blob: d93b957aa4c3b6d032e86b8755bcb57ed6817d00 [file] [log] [blame]
// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package blueprint
import (
"bytes"
"context"
"encoding/json"
"errors"
"fmt"
"io"
"io/ioutil"
"os"
"path/filepath"
"reflect"
"runtime"
"runtime/pprof"
"sort"
"strings"
"sync"
"sync/atomic"
"text/scanner"
"text/template"
"github.com/google/blueprint/parser"
"github.com/google/blueprint/pathtools"
"github.com/google/blueprint/proptools"
)
var ErrBuildActionsNotReady = errors.New("build actions are not ready")
const maxErrors = 10
const MockModuleListFile = "bplist"
// A Context contains all the state needed to parse a set of Blueprints files
// and generate a Ninja file. The process of generating a Ninja file proceeds
// through a series of four phases. Each phase corresponds with a some methods
// on the Context object
//
// Phase Methods
// ------------ -------------------------------------------
// 1. Registration RegisterModuleType, RegisterSingletonType
//
// 2. Parse ParseBlueprintsFiles, Parse
//
// 3. Generate ResolveDependencies, PrepareBuildActions
//
// 4. Write WriteBuildFile
//
// The registration phase prepares the context to process Blueprints files
// containing various types of modules. The parse phase reads in one or more
// Blueprints files and validates their contents against the module types that
// have been registered. The generate phase then analyzes the parsed Blueprints
// contents to create an internal representation for the build actions that must
// be performed. This phase also performs validation of the module dependencies
// and property values defined in the parsed Blueprints files. Finally, the
// write phase generates the Ninja manifest text based on the generated build
// actions.
type Context struct {
context.Context
// set at instantiation
moduleFactories map[string]ModuleFactory
nameInterface NameInterface
moduleGroups []*moduleGroup
moduleInfo map[Module]*moduleInfo
modulesSorted []*moduleInfo
preSingletonInfo []*singletonInfo
singletonInfo []*singletonInfo
mutatorInfo []*mutatorInfo
earlyMutatorInfo []*mutatorInfo
variantMutatorNames []string
depsModified uint32 // positive if a mutator modified the dependencies
dependenciesReady bool // set to true on a successful ResolveDependencies
buildActionsReady bool // set to true on a successful PrepareBuildActions
// set by SetIgnoreUnknownModuleTypes
ignoreUnknownModuleTypes bool
// set by SetAllowMissingDependencies
allowMissingDependencies bool
// set during PrepareBuildActions
pkgNames map[*packageContext]string
liveGlobals *liveTracker
globalVariables map[Variable]ninjaString
globalPools map[Pool]*poolDef
globalRules map[Rule]*ruleDef
// set during PrepareBuildActions
outDir ninjaString // The builddir special Ninja variable
requiredNinjaMajor int // For the ninja_required_version variable
requiredNinjaMinor int // For the ninja_required_version variable
requiredNinjaMicro int // For the ninja_required_version variable
subninjas []string
// set lazily by sortedModuleGroups
cachedSortedModuleGroups []*moduleGroup
// cache deps modified to determine whether cachedSortedModuleGroups needs to be recalculated
cachedDepsModified bool
globs map[globKey]pathtools.GlobResult
globLock sync.Mutex
srcDir string
fs pathtools.FileSystem
moduleListFile string
// Mutators indexed by the ID of the provider associated with them. Not all mutators will
// have providers, and not all providers will have a mutator, or if they do the mutator may
// not be registered in this Context.
providerMutators []*mutatorInfo
// The currently running mutator
startedMutator *mutatorInfo
// True for any mutators that have already run over all modules
finishedMutators map[*mutatorInfo]bool
// Can be set by tests to avoid invalidating Module values after mutators.
skipCloneModulesAfterMutators bool
}
// An Error describes a problem that was encountered that is related to a
// particular location in a Blueprints file.
type BlueprintError struct {
Err error // the error that occurred
Pos scanner.Position // the relevant Blueprints file location
}
// A ModuleError describes a problem that was encountered that is related to a
// particular module in a Blueprints file
type ModuleError struct {
BlueprintError
module *moduleInfo
}
// A PropertyError describes a problem that was encountered that is related to a
// particular property in a Blueprints file
type PropertyError struct {
ModuleError
property string
}
func (e *BlueprintError) Error() string {
return fmt.Sprintf("%s: %s", e.Pos, e.Err)
}
func (e *ModuleError) Error() string {
return fmt.Sprintf("%s: %s: %s", e.Pos, e.module, e.Err)
}
func (e *PropertyError) Error() string {
return fmt.Sprintf("%s: %s: %s: %s", e.Pos, e.module, e.property, e.Err)
}
type localBuildActions struct {
variables []*localVariable
rules []*localRule
buildDefs []*buildDef
}
type moduleAlias struct {
variant variant
target *moduleInfo
}
func (m *moduleAlias) alias() *moduleAlias { return m }
func (m *moduleAlias) module() *moduleInfo { return nil }
func (m *moduleAlias) moduleOrAliasTarget() *moduleInfo { return m.target }
func (m *moduleAlias) moduleOrAliasVariant() variant { return m.variant }
func (m *moduleInfo) alias() *moduleAlias { return nil }
func (m *moduleInfo) module() *moduleInfo { return m }
func (m *moduleInfo) moduleOrAliasTarget() *moduleInfo { return m }
func (m *moduleInfo) moduleOrAliasVariant() variant { return m.variant }
type moduleOrAlias interface {
alias() *moduleAlias
module() *moduleInfo
moduleOrAliasTarget() *moduleInfo
moduleOrAliasVariant() variant
}
type modulesOrAliases []moduleOrAlias
func (l modulesOrAliases) firstModule() *moduleInfo {
for _, moduleOrAlias := range l {
if m := moduleOrAlias.module(); m != nil {
return m
}
}
panic(fmt.Errorf("no first module!"))
}
func (l modulesOrAliases) lastModule() *moduleInfo {
for i := range l {
if m := l[len(l)-1-i].module(); m != nil {
return m
}
}
panic(fmt.Errorf("no last module!"))
}
type moduleGroup struct {
name string
ninjaName string
modules modulesOrAliases
namespace Namespace
}
func (group *moduleGroup) moduleOrAliasByVariantName(name string) moduleOrAlias {
for _, module := range group.modules {
if module.moduleOrAliasVariant().name == name {
return module
}
}
return nil
}
func (group *moduleGroup) moduleByVariantName(name string) *moduleInfo {
return group.moduleOrAliasByVariantName(name).module()
}
type moduleInfo struct {
// set during Parse
typeName string
factory ModuleFactory
relBlueprintsFile string
pos scanner.Position
propertyPos map[string]scanner.Position
createdBy *moduleInfo
variant variant
logicModule Module
group *moduleGroup
properties []interface{}
// set during ResolveDependencies
missingDeps []string
newDirectDeps []depInfo
// set during updateDependencies
reverseDeps []*moduleInfo
forwardDeps []*moduleInfo
directDeps []depInfo
// used by parallelVisit
waitingCount int
// set during each runMutator
splitModules modulesOrAliases
// set during PrepareBuildActions
actionDefs localBuildActions
providers []interface{}
startedMutator *mutatorInfo
finishedMutator *mutatorInfo
startedGenerateBuildActions bool
finishedGenerateBuildActions bool
}
type variant struct {
name string
variations variationMap
dependencyVariations variationMap
}
type depInfo struct {
module *moduleInfo
tag DependencyTag
}
func (module *moduleInfo) Name() string {
// If this is called from a LoadHook (which is run before the module has been registered)
// then group will not be set and so the name is retrieved from logicModule.Name().
// Usually, using that method is not safe as it does not track renames (group.name does).
// However, when called from LoadHook it is safe as there is no way to rename a module
// until after the LoadHook has run and the module has been registered.
if module.group != nil {
return module.group.name
} else {
return module.logicModule.Name()
}
}
func (module *moduleInfo) String() string {
s := fmt.Sprintf("module %q", module.Name())
if module.variant.name != "" {
s += fmt.Sprintf(" variant %q", module.variant.name)
}
if module.createdBy != nil {
s += fmt.Sprintf(" (created by %s)", module.createdBy)
}
return s
}
func (module *moduleInfo) namespace() Namespace {
return module.group.namespace
}
// A Variation is a way that a variant of a module differs from other variants of the same module.
