This could happen when we remove all relocation sections |
| 1859 | from a dynamic entry because we have managed to handle all |
| 1860 | relocations in them. |
| 1861 | */ |
| 1862 | INFO("\tNo section for dynamic entry!\n"); |
| 1863 | } |
| 1864 | |
| 1865 | return dropped_sections; |
| 1866 | } |
| 1867 | |
| 1868 | static bool adjust_dynamic_segment(source_t *source, |
| 1869 | bool adjust_section_size_only) |
| 1870 | { |
| 1871 | bool dropped_section; |
| 1872 | INFO("Adjusting dynamic segment%s.\n", |
| 1873 | (adjust_section_size_only ? " (section sizes only)" : "")); |
| 1874 | INFO("\tadjusting dynamic segment REL.\n"); |
| 1875 | dropped_section = |
| 1876 | adjust_dynamic_segment_for(source, &source->rel, |
| 1877 | adjust_section_size_only); |
| 1878 | INFO("\tadjusting dynamic segment JMPREL.\n"); |
| 1879 | dropped_section = |
| 1880 | adjust_dynamic_segment_for(source, &source->jmprel, |
| 1881 | adjust_section_size_only) || |
| 1882 | dropped_section; |
| 1883 | if (!adjust_section_size_only) |
| 1884 | adjust_dynamic_segment_entries(source); |
| 1885 | return dropped_section; |
| 1886 | } |
| 1887 | |
| 1888 | static void match_relocation_sections_to_dynamic_ranges(source_t *source) |
| 1889 | { |
| 1890 | /* We've gathered all the DT_DYNAMIC entries; now we need to figure out |
| 1891 | which relocation sections fit in which range as described by the |
| 1892 | entries. |
| 1893 | */ |
| 1894 | |
| 1895 | int relidx; |
| 1896 | for (relidx = 0; relidx < source->num_relocation_sections; relidx++) { |
| 1897 | section_info_t *reloc_scn = &source->relocation_sections[relidx]; |
| 1898 | |
| 1899 | int index = elf_ndxscn(reloc_scn->scn); |
| 1900 | |
| 1901 | ASSERT(reloc_scn->info == NULL || |
| 1902 | reloc_scn->shdr.sh_name == reloc_scn->info->old_shdr.sh_name); |
| 1903 | const char *sname = |
| 1904 | elf_strptr(source->oldelf, |
| 1905 | source->shstrndx, |
| 1906 | reloc_scn->shdr.sh_name); |
| 1907 | |
| 1908 | INFO("Checking section [%s], index %d, for match to dynamic ranges\n", |
| 1909 | sname, index); |
| 1910 | if (source->shdr_info == NULL || reloc_scn->info->idx > 0) { |
| 1911 | if (source->rel.addr && |
| 1912 | source->rel.addr <= reloc_scn->shdr.sh_addr && |
| 1913 | reloc_scn->shdr.sh_addr < source->rel.addr + source->rel.size) |
| 1914 | { |
| 1915 | /* The entire section must fit in the dynamic range. */ |
| 1916 | if((reloc_scn->shdr.sh_addr + reloc_scn->shdr.sh_size) > |
| 1917 | (source->rel.addr + source->rel.size)) |
| 1918 | { |
| 1919 | PRINT("WARNING: In [%s], section %s:[%lld,%lld) " |
| 1920 | "is not fully contained in dynamic range " |
| 1921 | "[%lld,%lld)!\n", |
| 1922 | source->name, |
| 1923 | sname, |
| 1924 | reloc_scn->shdr.sh_addr, |
| 1925 | reloc_scn->shdr.sh_addr + |
| 1926 | reloc_scn->shdr.sh_size, |
| 1927 | source->rel.addr, |
| 1928 | source->rel.addr + source->rel.size); |
| 1929 | } |
| 1930 | |
| 1931 | if (NULL == source->rel.sections) { |
| 1932 | source->rel.sections = init_range_list(); |
| 1933 | ASSERT(source->rel.sections); |
| 1934 | } |
| 1935 | add_unique_range_nosort(source->rel.sections, |
| 1936 | reloc_scn->shdr.sh_addr, |
| 1937 | reloc_scn->shdr.sh_size, |
| 1938 | reloc_scn, |
| 1939 | NULL, |
| 1940 | NULL); |
| 1941 | INFO("\tSection [%s] matches dynamic range REL.\n", |
| 1942 | sname); |
| 1943 | } |
| 1944 | else if (source->jmprel.addr && |
| 1945 | source->jmprel.addr <= reloc_scn->shdr.sh_addr && |
| 1946 | reloc_scn->shdr.sh_addr <= source->jmprel.addr + |
| 1947 | source->jmprel.size) |
| 1948 | { |
| 1949 | if((reloc_scn->shdr.sh_addr + reloc_scn->shdr.sh_size) > |
| 1950 | (source->jmprel.addr + source->jmprel.size)) |
| 1951 | { |
| 1952 | PRINT("WARNING: In [%s], section %s:[%lld,%lld) " |
| 1953 | "is not fully " |
| 1954 | "contained in dynamic range [%lld,%lld)!\n", |
| 1955 | source->name, |
| 1956 | sname, |
| 1957 | reloc_scn->shdr.sh_addr, |
| 1958 | reloc_scn->shdr.sh_addr + |