// For example, two variants of the same module might have Variation{"arch","arm"} and
// Variation{"arch","arm64"}
type Variation struct {
// Mutator is the axis on which this variation applies, i.e. "arch" or "link"
Mutator string
// Variation is the name of the variation on the axis, i.e. "arm" or "arm64" for arch, or
// "shared" or "static" for link.
Variation string
}
// A variationMap stores a map of Mutator to Variation to specify a variant of a module.
type variationMap map[string]string
func (vm variationMap) clone() variationMap {
if vm == nil {
return nil
}
newVm := make(variationMap)
for k, v := range vm {
newVm[k] = v
}
return newVm
}
// Compare this variationMap to another one. Returns true if the every entry in this map
// exists and has the same value in the other map.
func (vm variationMap) subsetOf(other variationMap) bool {
for k, v1 := range vm {
if v2, ok := other[k]; !ok || v1 != v2 {
return false
}
}
return true
}
func (vm variationMap) equal(other variationMap) bool {
return reflect.DeepEqual(vm, other)
}
type singletonInfo struct {
// set during RegisterSingletonType
factory SingletonFactory
singleton Singleton
name string
// set during PrepareBuildActions
actionDefs localBuildActions
}
type mutatorInfo struct {
// set during RegisterMutator
topDownMutator TopDownMutator
bottomUpMutator BottomUpMutator
name string
parallel bool
}
func newContext() *Context {
return &Context{
Context: context.Background(),
moduleFactories: make(map[string]ModuleFactory),
nameInterface: NewSimpleNameInterface(),
moduleInfo: make(map[Module]*moduleInfo),
globs: make(map[globKey]pathtools.GlobResult),
fs: pathtools.OsFs,
finishedMutators: make(map[*mutatorInfo]bool),
outDir: nil,
requiredNinjaMajor: 1,
requiredNinjaMinor: 7,
requiredNinjaMicro: 0,
}
}
// NewContext creates a new Context object. The created context initially has
// no module or singleton factories registered, so the RegisterModuleFactory and
// RegisterSingletonFactory methods must be called before it can do anything
// useful.
func NewContext() *Context {
ctx := newContext()
ctx.RegisterBottomUpMutator("blueprint_deps", blueprintDepsMutator)
return ctx
}
// A ModuleFactory function creates a new Module object. See the
// Context.RegisterModuleType method for details about how a registered
// ModuleFactory is used by a Context.
type ModuleFactory func() (m Module, propertyStructs []interface{})
// RegisterModuleType associates a module type name (which can appear in a
// Blueprints file) with a Module factory function. When the given module type
// name is encountered in a Blueprints file during parsing, the Module factory
// is invoked to instantiate a new Module object to handle the build action
// generation for the module. If a Mutator splits a module into multiple variants,
// the factory is invoked again to create a new Module for each variant.
//
// The module type names given here must be unique for the context. The factory
// function should be a named function so that its package and name can be
// included in the generated Ninja file for debugging purposes.
//
// The factory function returns two values. The first is the newly created
// Module object. The second is a slice of pointers to that Module object's
// properties structs. Each properties struct is examined when parsing a module
// definition of this type in a Blueprints file. Exported fields of the
// properties structs are automatically set to the property values specified in
// the Blueprints file. The properties struct field names determine the name of
// the Blueprints file properties that are used - the Blueprints property name
// matches that of the properties struct field name with the first letter
// converted to lower-case.
//
// The fields of the properties struct must be either []string, a string, or
// bool. The Context will panic if a Module gets instantiated with a properties
// struct containing a field that is not one these supported types.
//
// Any properties that appear in the Blueprints files that are not built-in
// module properties (such as "name" and "deps") and do not have a corresponding
// field in the returned module properties struct result in an error during the
// Context's parse phase.
//
// As an example, the follow code:
//
// type myModule struct {
// properties struct {
// Foo string
// Bar []string
// }
// }
//
// func NewMyModule() (blueprint.Module, []interface{}) {
// module := new(myModule)
// properties := &module.properties
// return module, []interface{}{properties}
// }
//
// func main() {
// ctx := blueprint.NewContext()
// ctx.RegisterModuleType("my_module", NewMyModule)
// // ...
// }
//
// would support parsing a module defined in a Blueprints file as follows:
//
// my_module {
// name: "myName",
// foo: "my foo string",
// bar: ["my", "bar", "strings"],
// }
//
// The factory function may be called from multiple goroutines. Any accesses
// to global variables must be synchronized.
func (c *Context) RegisterModuleType(name string, factory ModuleFactory) {
if _, present := c.moduleFactories[name]; present {
panic(errors.New("module type name is already registered"))
}
c.moduleFactories[name] = factory
}
// A SingletonFactory function creates a new Singleton object. See the
// Context.RegisterSingletonType method for details about how a registered
// SingletonFactory is used by a Context.
type SingletonFactory func() Singleton
// RegisterSingletonType registers a singleton type that will be invoked to
// generate build actions. Each registered singleton type is instantiated
// and invoked exactly once as part of the generate phase. Each registered
// singleton is invoked in registration order.
//
// The singleton type names given here must be unique for the context. The
// factory function should be a named function so that its package and name can
// be included in the generated Ninja file for debugging purposes.
func (c *Context) RegisterSingletonType(name string, factory SingletonFactory) {
for _, s := range c.singletonInfo {
if s.name == name {
panic(errors.New("singleton name is already registered"))
}
}
c.singletonInfo = append(c.singletonInfo, &singletonInfo{
factory: factory,
singleton: factory(),
name: name,
})
}
// RegisterPreSingletonType registers a presingleton type that will be invoked to
// generate build actions before any Blueprint files have been read. Each registered
// presingleton type is instantiated and invoked exactly once at the beginning of the
// parse phase. Each registered presingleton is invoked in registration order.
//
// The presingleton type names given here must be unique for the context. The
// factory function should be a named function so that its package and name can
// be included in the generated Ninja file for debugging purposes.
func (c *Context) RegisterPreSingletonType(name string, factory SingletonFactory) {
for _, s := range c.preSingletonInfo {
if s.name == name {
panic(errors.New("presingleton name is already registered"))
}
}
c.preSingletonInfo = append(c.preSingletonInfo, &singletonInfo{
factory: factory,
singleton: factory(),
name: name,
})
}
func (c *Context) SetNameInterface(i NameInterface) {
c.nameInterface = i
}
func (c *Context) SetSrcDir(path string) {
c.srcDir = path
c.fs = pathtools.NewOsFs(path)
}
func (c *Context) SrcDir() string {
return c.srcDir
}
func singletonPkgPath(singleton Singleton) string {
typ := reflect.TypeOf(singleton)
for typ.Kind() == reflect.Ptr {
typ = typ.Elem()
}
return typ.PkgPath()
}
func singletonTypeName(singleton Singleton) string {
typ := reflect.TypeOf(singleton)
for typ.Kind() == reflect.Ptr {
typ = typ.Elem()
}
return typ.PkgPath() + "." + typ.Name()
}
// RegisterTopDownMutator registers a mutator that will be invoked to propagate dependency info
// top-down between Modules. Each registered mutator is invoked in registration order (mixing
// TopDownMutators and BottomUpMutators) once per Module, and the invocation on any module will
// have returned before it is in invoked on any of its dependencies.
//
// The mutator type names given here must be unique to all top down mutators in
// the Context.
//
// Returns a MutatorHandle, on which Parallel can be called to set the mutator to visit modules in
// parallel while maintaining ordering.
func (c *Context) RegisterTopDownMutator(name string, mutator TopDownMutator) MutatorHandle {
for _, m := range c.mutatorInfo {
if m.name == name && m.topDownMutator != nil {
panic(fmt.Errorf("mutator name %s is already registered", name))
}
}
info := &mutatorInfo{
topDownMutator: mutator,
name: name,
}
c.mutatorInfo = append(c.mutatorInfo, info)
return info
}
// RegisterBottomUpMutator registers a mutator that will be invoked to split Modules into variants.
// Each registered mutator is invoked in registration order (mixing TopDownMutators and
// BottomUpMutators) once per Module, will not be invoked on a module until the invocations on all
// of the modules dependencies have returned.
//
// The mutator type names given here must be unique to all bottom up or early
// mutators in the Context.
//
// Returns a MutatorHandle, on which Parallel can be called to set the mutator to visit modules in
// parallel while maintaining ordering.
func (c *Context) RegisterBottomUpMutator(name string, mutator BottomUpMutator) MutatorHandle {
for _, m := range c.variantMutatorNames {
if m == name {
panic(fmt.Errorf("mutator name %s is already registered", name))
}
}
info := &mutatorInfo{
bottomUpMutator: mutator,
name: name,
}
c.mutatorInfo = append(c.mutatorInfo, info)
c.variantMutatorNames = append(c.variantMutatorNames, name)
return info
}
type MutatorHandle interface {
// Set the mutator to visit modules in parallel while maintaining ordering. Calling any
// method on the mutator context is thread-safe, but the mutator must handle synchronization
// for any modifications to global state or any modules outside the one it was invoked on.
Parallel() MutatorHandle
}
func (mutator *mutatorInfo) Parallel() MutatorHandle {
mutator.parallel = true
return mutator
}
// RegisterEarlyMutator registers a mutator that will be invoked to split
// Modules into multiple variant Modules before any dependencies have been
// created. Each registered mutator is invoked in registration order once
// per Module (including each variant from previous early mutators). Module
// order is unpredictable.
//
// In order for dependencies to be satisifed in a later pass, all dependencies
// of a module either must have an identical variant or must have no variations.
//
// The mutator type names given here must be unique to all bottom up or early
// mutators in the Context.
//
// Deprecated, use a BottomUpMutator instead. The only difference between
// EarlyMutator and BottomUpMutator is that EarlyMutator runs before the
// deprecated DynamicDependencies.
func (c *Context) RegisterEarlyMutator(name string, mutator EarlyMutator) {
for _, m := range c.variantMutatorNames {
if m == name {
panic(fmt.Errorf("mutator name %s is already registered", name))
}
}
c.earlyMutatorInfo = append(c.earlyMutatorInfo, &mutatorInfo{
bottomUpMutator: func(mctx BottomUpMutatorContext) {
mutator(mctx)
},
name: name,
})
c.variantMutatorNames = append(c.variantMutatorNames, name)
}
// SetIgnoreUnknownModuleTypes sets the behavior of the context in the case
// where it encounters an unknown module type while parsing Blueprints files. By
// default, the context will report unknown module types as an error. If this
// method is called with ignoreUnknownModuleTypes set to true then the context
// will silently ignore unknown module types.
//
// This method should generally not be used. It exists to facilitate the
// bootstrapping process.
func (c *Context) SetIgnoreUnknownModuleTypes(ignoreUnknownModuleTypes bool) {
c.ignoreUnknownModuleTypes = ignoreUnknownModuleTypes
}
// SetAllowMissingDependencies changes the behavior of Blueprint to ignore
// unresolved dependencies. If the module's GenerateBuildActions calls
// ModuleContext.GetMissingDependencies Blueprint will not emit any errors
// for missing dependencies.
func (c *Context) SetAllowMissingDependencies(allowMissingDependencies bool) {
c.allowMissingDependencies = allowMissingDependencies
}
func (c *Context) SetModuleListFile(listFile string) {
c.moduleListFile = listFile
}
func (c *Context) ListModulePaths(baseDir string) (paths []string, err error) {
reader, err := c.fs.Open(c.moduleListFile)
if err != nil {
return nil, err
}
bytes, err := ioutil.ReadAll(reader)
if err != nil {
return nil, err
}
text := string(bytes)
text = strings.Trim(text, "\n")
lines := strings.Split(text, "\n")
for i := range lines {
lines[i] = filepath.Join(baseDir, lines[i])
}
return lines, nil
}
// a fileParseContext tells the status of parsing a particular file
type fileParseContext struct {
// name of file
fileName string
// scope to use when resolving variables
Scope *parser.Scope
// pointer to the one in the parent directory
parent *fileParseContext
// is closed once FileHandler has completed for this file
doneVisiting chan struct{}
}
// ParseBlueprintsFiles parses a set of Blueprints files starting with the file
// at rootFile. When it encounters a Blueprints file with a set of subdirs
// listed it recursively parses any Blueprints files found in those
// subdirectories.
//
// If no errors are encountered while parsing the files, the list of paths on
// which the future output will depend is returned. This list will include both
// Blueprints file paths as well as directory paths for cases where wildcard
// subdirs are found.
func (c *Context) ParseBlueprintsFiles(rootFile string,
config interface{}) (deps []string, errs []error) {
baseDir := filepath.Dir(rootFile)
pathsToParse, err := c.ListModulePaths(baseDir)
if err != nil {
return nil, []error{err}
}
return c.ParseFileList(baseDir, pathsToParse, config)
}
func (c *Context) ParseFileList(rootDir string, filePaths []string,
config interface{}) (deps []string, errs []error) {
if len(filePaths) < 1 {
return nil, []error{fmt.Errorf("no paths provided to parse")}
}
c.dependenciesReady = false
type newModuleInfo struct {
*moduleInfo
deps []string
added chan<- struct{}
}
moduleCh := make(chan newModuleInfo)
errsCh := make(chan []error)
doneCh := make(chan struct{})
var numErrs uint32
var numGoroutines int32
// handler must be reentrant
handleOneFile := func(file *parser.File) {
if atomic.LoadUint32(&numErrs) > maxErrors {
return
}
addedCh := make(chan struct{})
var scopedModuleFactories map[string]ModuleFactory
var addModule func(module *moduleInfo) []error
addModule = func(module *moduleInfo) []error {
// Run any load hooks immediately before it is sent to the moduleCh and is
// registered by name. This allows load hooks to set and/or modify any aspect
// of the module (including names) using information that is not available when
// the module factory is called.
newModules, newDeps, errs := runAndRemoveLoadHooks(c, config, module, &scopedModuleFactories)
if len(errs) > 0 {
return errs
}
moduleCh <- newModuleInfo{module, newDeps, addedCh}
<-addedCh
for _, n := range newModules {
errs = addModule(n)
if len(errs) > 0 {
return errs
}
}
return nil
}
for _, def := range file.Defs {
switch def := def.(type) {
case *parser.Module:
module, errs := processModuleDef(def, file.Name, c.moduleFactories, scopedModuleFactories, c.ignoreUnknownModuleTypes)
if len(errs) == 0 && module != nil {
errs = addModule(module)
}
if len(errs) > 0 {
atomic.AddUint32(&numErrs, uint32(len(errs)))
errsCh <- errs
}
case *parser.Assignment:
// Already handled via Scope object
default:
panic("unknown definition type")
}
}
}
atomic.AddInt32(&numGoroutines, 1)
go func() {
var errs []error
deps, errs = c.WalkBlueprintsFiles(rootDir, filePaths, handleOneFile)
if len(errs) > 0 {
errsCh <- errs
}
doneCh <- struct{}{}
}()
var hookDeps []string
loop:
for {
select {
case newErrs := <-errsCh:
errs = append(errs, newErrs...)
case module := <-moduleCh:
newErrs := c.addModule(module.moduleInfo)
hookDeps = append(hookDeps, module.deps...)
if module.added != nil {
module.added <- struct{}{}
}
if len(newErrs) > 0 {
errs = append(errs, newErrs...)
}
case <-doneCh:
n := atomic.AddInt32(&numGoroutines, -1)
if n == 0 {
break loop
}
}
}
deps = append(deps, hookDeps...)
return deps, errs
}
type FileHandler func(*parser.File)
// WalkBlueprintsFiles walks a set of Blueprints files starting with the given filepaths,
// calling the given file handler on each
//
// When WalkBlueprintsFiles encounters a Blueprints file with a set of subdirs listed,
// it recursively parses any Blueprints files found in those subdirectories.