| 1959 | reloc_scn->shdr.sh_size, |
| 1960 | source->jmprel.addr, |
| 1961 | source->jmprel.addr + source->jmprel.size); |
| 1962 | } |
| 1963 | |
| 1964 | if (NULL == source->jmprel.sections) { |
| 1965 | source->jmprel.sections = init_range_list(); |
| 1966 | ASSERT(source->jmprel.sections); |
| 1967 | } |
| 1968 | add_unique_range_nosort(source->jmprel.sections, |
| 1969 | reloc_scn->shdr.sh_addr, |
| 1970 | reloc_scn->shdr.sh_size, |
| 1971 | reloc_scn, |
| 1972 | NULL, |
| 1973 | NULL); |
| 1974 | INFO("\tSection [%s] matches dynamic range JMPREL.\n", |
| 1975 | sname); |
| 1976 | } |
| 1977 | else |
| 1978 | PRINT("WARNING: Relocation section [%s:%s] does not match " |
| 1979 | "any DT_ entry.\n", |
| 1980 | source->name, |
| 1981 | sname); |
| 1982 | } |
| 1983 | else { |
| 1984 | INFO("Section [%s] was removed, not matching it to dynamic " |
| 1985 | "ranges.\n", |
| 1986 | sname); |
| 1987 | } |
| 1988 | } /* for ... */ |
| 1989 | |
| 1990 | if (source->rel.sections) sort_ranges(source->rel.sections); |
| 1991 | if (source->jmprel.sections) sort_ranges(source->jmprel.sections); |
| 1992 | } |
| 1993 | |
| 1994 | static void drop_sections(source_t *source) |
| 1995 | { |
| 1996 | INFO("We are dropping some sections from [%s]--creating section entries " |
| 1997 | "only for remaining sections.\n", |
| 1998 | source->name); |
| 1999 | /* Renumber the sections. The numbers for the sections after those we are |
| 2000 | dropping will be shifted back by the number of dropped sections. */ |
| 2001 | int cnt, idx; |
| 2002 | for (cnt = idx = 1; cnt < source->shnum; ++cnt) { |
| 2003 | if (source->shdr_info[cnt].idx > 0) { |
| 2004 | source->shdr_info[cnt].idx = idx++; |
| 2005 | |
| 2006 | /* Create a new section. */ |
| 2007 | FAILIF_LIBELF((source->shdr_info[cnt].newscn = |
| 2008 | elf_newscn(source->elf)) == NULL, elf_newscn); |
| 2009 | ASSERT(elf_ndxscn (source->shdr_info[cnt].newscn) == |
| 2010 | source->shdr_info[cnt].idx); |
| 2011 | |
| 2012 | /* Copy the section data */ |
| 2013 | Elf_Data *olddata = |
| 2014 | elf_getdata(source->shdr_info[cnt].scn, // old section |
| 2015 | NULL); |
| 2016 | FAILIF_LIBELF(NULL == olddata, elf_getdata); |
| 2017 | Elf_Data *data = |
| 2018 | elf_newdata(source->shdr_info[cnt].newscn); |
| 2019 | FAILIF_LIBELF(NULL == data, elf_newdata); |
| 2020 | *data = *olddata; |
| 2021 | #if COPY_SECTION_DATA_BUFFER |
| 2022 | if (olddata->d_buf != NULL) { |
| 2023 | data->d_buf = MALLOC(data->d_size); |
| 2024 | memcpy(data->d_buf, olddata->d_buf, olddata->d_size); |
| 2025 | } |
| 2026 | #endif |
| 2027 | source->shdr_info[cnt].data = data; |
| 2028 | |
| 2029 | if (data->d_size != |
| 2030 | source->shdr_info[cnt].shdr.sh_size) { |
| 2031 | INFO("Trimming new-section data from %d to %lld bytes " |
| 2032 | "(as calculated by adjust_dynamic_segment()).\n", |
| 2033 | data->d_size, |
| 2034 | source->shdr_info[cnt].shdr.sh_size); |
| 2035 | data->d_size = |
| 2036 | source->shdr_info[cnt].shdr.sh_size; |
| 2037 | } |
| 2038 | |
| 2039 | INFO("\tsection [%s] (old offset %lld, old size %lld) " |
| 2040 | "will have index %d (was %d), new size %d\n", |
| 2041 | source->shdr_info[cnt].name, |
| 2042 | source->shdr_info[cnt].old_shdr.sh_offset, |
| 2043 | source->shdr_info[cnt].old_shdr.sh_size, |
| 2044 | source->shdr_info[cnt].idx, |
| 2045 | elf_ndxscn(source->shdr_info[cnt].scn), |
| 2046 | data->d_size); |
| 2047 | } else { |
| 2048 | INFO("\tIgnoring section [%s] (offset %lld, size %lld, index %d), " |
| 2049 | "it will be discarded.\n", |
| 2050 | source->shdr_info[cnt].name, |
| 2051 | source->shdr_info[cnt].shdr.sh_offset, |
| 2052 | source->shdr_info[cnt].shdr.sh_size, |
| 2053 | elf_ndxscn(source->shdr_info[cnt].scn)); |
| 2054 | } |
| 2055 | |
| 2056 | /* NOTE: We mark use_old_shdr_for_relocation_calculations even for the |
| 2057 | sections we are removing. adjust_elf has an assertion that makes |