//
// If any of the file paths is an ancestor directory of any other of file path, the ancestor
// will be parsed and visited first.
//
// the file handler will be called from a goroutine, so it must be reentrant.
//
// If no errors are encountered while parsing the files, the list of paths on
// which the future output will depend is returned. This list will include both
// Blueprints file paths as well as directory paths for cases where wildcard
// subdirs are found.
//
// visitor will be called asynchronously, and will only be called once visitor for each
// ancestor directory has completed.
//
// WalkBlueprintsFiles will not return until all calls to visitor have returned.
func (c *Context) WalkBlueprintsFiles(rootDir string, filePaths []string,
visitor FileHandler) (deps []string, errs []error) {
// make a mapping from ancestors to their descendants to facilitate parsing ancestors first
descendantsMap, err := findBlueprintDescendants(filePaths)
if err != nil {
panic(err.Error())
}
blueprintsSet := make(map[string]bool)
// Channels to receive data back from openAndParse goroutines
blueprintsCh := make(chan fileParseContext)
errsCh := make(chan []error)
depsCh := make(chan string)
// Channel to notify main loop that a openAndParse goroutine has finished
doneParsingCh := make(chan fileParseContext)
// Number of outstanding goroutines to wait for
activeCount := 0
var pending []fileParseContext
tooManyErrors := false
// Limit concurrent calls to parseBlueprintFiles to 200
// Darwin has a default limit of 256 open files
maxActiveCount := 200
// count the number of pending calls to visitor()
visitorWaitGroup := sync.WaitGroup{}
startParseBlueprintsFile := func(blueprint fileParseContext) {
if blueprintsSet[blueprint.fileName] {
return
}
blueprintsSet[blueprint.fileName] = true
activeCount++
deps = append(deps, blueprint.fileName)
visitorWaitGroup.Add(1)
go func() {
file, blueprints, deps, errs := c.openAndParse(blueprint.fileName, blueprint.Scope, rootDir,
&blueprint)
if len(errs) > 0 {
errsCh <- errs
}
for _, blueprint := range blueprints {
blueprintsCh <- blueprint
}
for _, dep := range deps {
depsCh <- dep
}
doneParsingCh <- blueprint
if blueprint.parent != nil && blueprint.parent.doneVisiting != nil {
// wait for visitor() of parent to complete
<-blueprint.parent.doneVisiting
}
if len(errs) == 0 {
// process this file
visitor(file)
}
if blueprint.doneVisiting != nil {
close(blueprint.doneVisiting)
}
visitorWaitGroup.Done()
}()
}
foundParseableBlueprint := func(blueprint fileParseContext) {
if activeCount >= maxActiveCount {
pending = append(pending, blueprint)
} else {
startParseBlueprintsFile(blueprint)
}
}
startParseDescendants := func(blueprint fileParseContext) {
descendants, hasDescendants := descendantsMap[blueprint.fileName]
if hasDescendants {
for _, descendant := range descendants {
foundParseableBlueprint(fileParseContext{descendant, parser.NewScope(blueprint.Scope), &blueprint, make(chan struct{})})
}
}
}
// begin parsing any files that have no ancestors
startParseDescendants(fileParseContext{"", parser.NewScope(nil), nil, nil})
loop:
for {
if len(errs) > maxErrors {
tooManyErrors = true
}
select {
case newErrs := <-errsCh:
errs = append(errs, newErrs...)
case dep := <-depsCh:
deps = append(deps, dep)
case blueprint := <-blueprintsCh:
if tooManyErrors {
continue
}
foundParseableBlueprint(blueprint)
case blueprint := <-doneParsingCh:
activeCount--
if !tooManyErrors {
startParseDescendants(blueprint)
}
if activeCount < maxActiveCount && len(pending) > 0 {
// start to process the next one from the queue
next := pending[len(pending)-1]
pending = pending[:len(pending)-1]
startParseBlueprintsFile(next)
}
if activeCount == 0 {
break loop
}
}
}
sort.Strings(deps)
// wait for every visitor() to complete
visitorWaitGroup.Wait()
return
}
// MockFileSystem causes the Context to replace all reads with accesses to the provided map of
// filenames to contents stored as a byte slice.
func (c *Context) MockFileSystem(files map[string][]byte) {
// look for a module list file
_, ok := files[MockModuleListFile]
if !ok {
// no module list file specified; find every file named Blueprints
pathsToParse := []string{}
for candidate := range files {
if filepath.Base(candidate) == "Android.bp" {
pathsToParse = append(pathsToParse, candidate)
}
}
if len(pathsToParse) < 1 {
panic(fmt.Sprintf("No Blueprints files found in mock filesystem: %v\n", files))
}
// put the list of Blueprints files into a list file
files[MockModuleListFile] = []byte(strings.Join(pathsToParse, "\n"))
}
c.SetModuleListFile(MockModuleListFile)
// mock the filesystem
c.fs = pathtools.MockFs(files)
}
func (c *Context) SetFs(fs pathtools.FileSystem) {
c.fs = fs
}
// openAndParse opens and parses a single Blueprints file, and returns the results
func (c *Context) openAndParse(filename string, scope *parser.Scope, rootDir string,
parent *fileParseContext) (file *parser.File,
subBlueprints []fileParseContext, deps []string, errs []error) {
f, err := c.fs.Open(filename)
if err != nil {
// couldn't open the file; see if we can provide a clearer error than "could not open file"
stats, statErr := c.fs.Lstat(filename)
if statErr == nil {
isSymlink := stats.Mode()&os.ModeSymlink != 0
if isSymlink {
err = fmt.Errorf("could not open symlink %v : %v", filename, err)
target, readlinkErr := os.Readlink(filename)
if readlinkErr == nil {
_, targetStatsErr := c.fs.Lstat(target)
if targetStatsErr != nil {
err = fmt.Errorf("could not open symlink %v; its target (%v) cannot be opened", filename, target)
}
}
} else {
err = fmt.Errorf("%v exists but could not be opened: %v", filename, err)
}
}
return nil, nil, nil, []error{err}
}
func() {
defer func() {
err = f.Close()
if err != nil {
errs = append(errs, err)
}
}()
file, subBlueprints, errs = c.parseOne(rootDir, filename, f, scope, parent)
}()
if len(errs) > 0 {
return nil, nil, nil, errs
}
for _, b := range subBlueprints {
deps = append(deps, b.fileName)
}
return file, subBlueprints, deps, nil
}
// parseOne parses a single Blueprints file from the given reader, creating Module
// objects for each of the module definitions encountered. If the Blueprints
// file contains an assignment to the "subdirs" variable, then the
// subdirectories listed are searched for Blueprints files returned in the
// subBlueprints return value. If the Blueprints file contains an assignment
// to the "build" variable, then the file listed are returned in the
// subBlueprints return value.
//
// rootDir specifies the path to the root directory of the source tree, while
// filename specifies the path to the Blueprints file. These paths are used for
// error reporting and for determining the module's directory.
func (c *Context) parseOne(rootDir, filename string, reader io.Reader,
scope *parser.Scope, parent *fileParseContext) (file *parser.File, subBlueprints []fileParseContext, errs []error) {
relBlueprintsFile, err := filepath.Rel(rootDir, filename)
if err != nil {
return nil, nil, []error{err}
}
scope.Remove("subdirs")
scope.Remove("optional_subdirs")
scope.Remove("build")
file, errs = parser.ParseAndEval(filename, reader, scope)
if len(errs) > 0 {
for i, err := range errs {
if parseErr, ok := err.(*parser.ParseError); ok {
err = &BlueprintError{
Err: parseErr.Err,
Pos: parseErr.Pos,
}
errs[i] = err
}
}
// If there were any parse errors don't bother trying to interpret the
// result.
return nil, nil, errs
}
file.Name = relBlueprintsFile
build, buildPos, err := getLocalStringListFromScope(scope, "build")
if err != nil {
errs = append(errs, err)
}
for _, buildEntry := range build {
if strings.Contains(buildEntry, "/") {
errs = append(errs, &BlueprintError{
Err: fmt.Errorf("illegal value %v. The '/' character is not permitted", buildEntry),
Pos: buildPos,
})
}
}
if err != nil {
errs = append(errs, err)
}
var blueprints []string
newBlueprints, newErrs := c.findBuildBlueprints(filepath.Dir(filename), build, buildPos)
blueprints = append(blueprints, newBlueprints...)
errs = append(errs, newErrs...)
subBlueprintsAndScope := make([]fileParseContext, len(blueprints))
for i, b := range blueprints {
subBlueprintsAndScope[i] = fileParseContext{b, parser.NewScope(scope), parent, make(chan struct{})}
}
return file, subBlueprintsAndScope, errs
}
func (c *Context) findBuildBlueprints(dir string, build []string,
buildPos scanner.Position) ([]string, []error) {
var blueprints []string
var errs []error
for _, file := range build {
pattern := filepath.Join(dir, file)
var matches []string
var err error
matches, err = c.glob(pattern, nil)
if err != nil {
errs = append(errs, &BlueprintError{
Err: fmt.Errorf("%q: %s", pattern, err.Error()),
Pos: buildPos,
})
continue
}
if len(matches) == 0 {
errs = append(errs, &BlueprintError{
Err: fmt.Errorf("%q: not found", pattern),
Pos: buildPos,
})
}
for _, foundBlueprints := range matches {
if strings.HasSuffix(foundBlueprints, "/") {
errs = append(errs, &BlueprintError{
Err: fmt.Errorf("%q: is a directory", foundBlueprints),
Pos: buildPos,
})
}
blueprints = append(blueprints, foundBlueprints)
}
}
return blueprints, errs
}
func (c *Context) findSubdirBlueprints(dir string, subdirs []string, subdirsPos scanner.Position,
subBlueprintsName string, optional bool) ([]string, []error) {
var blueprints []string
var errs []error
for _, subdir := range subdirs {
pattern := filepath.Join(dir, subdir, subBlueprintsName)
var matches []string
var err error
matches, err = c.glob(pattern, nil)
if err != nil {
errs = append(errs, &BlueprintError{
Err: fmt.Errorf("%q: %s", pattern, err.Error()),
Pos: subdirsPos,
})
continue
}
if len(matches) == 0 && !optional {
errs = append(errs, &BlueprintError{
Err: fmt.Errorf("%q: not found", pattern),
Pos: subdirsPos,
})
}
for _, subBlueprints := range matches {
if strings.HasSuffix(subBlueprints, "/") {
errs = append(errs, &BlueprintError{
Err: fmt.Errorf("%q: is a directory", subBlueprints),
Pos: subdirsPos,
})
}
blueprints = append(blueprints, subBlueprints)
}
}
return blueprints, errs
}
func getLocalStringListFromScope(scope *parser.Scope, v string) ([]string, scanner.Position, error) {
if assignment, local := scope.Get(v); assignment == nil || !local {
return nil, scanner.Position{}, nil
} else {
switch value := assignment.Value.Eval().(type) {
case *parser.List:
ret := make([]string, 0, len(value.Values))
for _, listValue := range value.Values {
s, ok := listValue.(*parser.String)
if !ok {
// The parser should not produce this.
panic("non-string value found in list")
}
ret = append(ret, s.Value)
}
return ret, assignment.EqualsPos, nil
case *parser.Bool, *parser.String:
return nil, scanner.Position{}, &BlueprintError{
Err: fmt.Errorf("%q must be a list of strings", v),
Pos: assignment.EqualsPos,
}
default:
panic(fmt.Errorf("unknown value type: %d", assignment.Value.Type()))
}
}
}
func getStringFromScope(scope *parser.Scope, v string) (string, scanner.Position, error) {
if assignment, _ := scope.Get(v); assignment == nil {
return "", scanner.Position{}, nil
} else {
switch value := assignment.Value.Eval().(type) {
case *parser.String:
return value.Value, assignment.EqualsPos, nil
case *parser.Bool, *parser.List:
return "", scanner.Position{}, &BlueprintError{
Err: fmt.Errorf("%q must be a string", v),
Pos: assignment.EqualsPos,
}
default:
panic(fmt.Errorf("unknown value type: %d", assignment.Value.Type()))
}
}
}
// Clones a build logic module by calling the factory method for its module type, and then cloning
// property values. Any values stored in the module object that are not stored in properties
// structs will be lost.
func (c *Context) cloneLogicModule(origModule *moduleInfo) (Module, []interface{}) {
newLogicModule, newProperties := origModule.factory()
if len(newProperties) != len(origModule.properties) {
panic("mismatched properties array length in " + origModule.Name())
}
for i := range newProperties {
dst := reflect.ValueOf(newProperties[i])
src := reflect.ValueOf(origModule.properties[i])
proptools.CopyProperties(dst, src)
}
return newLogicModule, newProperties
}
func newVariant(module *moduleInfo, mutatorName string, variationName string,
local bool) variant {
newVariantName := module.variant.name
if variationName != "" {
if newVariantName == "" {
newVariantName = variationName
} else {
newVariantName += "_" + variationName
}
}
newVariations := module.variant.variations.clone()
if newVariations == nil {
newVariations = make(variationMap)
}
newVariations[mutatorName] = variationName
newDependencyVariations := module.variant.dependencyVariations.clone()
if !local {
if newDependencyVariations == nil {
newDependencyVariations = make(variationMap)
}
newDependencyVariations[mutatorName] = variationName
}
return variant{newVariantName, newVariations, newDependencyVariations}
}
func (c *Context) createVariations(origModule *moduleInfo, mutatorName string,
defaultVariationName *string, variationNames []string, local bool) (modulesOrAliases, []error) {
if len(variationNames) == 0 {
panic(fmt.Errorf("mutator %q passed zero-length variation list for module %q",
mutatorName, origModule.Name()))
}
var newModules modulesOrAliases
var errs []error
for i, variationName := range variationNames {
var newLogicModule Module
var newProperties []interface{}
if i == 0 {
// Reuse the existing module for the first new variant
// This both saves creating a new module, and causes the insertion in c.moduleInfo below
// with logicModule as the key to replace the original entry in c.moduleInfo
newLogicModule, newProperties = origModule.logicModule, origModule.properties
} else {
newLogicModule, newProperties = c.cloneLogicModule(origModule)
}
m := *origModule
newModule := &m
newModule.directDeps = append([]depInfo(nil), origModule.directDeps...)
newModule.reverseDeps = nil
newModule.forwardDeps = nil
newModule.logicModule = newLogicModule
newModule.variant = newVariant(origModule, mutatorName, variationName, local)
newModule.properties = newProperties
newModule.providers = append([]interface{}(nil), origModule.providers...)
newModules = append(newModules, newModule)
newErrs := c.convertDepsToVariation(newModule, mutatorName, variationName, defaultVariationName)
if len(newErrs) > 0 {
errs = append(errs, newErrs...)
}
}
// Mark original variant as invalid. Modules that depend on this module will still
// depend on origModule, but we'll fix it when the mutator is called on them.