| 2058 | sure that if the values for the size of a section according to its |
| 2059 | header and its data structure differ, then we are using explicitly |
| 2060 | the old section header for calculations, and that the section in |
| 2061 | question is a relocation section. |
| 2062 | */ |
| 2063 | source->shdr_info[cnt].use_old_shdr_for_relocation_calculations = true; |
| 2064 | } /* for */ |
| 2065 | } |
| 2066 | |
| 2067 | static source_t* process_file(const char *filename, |
| 2068 | const char *output, int is_file, |
| 2069 | void (*report_library_size_in_memory)( |
| 2070 | const char *name, off_t fsize), |
| 2071 | unsigned (*get_next_link_address)( |
| 2072 | const char *name), |
| 2073 | int locals_only, |
| 2074 | char **lib_lookup_dirs, |
| 2075 | int num_lib_lookup_dirs, |
| 2076 | char **default_libs, |
| 2077 | int num_default_libs, |
| 2078 | int dry_run, |
| 2079 | int *total_num_handled_relocs, |
| 2080 | int *total_num_unhandled_relocs) |
| 2081 | { |
| 2082 | /* Look up the file in the list of already-handles files, which are |
| 2083 | represented by source_t structs. If we do not find the file, then we |
| 2084 | haven't prelinked it yet. If we find it, then we have, so we do |
| 2085 | nothing. Keep in mind that apriori operates on an entire collection |
| 2086 | of files, and if application A used library L, and so does application |
| 2087 | B, if we process A first, then by the time we get to B we will have |
| 2088 | prelinked L already; that's why we check first to see if a library has |
| 2089 | been prelinked. |
| 2090 | */ |
| 2091 | source_t *source = |
| 2092 | find_source(filename, lib_lookup_dirs, num_lib_lookup_dirs); |
| 2093 | if (NULL == source) { |
| 2094 | /* If we could not find the source, then it hasn't been processed yet, |
| 2095 | so we go ahead and process it! */ |
| 2096 | INFO("Processing [%s].\n", filename); |
| 2097 | char *full = find_file(filename, lib_lookup_dirs, num_lib_lookup_dirs); |
| 2098 | FAILIF(NULL == full, |
| 2099 | "Could not find [%s] in the current directory or in any of " |
| 2100 | "the search paths!\n", filename); |
| 2101 | |
| 2102 | unsigned base = get_next_link_address(full); |
| 2103 | |
| 2104 | source = init_source(full, output, is_file, base, dry_run); |
| 2105 | |
| 2106 | if (source == NULL) { |
| 2107 | INFO("File [%s] is a static executable.\n", filename); |
| 2108 | return NULL; |
| 2109 | } |
| 2110 | ASSERT(source->dynamic.scn != NULL); |
| 2111 | |
| 2112 | /* We need to increment the next prelink address only when the file we |
| 2113 | are currently handing is a shared library. Executables do not need |
| 2114 | to be prelinked at a different address, they are always at address |
| 2115 | zero. |
| 2116 | |
| 2117 | Also, if we are prelinking locals only, then we are handling a |
| 2118 | single file per invokation of apriori, so there is no need to |
| 2119 | increment the prelink address unless there is a global prelink map, |
| 2120 | in which case we do need to check to see if the library isn't |
| 2121 | running into its neighbouts in the prelink map. |
| 2122 | */ |
| 2123 | if (source->oldelf_hdr.e_type != ET_EXEC && |
| 2124 | (!locals_only || |
| 2125 | report_library_size_in_memory == |
| 2126 | pm_report_library_size_in_memory)) { |
| 2127 | /* This sets the next link address only if an increment was not |
| 2128 | specified by the user. If an address increment was specified, |
| 2129 | then we just check to make sure that the file size is less than |
| 2130 | the increment. |
| 2131 | |
| 2132 | NOTE: The file size is the absolute highest number of bytes that |
| 2133 | the file may occupy in memory, if the entire file is loaded, but |
| 2134 | this is almost next the case. A file will often have sections |
| 2135 | which are not loaded, which could add a lot of size. That's why |
| 2136 | we start off with the file size and then subtract the size of |
| 2137 | the biggest sections that will not get loaded, which are the |