origModule.logicModule = nil
origModule.splitModules = newModules
atomic.AddUint32(&c.depsModified, 1)
return newModules, errs
}
func (c *Context) convertDepsToVariation(module *moduleInfo,
mutatorName, variationName string, defaultVariationName *string) (errs []error) {
for i, dep := range module.directDeps {
if dep.module.logicModule == nil {
var newDep *moduleInfo
for _, m := range dep.module.splitModules {
if m.moduleOrAliasVariant().variations[mutatorName] == variationName {
newDep = m.moduleOrAliasTarget()
break
}
}
if newDep == nil && defaultVariationName != nil {
// give it a second chance; match with defaultVariationName
for _, m := range dep.module.splitModules {
if m.moduleOrAliasVariant().variations[mutatorName] == *defaultVariationName {
newDep = m.moduleOrAliasTarget()
break
}
}
}
if newDep == nil {
errs = append(errs, &BlueprintError{
Err: fmt.Errorf("failed to find variation %q for module %q needed by %q",
variationName, dep.module.Name(), module.Name()),
Pos: module.pos,
})
continue
}
module.directDeps[i].module = newDep
}
}
return errs
}
func (c *Context) prettyPrintVariant(variations variationMap) string {
names := make([]string, 0, len(variations))
for _, m := range c.variantMutatorNames {
if v, ok := variations[m]; ok {
names = append(names, m+":"+v)
}
}
return strings.Join(names, ",")
}
func (c *Context) prettyPrintGroupVariants(group *moduleGroup) string {
var variants []string
for _, moduleOrAlias := range group.modules {
if mod := moduleOrAlias.module(); mod != nil {
variants = append(variants, c.prettyPrintVariant(mod.variant.variations))
} else if alias := moduleOrAlias.alias(); alias != nil {
variants = append(variants, c.prettyPrintVariant(alias.variant.variations)+
" (alias to "+c.prettyPrintVariant(alias.target.variant.variations)+")")
}
}
return strings.Join(variants, "\n ")
}
func newModule(factory ModuleFactory) *moduleInfo {
logicModule, properties := factory()
return &moduleInfo{
logicModule: logicModule,
factory: factory,
properties: properties,
}
}
func processModuleDef(moduleDef *parser.Module,
relBlueprintsFile string, moduleFactories, scopedModuleFactories map[string]ModuleFactory, ignoreUnknownModuleTypes bool) (*moduleInfo, []error) {
factory, ok := moduleFactories[moduleDef.Type]
if !ok && scopedModuleFactories != nil {
factory, ok = scopedModuleFactories[moduleDef.Type]
}
if !ok {
if ignoreUnknownModuleTypes {
return nil, nil
}
return nil, []error{
&BlueprintError{
Err: fmt.Errorf("unrecognized module type %q", moduleDef.Type),
Pos: moduleDef.TypePos,
},
}
}
module := newModule(factory)
module.typeName = moduleDef.Type
module.relBlueprintsFile = relBlueprintsFile
propertyMap, errs := proptools.UnpackProperties(moduleDef.Properties, module.properties...)
if len(errs) > 0 {
for i, err := range errs {
if unpackErr, ok := err.(*proptools.UnpackError); ok {
err = &BlueprintError{
Err: unpackErr.Err,
Pos: unpackErr.Pos,
}
errs[i] = err
}
}
return nil, errs
}
module.pos = moduleDef.TypePos
module.propertyPos = make(map[string]scanner.Position)
for name, propertyDef := range propertyMap {
module.propertyPos[name] = propertyDef.ColonPos
}
return module, nil
}
func (c *Context) addModule(module *moduleInfo) []error {
name := module.logicModule.Name()
if name == "" {
return []error{
&BlueprintError{
Err: fmt.Errorf("property 'name' is missing from a module"),
Pos: module.pos,
},
}
}
c.moduleInfo[module.logicModule] = module
group := &moduleGroup{
name: name,
modules: modulesOrAliases{module},
}
module.group = group
namespace, errs := c.nameInterface.NewModule(
newNamespaceContext(module),
ModuleGroup{moduleGroup: group},
module.logicModule)
if len(errs) > 0 {
for i := range errs {
errs[i] = &BlueprintError{Err: errs[i], Pos: module.pos}
}
return errs
}
group.namespace = namespace
c.moduleGroups = append(c.moduleGroups, group)
return nil
}
// ResolveDependencies checks that the dependencies specified by all of the
// modules defined in the parsed Blueprints files are valid. This means that
// the modules depended upon are defined and that no circular dependencies
// exist.
func (c *Context) ResolveDependencies(config interface{}) (deps []string, errs []error) {
return c.resolveDependencies(c.Context, config)
}
func (c *Context) resolveDependencies(ctx context.Context, config interface{}) (deps []string, errs []error) {
pprof.Do(ctx, pprof.Labels("blueprint", "ResolveDependencies"), func(ctx context.Context) {
c.initProviders()
c.liveGlobals = newLiveTracker(config)
deps, errs = c.generateSingletonBuildActions(config, c.preSingletonInfo, c.liveGlobals)
if len(errs) > 0 {
return
}
errs = c.updateDependencies()
if len(errs) > 0 {
return
}
var mutatorDeps []string
mutatorDeps, errs = c.runMutators(ctx, config)
if len(errs) > 0 {
return
}
deps = append(deps, mutatorDeps...)
if !c.skipCloneModulesAfterMutators {
c.cloneModules()
}
c.dependenciesReady = true
})
if len(errs) > 0 {
return nil, errs
}
return deps, nil
}
// Default dependencies handling. If the module implements the (deprecated)
// DynamicDependerModule interface then this set consists of the union of those
// module names returned by its DynamicDependencies method and those added by calling
// AddDependencies or AddVariationDependencies on DynamicDependencyModuleContext.
func blueprintDepsMutator(ctx BottomUpMutatorContext) {
if dynamicDepender, ok := ctx.Module().(DynamicDependerModule); ok {
func() {
defer func() {
if r := recover(); r != nil {
ctx.error(newPanicErrorf(r, "DynamicDependencies for %s", ctx.moduleInfo()))
}
}()
dynamicDeps := dynamicDepender.DynamicDependencies(ctx)
if ctx.Failed() {
return
}
ctx.AddDependency(ctx.Module(), nil, dynamicDeps...)
}()
}
}
// findExactVariantOrSingle searches the moduleGroup for a module with the same variant as module,
// and returns the matching module, or nil if one is not found. A group with exactly one module
// is always considered matching.
func findExactVariantOrSingle(module *moduleInfo, possible *moduleGroup, reverse bool) *moduleInfo {
found, _ := findVariant(module, possible, nil, false, reverse)
if found == nil {
for _, moduleOrAlias := range possible.modules {
if m := moduleOrAlias.module(); m != nil {
if found != nil {
// more than one possible match, give up
return nil
}
found = m
}
}
}
return found
}
func (c *Context) addDependency(module *moduleInfo, tag DependencyTag, depName string) (*moduleInfo, []error) {
if _, ok := tag.(BaseDependencyTag); ok {
panic("BaseDependencyTag is not allowed to be used directly!")
}
if depName == module.Name() {
return nil, []error{&BlueprintError{
Err: fmt.Errorf("%q depends on itself", depName),
Pos: module.pos,
}}
}
possibleDeps := c.moduleGroupFromName(depName, module.namespace())
if possibleDeps == nil {
return nil, c.discoveredMissingDependencies(module, depName, nil)
}
if m := findExactVariantOrSingle(module, possibleDeps, false); m != nil {
module.newDirectDeps = append(module.newDirectDeps, depInfo{m, tag})
atomic.AddUint32(&c.depsModified, 1)
return m, nil
}
if c.allowMissingDependencies {
// Allow missing variants.
return nil, c.discoveredMissingDependencies(module, depName, module.variant.dependencyVariations)
}
return nil, []error{&BlueprintError{
Err: fmt.Errorf("dependency %q of %q missing variant:\n %s\navailable variants:\n %s",
depName, module.Name(),
c.prettyPrintVariant(module.variant.dependencyVariations),
c.prettyPrintGroupVariants(possibleDeps)),
Pos: module.pos,
}}
}
func (c *Context) findReverseDependency(module *moduleInfo, destName string) (*moduleInfo, []error) {
if destName == module.Name() {
return nil, []error{&BlueprintError{
Err: fmt.Errorf("%q depends on itself", destName),
Pos: module.pos,
}}
}
possibleDeps := c.moduleGroupFromName(destName, module.namespace())
if possibleDeps == nil {
return nil, []error{&BlueprintError{
Err: fmt.Errorf("%q has a reverse dependency on undefined module %q",
module.Name(), destName),
Pos: module.pos,
}}
}
if m := findExactVariantOrSingle(module, possibleDeps, true); m != nil {
return m, nil
}
if c.allowMissingDependencies {
// Allow missing variants.
return module, c.discoveredMissingDependencies(module, destName, module.variant.dependencyVariations)
}
return nil, []error{&BlueprintError{
Err: fmt.Errorf("reverse dependency %q of %q missing variant:\n %s\navailable variants:\n %s",
destName, module.Name(),
c.prettyPrintVariant(module.variant.dependencyVariations),
c.prettyPrintGroupVariants(possibleDeps)),
Pos: module.pos,
}}
}
func findVariant(module *moduleInfo, possibleDeps *moduleGroup, variations []Variation, far bool, reverse bool) (*moduleInfo, variationMap) {
// We can't just append variant.Variant to module.dependencyVariant.variantName and
// compare the strings because the result won't be in mutator registration order.
// Create a new map instead, and then deep compare the maps.
var newVariant variationMap
if !far {
if !reverse {
// For forward dependency, ignore local variants by matching against
// dependencyVariant which doesn't have the local variants
newVariant = module.variant.dependencyVariations.clone()
} else {
// For reverse dependency, use all the variants
newVariant = module.variant.variations.clone()
}
}
for _, v := range variations {
if newVariant == nil {
newVariant = make(variationMap)
}
newVariant[v.Mutator] = v.Variation
}
check := func(variant variationMap) bool {
if far {
return newVariant.subsetOf(variant)
} else {
return variant.equal(newVariant)
}
}
var foundDep *moduleInfo
for _, m := range possibleDeps.modules {
if check(m.moduleOrAliasVariant().variations) {
foundDep = m.moduleOrAliasTarget()
break
}
}
return foundDep, newVariant
}
func (c *Context) addVariationDependency(module *moduleInfo, variations []Variation,
tag DependencyTag, depName string, far bool) (*moduleInfo, []error) {
if _, ok := tag.(BaseDependencyTag); ok {
panic("BaseDependencyTag is not allowed to be used directly!")
}
possibleDeps := c.moduleGroupFromName(depName, module.namespace())
if possibleDeps == nil {
return nil, c.discoveredMissingDependencies(module, depName, nil)
}
foundDep, newVariant := findVariant(module, possibleDeps, variations, far, false)
if foundDep == nil {
if c.allowMissingDependencies {
// Allow missing variants.
return nil, c.discoveredMissingDependencies(module, depName, newVariant)
}
return nil, []error{&BlueprintError{
Err: fmt.Errorf("dependency %q of %q missing variant:\n %s\navailable variants:\n %s",
depName, module.Name(),
c.prettyPrintVariant(newVariant),
c.prettyPrintGroupVariants(possibleDeps)),
Pos: module.pos,
}}
}
if module == foundDep {
return nil, []error{&BlueprintError{
Err: fmt.Errorf("%q depends on itself", depName),
Pos: module.pos,
}}
}
// AddVariationDependency allows adding a dependency on itself, but only if
// that module is earlier in the module list than this one, since we always
// run GenerateBuildActions in order for the variants of a module
if foundDep.group == module.group && beforeInModuleList(module, foundDep, module.group.modules) {
return nil, []error{&BlueprintError{
Err: fmt.Errorf("%q depends on later version of itself", depName),
Pos: module.pos,
}}
}
module.newDirectDeps = append(module.newDirectDeps, depInfo{foundDep, tag})
atomic.AddUint32(&c.depsModified, 1)
return foundDep, nil
}
func (c *Context) addInterVariantDependency(origModule *moduleInfo, tag DependencyTag,
from, to Module) *moduleInfo {
if _, ok := tag.(BaseDependencyTag); ok {
panic("BaseDependencyTag is not allowed to be used directly!")
}
var fromInfo, toInfo *moduleInfo
for _, moduleOrAlias := range origModule.splitModules {
if m := moduleOrAlias.module(); m != nil {
if m.logicModule == from {
fromInfo = m
}
if m.logicModule == to {
toInfo = m
if fromInfo != nil {
panic(fmt.Errorf("%q depends on later version of itself", origModule.Name()))
}
}
}
}
if fromInfo == nil || toInfo == nil {
panic(fmt.Errorf("AddInterVariantDependency called for module %q on invalid variant",
origModule.Name()))
}
fromInfo.newDirectDeps = append(fromInfo.newDirectDeps, depInfo{toInfo, tag})
atomic.AddUint32(&c.depsModified, 1)
return toInfo
}
// findBlueprintDescendants returns a map linking parent Blueprint files to child Blueprints files
// For example, if paths = []string{"a/b/c/Android.bp", "a/Android.bp"},
// then descendants = {"":[]string{"a/Android.bp"}, "a/Android.bp":[]string{"a/b/c/Android.bp"}}
func findBlueprintDescendants(paths []string) (descendants map[string][]string, err error) {
// make mapping from dir path to file path
filesByDir := make(map[string]string, len(paths))
for _, path := range paths {
dir := filepath.Dir(path)
_, alreadyFound := filesByDir[dir]
if alreadyFound {
return nil, fmt.Errorf("Found two Blueprint files in directory %v : %v and %v", dir, filesByDir[dir], path)
}
filesByDir[dir] = path
}
findAncestor := func(childFile string) (ancestor string) {
prevAncestorDir := filepath.Dir(childFile)
for {
ancestorDir := filepath.Dir(prevAncestorDir)
if ancestorDir == prevAncestorDir {
// reached the root dir without any matches; assign this as a descendant of ""
return ""
}
ancestorFile, ancestorExists := filesByDir[ancestorDir]
if ancestorExists {
return ancestorFile
}
prevAncestorDir = ancestorDir
}
}
// generate the descendants map
descendants = make(map[string][]string, len(filesByDir))
for _, childFile := range filesByDir {
ancestorFile := findAncestor(childFile)
descendants[ancestorFile] = append(descendants[ancestorFile], childFile)
}
return descendants, nil
}
type visitOrderer interface {
// returns the number of modules that this module needs to wait for
waitCount(module *moduleInfo) int
// returns the list of modules that are waiting for this module
propagate(module *moduleInfo) []*moduleInfo
// visit modules in order
visit(modules []*moduleInfo, visit func(*moduleInfo, chan<- pauseSpec) bool)
}
type unorderedVisitorImpl struct{}
func (unorderedVisitorImpl) waitCount(module *moduleInfo) int {
return 0
}
func (unorderedVisitorImpl) propagate(module *moduleInfo) []*moduleInfo {
return nil
}
func (unorderedVisitorImpl) visit(modules []*moduleInfo, visit func(*moduleInfo, chan<- pauseSpec) bool) {
for _, module := range modules {
if visit(module, nil) {
return
}
}
}
type bottomUpVisitorImpl struct{}
func (bottomUpVisitorImpl) waitCount(module *moduleInfo) int {
return len(module.forwardDeps)
}
func (bottomUpVisitorImpl) propagate(module *moduleInfo) []*moduleInfo {
return module.reverseDeps
}
func (bottomUpVisitorImpl) visit(modules []*moduleInfo, visit func(*moduleInfo, chan<- pauseSpec) bool) {
for _, module := range modules {
if visit(module, nil) {
return
}
}
}
type topDownVisitorImpl struct{}
func (topDownVisitorImpl) waitCount(module *moduleInfo) int {
return len(module.reverseDeps)
}
func (topDownVisitorImpl) propagate(module *moduleInfo) []*moduleInfo {
return module.forwardDeps
}
func (topDownVisitorImpl) visit(modules []*moduleInfo, visit func(*moduleInfo, chan<- pauseSpec) bool) {
for i := 0; i < len(modules); i++ {
module := modules[len(modules)-1-i]
if visit(module, nil) {
return
}
}
}
var (
bottomUpVisitor bottomUpVisitorImpl
topDownVisitor topDownVisitorImpl
)
// pauseSpec describes a pause that a module needs to occur until another module has been visited,
// at which point the unpause channel will be closed.
type pauseSpec struct {
paused *moduleInfo
until *moduleInfo
unpause unpause
}
type unpause chan struct{}
const parallelVisitLimit = 1000
// Calls visit on each module, guaranteeing that visit is not called on a module until visit on all
// of its dependencies has finished. A visit function can write a pauseSpec to the pause channel
// to wait for another dependency to be visited. If a visit function returns true to cancel
// while another visitor is paused, the paused visitor will never be resumed and its goroutine
// will stay paused forever.
func parallelVisit(modules []*moduleInfo, order visitOrderer, limit int,
visit func(module *moduleInfo, pause chan<- pauseSpec) bool) []error {
doneCh := make(chan *moduleInfo)
cancelCh := make(chan bool)
pauseCh := make(chan pauseSpec)
cancel := false
var backlog []*moduleInfo // Visitors that are ready to start but backlogged due to limit.