| 2138 | varios DWARF sections, all of which of which are named starting |
| 2139 | with ".debug_". |
| 2140 | |
| 2141 | We could do better than this (by caculating exactly how many |
| 2142 | bytes from that file will be loaded), but that's an overkill. |
| 2143 | Unless the prelink-address increment becomes too small, the file |
| 2144 | size after subtracting the sizes of the DWARF section will be a |
| 2145 | good-enough upper bound. |
| 2146 | */ |
| 2147 | |
| 2148 | unsigned long fsize = source->elf_file_info.st_size; |
| 2149 | INFO("Calculating loadable file size for next link address. " |
| 2150 | "Starting with %ld.\n", fsize); |
| 2151 | if (true) { |
| 2152 | Elf_Scn *scn = NULL; |
| 2153 | GElf_Shdr shdr_mem, *shdr; |
| 2154 | const char *scn_name; |
| 2155 | while ((scn = elf_nextscn (source->oldelf, scn)) != NULL) { |
| 2156 | shdr = gelf_getshdr(scn, &shdr_mem); |
| 2157 | FAILIF_LIBELF(NULL == shdr, gelf_getshdr); |
| 2158 | scn_name = elf_strptr (source->oldelf, |
| 2159 | source->shstrndx, shdr->sh_name); |
| 2160 | ASSERT(scn_name != NULL); |
| 2161 | |
| 2162 | if (!(shdr->sh_flags & SHF_ALLOC)) { |
| 2163 | INFO("\tDecrementing by %lld on account of section " |
| 2164 | "[%s].\n", |
| 2165 | shdr->sh_size, |
| 2166 | scn_name); |
| 2167 | fsize -= shdr->sh_size; |
| 2168 | } |
| 2169 | } |
| 2170 | } |
| 2171 | INFO("Done calculating loadable file size for next link address: " |
| 2172 | "Final value is %ld.\n", fsize); |
| 2173 | report_library_size_in_memory(source->name, fsize); |
| 2174 | } |
| 2175 | |
| 2176 | /* Identify the dynamic segment and process it. Specifically, we find |
| 2177 | out what dependencies, if any, this file has. Whenever we encounter |
| 2178 | such a dependency, we process it recursively; we find out where the |
| 2179 | various relocation information sections are stored. */ |
| 2180 | |
| 2181 | size_t dynidx; |
| 2182 | GElf_Dyn *dyn, dyn_mem; |
| 2183 | size_t numdyn = |
| 2184 | source->dynamic.shdr.sh_size / |
| 2185 | source->dynamic.shdr.sh_entsize; |
| 2186 | ASSERT(source->dynamic.shdr.sh_size == source->dynamic.data->d_size); |
| 2187 | |
| 2188 | source->rel.idx = source->rel.sz_idx = -1; |
| 2189 | source->jmprel.idx = source->jmprel.sz_idx = -1; |
| 2190 | |
| 2191 | for (dynidx = 0; dynidx < numdyn; dynidx++) { |
| 2192 | dyn = gelf_getdyn (source->dynamic.data, |
| 2193 | dynidx, |
| 2194 | &dyn_mem); |
| 2195 | FAILIF_LIBELF(NULL == dyn, gelf_getdyn); |
| 2196 | /* When we are processing only the local relocations in a file, |
| 2197 | we don't need to handle any of the dependencies. It won't |
| 2198 | hurt if we do, but we will be doing unnecessary work. |
| 2199 | */ |
| 2200 | switch (dyn->d_tag) |
| 2201 | { |
| 2202 | case DT_NEEDED: |
| 2203 | if (!locals_only) { |
| 2204 | /* Process the needed library recursively. |
| 2205 | */ |
| 2206 | const char *dep_lib = |
| 2207 | #if ELF_STRPTR_IS_BROKEN |
| 2208 | (((char *)elf_getdata( |
| 2209 | elf_getscn(source->elf, |
| 2210 | source->dynamic.shdr.sh_link), |
| 2211 | NULL)->d_buf) + dyn->d_un.d_val); |
| 2212 | #else |
| 2213 | elf_strptr (source->elf, |
| 2214 | source->dynamic.shdr.sh_link, |
| 2215 | dyn->d_un.d_val); |
| 2216 | #endif |
| 2217 | ASSERT(dep_lib != NULL); |
| 2218 | INFO("[%s] depends on [%s].\n", filename, dep_lib); |
| 2219 | ASSERT(output == NULL || is_file == 0); |
| 2220 | source_t *dep = process_file(dep_lib, |
| 2221 | output, is_file, |
| 2222 | report_library_size_in_memory, |
| 2223 | get_next_link_address, |
| 2224 | locals_only, |
| 2225 | lib_lookup_dirs, |
| 2226 | num_lib_lookup_dirs, |
| 2227 | default_libs, |
| 2228 | num_default_libs, |
| 2229 | dry_run, |
| 2230 | total_num_handled_relocs, |
| 2231 | total_num_unhandled_relocs); |
| 2232 | |
| 2233 | /* Add the library to the dependency list. */ |
| 2234 | if (source->num_lib_deps == source->lib_deps_size) { |
| 2235 | source->lib_deps_size += 10; |
| 2236 | source->lib_deps = REALLOC(source->lib_deps, |
| 2237 | source->lib_deps_size * |
| 2238 | sizeof(source_t *)); |
| 2239 | } |
| 2240 | source->lib_deps[source->num_lib_deps++] = dep; |
| 2241 | } |
| 2242 | break; |
| 2243 | case DT_JMPREL: |
| 2244 | source->jmprel.idx = dynidx; |
| 2245 | source->jmprel.addr = dyn->d_un.d_ptr; |
| 2246 | break; |
| 2247 | case DT_PLTRELSZ: |
| 2248 | source->jmprel.sz_idx = dynidx; |
| 2249 | source->jmprel.size = dyn->d_un.d_val; |
| 2250 | break; |
| 2251 | case DT_REL: |
| 2252 | source->rel.idx = dynidx; |
| 2253 | source->rel.addr = dyn->d_un.d_ptr; |
| 2254 | break; |
| 2255 | case DT_RELSZ: |
| 2256 | source->rel.sz_idx = dynidx; |
| 2257 | source->rel.size = dyn->d_un.d_val; |
| 2258 | break; |
| 2259 | case DT_RELA: |
| 2260 | case DT_RELASZ: |
| 2261 | FAILIF(1, "Can't handle DT_RELA and DT_RELASZ entries!\n"); |
| 2262 | break; |
| 2263 | } /* switch */ |
| 2264 | } /* for each dynamic entry... */ |
| 2265 | |
| 2266 | INFO("Handling [%s].\n", filename); |
| 2267 | |
| 2268 | #ifdef SUPPORT_ANDROID_PRELINK_TAGS |
| 2269 | if (!source->prelinked) |
| 2270 | #endif |
| 2271 | { |
| 2272 | /* When ADJUST_ELF is defined, this call to prelink is a dry run |
| 2273 | intended to calculate the number of relocations that could not |
| 2274 | be handled. This, in turn, allows us to calculate the amount by |
| 2275 | which we can shrink the various relocation sections before we |
| 2276 | call adjust_elf. After we've adjusted the sections, we will |
| 2277 | call prelink() one more time to do the actual work. |
| 2278 | |
| 2279 | NOTE: Even when ADJUST_ELF != 0, we cannot adjust an ELF file |
| 2280 | that is an executabe, because an executable is not PIC. |
| 2281 | */ |
| 2282 | |
| 2283 | int num_unfinished_relocs = 0; |
| 2284 | bool adjust_file = ADJUST_ELF && source->elf_hdr.e_type != ET_EXEC; |
| 2285 | INFO("\n\n\tPRELINKING %s\n\n", |
| 2286 | adjust_file ? |
| 2287 | "(CALCULATE NUMBER OF HANDLED RELOCATIONS)" : |
| 2288 | "(ACTUAL)"); |
| 2289 | int num_relocs = prelink(source, locals_only, |
| 2290 | adjust_file || dry_run, |
| 2291 | lib_lookup_dirs, num_lib_lookup_dirs, |
| 2292 | default_libs, num_default_libs, |
| 2293 | &num_unfinished_relocs); |
| 2294 | INFO("[%s]: (calculate changes) handled %d, could not handle %d " |
| 2295 | "relocations.\n", |
| 2296 | source->name, |
| 2297 | num_relocs, |
| 2298 | num_unfinished_relocs); |
| 2299 | |
| 2300 | if (adjust_file && !dry_run) |
| 2301 | { |
| 2302 | /* Find out the new section sizes of the relocation sections, |
| 2303 | but do not move any relocations around, because adjust_elf |
| 2304 | needs to know about all relocations in order to adjust the |
| 2305 | file correctly. |
| 2306 | */ |
| 2307 | match_relocation_sections_to_dynamic_ranges(source); |
| 2308 | |
| 2309 | /* We haven't set up source->shdr_info[] yet, so we do it now. |
| 2310 | |
| 2311 | NOTE: setup_shdr_info() depends only on source->oldelf, not |
| 2312 | on source->elf! source->elf is not even defined yet. We |
| 2313 | initialize source->shdr_info[] based on the section |
| 2314 | information of the unmodified ELF file, and then make our |
| 2315 | modifications in the call to adjust_dynamic_segment() based |
| 2316 | on this information. adjust_dynamic_segment() will |
| 2317 | rearrange the unhandled relocations in the beginning of |
| 2318 | their relocation sections, and adjust the size of those |
| 2319 | relocation sections. In the case when a relocation section |
| 2320 | is completely handled, adjust_dynamic_segment() will mark it |
| 2321 | for removal by function adjust_elf. |
| 2322 | */ |
| 2323 | |
| 2324 | ASSERT(source->elf == source->oldelf); |
| 2325 | ASSERT(source->shdr_info == NULL); |
| 2326 | setup_shdr_info(source); |
| 2327 | ASSERT(source->shdr_info != NULL); |
| 2328 | |
| 2329 | INFO("\n\n\tADJUSTING DYNAMIC SEGMENT " |
| 2330 | "(CALCULATE CHANGES)\n\n"); |
| 2331 | bool drop_some_sections = adjust_dynamic_segment(source, true); |
| 2332 | |
| 2333 | /* Reopen the elf file! Note that we are not doing a dry run |
| 2334 | (the if statement above makes sure of that.) |
| 2335 | |
| 2336 | NOTE: We call init_elf() after we called |
| 2337 | adjust_dynamic_segment() in order to have |
| 2338 | adjust_dynamic_segment() refer to source->oldelf when |
| 2339 | it refers to source->elf. Since |
| 2340 | adjust_dynamic_segment doesn't actually write to the |
| 2341 | ELF file, this is OK. adjust_dynamic_segment() |
| 2342 | updates the sh_size fields of saved section headers |
| 2343 | and optionally marks sections for removal. |
| 2344 | |
| 2345 | Having adjust_dynamic_segment() refer to |
| 2346 | source->oldelf means that we'll have access to |
| 2347 | section-name strings so we can print them out in our |
| 2348 | logging and debug output. |
| 2349 | */ |
| 2350 | source->elf = init_elf(source, false); |
| 2351 | |
| 2352 | /* This is the same code as in init_source() after the call to |
| 2353 | * init_elf(). */ |
| 2354 | ASSERT(source->elf != source->oldelf); |
| 2355 | ebl_closebackend(source->ebl); |
| 2356 | source->ebl = ebl_openbackend (source->elf); |
| 2357 | FAILIF_LIBELF(NULL == source->ebl, ebl_openbackend); |
| 2358 | #ifdef ARM_SPECIFIC_HACKS |
| 2359 | FAILIF_LIBELF(0 != arm_init(source->elf, |
| 2360 | source->elf_hdr.e_machine, |
| 2361 | source->ebl, sizeof(Ebl)), |
| 2362 | arm_init); |
| 2363 | #endif/*ARM_SPECIFIC_HACKS*/ |
| 2364 | |
| 2365 | if (drop_some_sections) |
| 2366 | drop_sections(source); |
| 2367 | else { |
| 2368 | INFO("All sections remain in [%s]--we are changing at " |
| 2369 | "most section sizes.\n", source->name); |
| 2370 | create_elf_sections(source, NULL); |
| 2371 | int cnt, idx; |
| 2372 | for (cnt = idx = 1; cnt < source->shnum; ++cnt) { |
| 2373 | Elf_Data *data = elf_getdata( |
| 2374 | source->shdr_info[cnt].newscn, // new section |
| 2375 | NULL); |
| 2376 | if (data->d_size != |
| 2377 | source->shdr_info[cnt].shdr.sh_size) { |
| 2378 | INFO("Trimming new-section data from %d to %lld " |
| 2379 | "bytes (as calculated by " |
| 2380 | "adjust_dynamic_segment()).\n", |
| 2381 | data->d_size, |
| 2382 | source->shdr_info[cnt].shdr.sh_size); |
| 2383 | data->d_size = source->shdr_info[cnt].shdr.sh_size; |
| 2384 | } |
| 2385 | } |
| 2386 | } |
| 2387 | |
| 2388 | /* Shrink it! */ |
| 2389 | INFO("\n\n\tADJUSTING ELF\n\n"); |
| 2390 | adjust_elf( |
| 2391 | source->oldelf, source->name, |
| 2392 | source->elf, source->name, |
| 2393 | source->ebl, |
| 2394 | &source->old_ehdr_mem, |
| 2395 | NULL, 0, // no symbol filter |
| 2396 | source->shdr_info, // information on how to adjust the ELF |
| 2397 | source->shnum, // length of source->shdr_info[] |
| 2398 | source->phdr_info, // program-header info |
| 2399 | source->shnum, // irrelevant--we're not rebuilding shstrtab |
| 2400 | source->shnum, // number of sections in file |
| 2401 | source->shstrndx, // index of shstrtab (both in |
| 2402 | // shdr_info[] and as a section index) |
| 2403 | NULL, // irrelevant, since we are not rebuilding shstrtab |
| 2404 | drop_some_sections, // some sections are being dropped |
| 2405 | elf_ndxscn(source->dynamic.scn), // index of .dynamic |
| 2406 | elf_ndxscn(source->symtab.scn), // index of .dynsym |
| 2407 | 1, // allow shady business |
| 2408 | &source->shstrtab_data, |
| 2409 | true, |
| 2410 | false); // do not rebuild shstrtab |
| 2411 | |
| 2412 | INFO("\n\n\tREINITIALIZING STRUCTURES " |
| 2413 | "(TO CONTAIN ADJUSTMENTS)\n\n"); |
| 2414 | reinit_source(source); |
| 2415 | |
| 2416 | INFO("\n\n\tPRELINKING (ACTUAL)\n\n"); |
| 2417 | #ifdef DEBUG |
| 2418 | int old_num_unfinished_relocs = num_unfinished_relocs; |
| 2419 | #endif |
| 2420 | num_unfinished_relocs = 0; |
| 2421 | #ifdef DEBUG |
| 2422 | int num_relocs_take_two = |
| 2423 | #endif |
| 2424 | prelink(source, locals_only, |
| 2425 | false, /* not a dry run */ |
| 2426 | lib_lookup_dirs, num_lib_lookup_dirs, |
| 2427 | default_libs, num_default_libs, |
| 2428 | &num_unfinished_relocs); |
| 2429 | |
| 2430 | /* The numbers for the total number of relocations and the |
| 2431 | number of unhandled relocations between the first and second |
| 2432 | invokationof prelink() must be the same! The first time we |
| 2433 | ran prelink() just to calculate the numbers so that we could |
| 2434 | calculate the adjustments to pass to adjust_elf, and the |
| 2435 | second time we actually carry out the prelinking; the |
| 2436 | numbers must stay the same! |
| 2437 | */ |
| 2438 | ASSERT(num_relocs == num_relocs_take_two); |
| 2439 | ASSERT(old_num_unfinished_relocs == num_unfinished_relocs); |
| 2440 | |
| 2441 | INFO("[%s]: (actual prelink) handled %d, could not " |
| 2442 | "handle %d relocations.\n", |
| 2443 | source->name, |
| 2444 | num_relocs, |
| 2445 | num_unfinished_relocs); |
| 2446 | } /* if (adjust_elf && !dry_run) */ |
| 2447 | |
| 2448 | *total_num_handled_relocs += num_relocs; |
| 2449 | *total_num_unhandled_relocs += num_unfinished_relocs; |
| 2450 | |
| 2451 | if(num_unfinished_relocs != 0 && |
| 2452 | source->elf_hdr.e_type != ET_EXEC && |
| 2453 | !locals_only) |
| 2454 | { |
| 2455 | /* One reason you could have unfinished relocations in an |
| 2456 | executable file is if this file used dlopen() and friends. |
| 2457 | We do not adjust relocation entries to those symbols, |
| 2458 | because libdl is a dummy only--the real functions are |
| 2459 | provided for by the dynamic linker itsef. |
| 2460 | |
| 2461 | NOTE FIXME HACK: This is specific to the Android dynamic |
| 2462 | linker, and may not be true in other cases. |
| 2463 | */ |
| 2464 | PRINT("WARNING: Expecting to have unhandled relocations only " |
| 2465 | "for executables (%s is not an executable)!\n", |
| 2466 | source->name); |
| 2467 | } |
| 2468 | |
| 2469 | match_relocation_sections_to_dynamic_ranges(source); |
| 2470 | |
| 2471 | /* Now, for each relocation section, check to see if its address |
| 2472 | matches one of the DT_DYNAMIC relocation pointers. If so, then |
| 2473 | if the section has no unhandled relocations, simply set the |
| 2474 | associated DT_DYNAMIC entry's size to zero. If the section does |
| 2475 | have unhandled entries, then lump them all together at the front |
| 2476 | of the respective section and update the size of the respective |
| 2477 | DT_DYNAMIC entry to the new size of the section. A better |
| 2478 | approach would be do delete a relocation section if it has been |
| 2479 | fully relocated and to remove its entry from the DT_DYNAMIC |
| 2480 | array, and for relocation entries that still have some |
| 2481 | relocations in them, we should shrink the section if that won't |
| 2482 | violate relative offsets. This is more work, however, and for |
| 2483 | the speed improvement we expect from a prelinker, just patching |
| 2484 | up DT_DYNAMIC will suffice. |
| 2485 | |
| 2486 | Note: adjust_dynamic_segment() will modify source->shdr_info[] |
| 2487 | to denote any change in a relocation section's size. This |
| 2488 | will be picked up by adjust_elf, which will rearrange the |
| 2489 | file to eliminate the gap created by the decrease in size |
| 2490 | of the relocation section. We do not need to do this, but |
| 2491 | the relocation section could be large, and reduced |
| 2492 | drastically by the prelinking process, so it pays to |
| 2493 | adjust the file. |
| 2494 | */ |
| 2495 | |
| 2496 | INFO("\n\n\tADJUSTING DYNAMIC SEGMENT (ACTUAL)\n\n"); |
| 2497 | adjust_dynamic_segment(source, false); |
| 2498 | } |
| 2499 | #ifdef SUPPORT_ANDROID_PRELINK_TAGS |
| 2500 | else INFO("[%s] is already prelinked at 0x%08lx.\n", |
| 2501 | filename, |
| 2502 | source->prelink_base); |
| 2503 | #endif |
| 2504 | } else INFO("[%s] has been processed already.\n", filename); |
| 2505 | |
| 2506 | return source; |
| 2507 | } |
| 2508 | |
| 2509 | void apriori(char **execs, int num_execs, |
| 2510 | char *output, |
| 2511 | void (*report_library_size_in_memory)( |
| 2512 | const char *name, off_t fsize), |
| 2513 | int (*get_next_link_address)(const char *name), |
| 2514 | int locals_only, |
| 2515 | int dry_run, |
| 2516 | char **lib_lookup_dirs, int num_lib_lookup_dirs, |
| 2517 | char **default_libs, int num_default_libs, |
| 2518 | char *mapfile) |
| 2519 | { |
| 2520 | source_t *source; /* for general usage */ |
| 2521 | int input_idx; |
| 2522 | |
| 2523 | ASSERT(report_library_size_in_memory != NULL); |
| 2524 | ASSERT(get_next_link_address != NULL); |
| 2525 | |
| 2526 | /* Process and prelink each executable and object file. Function |
| 2527 | process_file() is called for each executable in the loop below. |
| 2528 | It calls itself recursively for each library. We prelink each library |
| 2529 | after prelinking its dependencies. */ |
| 2530 | int total_num_handled_relocs = 0, total_num_unhandled_relocs = 0; |
| 2531 | for (input_idx = 0; input_idx < num_execs; input_idx++) { |
| 2532 | INFO("executable: [%s]\n", execs[input_idx]); |
| 2533 | /* Here process_file() is actually processing the top-level |
| 2534 | executable files. */ |
| 2535 | process_file(execs[input_idx], output, num_execs == 1, |
| 2536 | report_library_size_in_memory, |
| 2537 | get_next_link_address, /* executables get a link address |
| 2538 | of zero, regardless of this |
| 2539 | value */ |
| 2540 | locals_only, |
| 2541 | lib_lookup_dirs, num_lib_lookup_dirs, |
| 2542 | default_libs, num_default_libs, |
| 2543 | dry_run, |
| 2544 | &total_num_handled_relocs, |
| 2545 | &total_num_unhandled_relocs); |
| 2546 | /* if source is NULL, then the respective executable is static */ |
| 2547 | /* Mark the source as an executable */ |
| 2548 | } /* for each input executable... */ |
| 2549 | |
| 2550 | PRINT("Handled %d relocations.\n", total_num_handled_relocs); |
| 2551 | PRINT("Could not handle %d relocations.\n", total_num_unhandled_relocs); |
| 2552 | |
| 2553 | /* We are done! Since the end result of our calculations is a set of |
| 2554 | symbols for each library that other libraries or executables link |
| 2555 | against, we iterate over the set of libraries one last time, and for |
| 2556 | each symbol that is marked as satisfying some dependence, we emit |
| 2557 | a line with the symbol's name to a text file derived from the library's |
| 2558 | name by appending the suffix .syms to it. */ |
| 2559 | |
| 2560 | if (mapfile != NULL) { |
| 2561 | const char *mapfile_name = mapfile; |
| 2562 | FILE *fp; |
| 2563 | if (*mapfile == '+') { |
| 2564 | mapfile_name = mapfile + 1; |
| 2565 | INFO("Opening map file %s for append/write.\n", |
| 2566 | mapfile_name); |
| 2567 | fp = fopen(mapfile_name, "a"); |
| 2568 | } |
| 2569 | else fp = fopen(mapfile_name, "w"); |
| 2570 | |
| 2571 | FAILIF(fp == NULL, "Cannot open file [%s]: %s (%d)!\n", |
| 2572 | mapfile_name, |
| 2573 | strerror(errno), |
| 2574 | errno); |
| 2575 | source = sources; |
| 2576 | while (source) { |
| 2577 | /* If it's a library, print the results. */ |
| 2578 | if (source->elf_hdr.e_type == ET_DYN) { |
| 2579 | /* Add to the memory map file. */ |
| 2580 | fprintf(fp, "%s 0x%08lx %lld\n", |
| 2581 | basename(source->name), |
| 2582 | source->base, |
| 2583 | source->elf_file_info.st_size); |
| 2584 | } |
| 2585 | source = source->next; |
| 2586 | } |
| 2587 | fclose(fp); |
| 2588 | } |
| 2589 | |
| 2590 | /* Free the resources--you can't do it in the loop above because function |
| 2591 | print_symbol_references() accesses nodes other than the one being |
| 2592 | iterated over. |
| 2593 | */ |
| 2594 | source = sources; |
| 2595 | while (source) { |
| 2596 | source_t *old = source; |
| 2597 | source = source->next; |
| 2598 | /* Destroy the evidence. */ |
| 2599 | destroy_source(old); |
| 2600 | } |
| 2601 | } |