var unpauseBacklog []pauseSpec // Visitors that are ready to unpause but backlogged due to limit.
active := 0 // Number of visitors running, not counting paused visitors.
visited := 0 // Number of finished visitors.
pauseMap := make(map[*moduleInfo][]pauseSpec)
for _, module := range modules {
module.waitingCount = order.waitCount(module)
}
// Call the visitor on a module if there are fewer active visitors than the parallelism
// limit, otherwise add it to the backlog.
startOrBacklog := func(module *moduleInfo) {
if active < limit {
active++
go func() {
ret := visit(module, pauseCh)
if ret {
cancelCh <- true
}
doneCh <- module
}()
} else {
backlog = append(backlog, module)
}
}
// Unpause the already-started but paused visitor on a module if there are fewer active
// visitors than the parallelism limit, otherwise add it to the backlog.
unpauseOrBacklog := func(pauseSpec pauseSpec) {
if active < limit {
active++
close(pauseSpec.unpause)
} else {
unpauseBacklog = append(unpauseBacklog, pauseSpec)
}
}
// Start any modules in the backlog up to the parallelism limit. Unpause paused modules first
// since they may already be holding resources.
unpauseOrStartFromBacklog := func() {
for active < limit && len(unpauseBacklog) > 0 {
unpause := unpauseBacklog[0]
unpauseBacklog = unpauseBacklog[1:]
unpauseOrBacklog(unpause)
}
for active < limit && len(backlog) > 0 {
toVisit := backlog[0]
backlog = backlog[1:]
startOrBacklog(toVisit)
}
}
toVisit := len(modules)
// Start or backlog any modules that are not waiting for any other modules.
for _, module := range modules {
if module.waitingCount == 0 {
startOrBacklog(module)
}
}
for active > 0 {
select {
case <-cancelCh:
cancel = true
backlog = nil
case doneModule := <-doneCh:
active--
if !cancel {
// Mark this module as done.
doneModule.waitingCount = -1
visited++
// Unpause or backlog any modules that were waiting for this one.
if unpauses, ok := pauseMap[doneModule]; ok {
delete(pauseMap, doneModule)
for _, unpause := range unpauses {
unpauseOrBacklog(unpause)
}
}
// Start any backlogged modules up to limit.
unpauseOrStartFromBacklog()
// Decrement waitingCount on the next modules in the tree based
// on propagation order, and start or backlog them if they are
// ready to start.
for _, module := range order.propagate(doneModule) {
module.waitingCount--
if module.waitingCount == 0 {
startOrBacklog(module)
}
}
}
case pauseSpec := <-pauseCh:
if pauseSpec.until.waitingCount == -1 {
// Module being paused for is already finished, resume immediately.
close(pauseSpec.unpause)
} else {
// Register for unpausing.
pauseMap[pauseSpec.until] = append(pauseMap[pauseSpec.until], pauseSpec)
// Don't count paused visitors as active so that this can't deadlock
// if 1000 visitors are paused simultaneously.
active--
unpauseOrStartFromBacklog()
}
}
}
if !cancel {
// Invariant check: no backlogged modules, these weren't waiting on anything except
// the parallelism limit so they should have run.
if len(backlog) > 0 {
panic(fmt.Errorf("parallelVisit finished with %d backlogged visitors", len(backlog)))
}
// Invariant check: no backlogged paused modules, these weren't waiting on anything
// except the parallelism limit so they should have run.
if len(unpauseBacklog) > 0 {
panic(fmt.Errorf("parallelVisit finished with %d backlogged unpaused visitors", len(unpauseBacklog)))
}
if len(pauseMap) > 0 {
// Probably a deadlock due to a newly added dependency cycle. Start from each module in
// the order of the input modules list and perform a depth-first search for the module
// it is paused on, ignoring modules that are marked as done. Note this traverses from
// modules to the modules that would have been unblocked when that module finished, i.e
// the reverse of the visitOrderer.
// In order to reduce duplicated work, once a module has been checked and determined
// not to be part of a cycle add it and everything that depends on it to the checked
// map.
checked := make(map[*moduleInfo]struct{})
var check func(module, end *moduleInfo) []*moduleInfo
check = func(module, end *moduleInfo) []*moduleInfo {
if module.waitingCount == -1 {
// This module was finished, it can't be part of a loop.
return nil
}
if module == end {
// This module is the end of the loop, start rolling up the cycle.
return []*moduleInfo{module}
}
if _, alreadyChecked := checked[module]; alreadyChecked {
return nil
}
for _, dep := range order.propagate(module) {
cycle := check(dep, end)
if cycle != nil {
return append([]*moduleInfo{module}, cycle...)
}
}
for _, depPauseSpec := range pauseMap[module] {
cycle := check(depPauseSpec.paused, end)
if cycle != nil {
return append([]*moduleInfo{module}, cycle...)
}
}
checked[module] = struct{}{}
return nil
}
// Iterate over the modules list instead of pauseMap to provide deterministic ordering.
for _, module := range modules {
for _, pauseSpec := range pauseMap[module] {
cycle := check(pauseSpec.paused, pauseSpec.until)
if len(cycle) > 0 {
return cycleError(cycle)
}
}
}
}
// Invariant check: if there was no deadlock and no cancellation every module
// should have been visited.
if visited != toVisit {
panic(fmt.Errorf("parallelVisit ran %d visitors, expected %d", visited, toVisit))
}
// Invariant check: if there was no deadlock and no cancellation every module
// should have been visited, so there is nothing left to be paused on.
if len(pauseMap) > 0 {
panic(fmt.Errorf("parallelVisit finished with %d paused visitors", len(pauseMap)))
}
}
return nil
}
func cycleError(cycle []*moduleInfo) (errs []error) {
// The cycle list is in reverse order because all the 'check' calls append
// their own module to the list.
errs = append(errs, &BlueprintError{
Err: fmt.Errorf("encountered dependency cycle:"),
Pos: cycle[len(cycle)-1].pos,
})
// Iterate backwards through the cycle list.
curModule := cycle[0]
for i := len(cycle) - 1; i >= 0; i-- {
nextModule := cycle[i]
errs = append(errs, &BlueprintError{
Err: fmt.Errorf(" %s depends on %s",
curModule, nextModule),
Pos: curModule.pos,
})
curModule = nextModule
}
return errs
}
// updateDependencies recursively walks the module dependency graph and updates
// additional fields based on the dependencies. It builds a sorted list of modules
// such that dependencies of a module always appear first, and populates reverse
// dependency links and counts of total dependencies. It also reports errors when
// it encounters dependency cycles. This should be called after resolveDependencies,
// as well as after any mutator pass has called addDependency
func (c *Context) updateDependencies() (errs []error) {
c.cachedDepsModified = true
visited := make(map[*moduleInfo]bool) // modules that were already checked
checking := make(map[*moduleInfo]bool) // modules actively being checked
sorted := make([]*moduleInfo, 0, len(c.moduleInfo))
var check func(group *moduleInfo) []*moduleInfo
check = func(module *moduleInfo) []*moduleInfo {
visited[module] = true
checking[module] = true
defer delete(checking, module)
// Reset the forward and reverse deps without reducing their capacity to avoid reallocation.
module.reverseDeps = module.reverseDeps[:0]
module.forwardDeps = module.forwardDeps[:0]
// Add an implicit dependency ordering on all earlier modules in the same module group
for _, dep := range module.group.modules {
if dep == module {
break
}
if depModule := dep.module(); depModule != nil {
module.forwardDeps = append(module.forwardDeps, depModule)
}
}
outer:
for _, dep := range module.directDeps {
// use a loop to check for duplicates, average number of directDeps measured to be 9.5.
for _, exists := range module.forwardDeps {
if dep.module == exists {
continue outer
}
}
module.forwardDeps = append(module.forwardDeps, dep.module)
}
for _, dep := range module.forwardDeps {
if checking[dep] {
// This is a cycle.
return []*moduleInfo{dep, module}
}
if !visited[dep] {
cycle := check(dep)
if cycle != nil {
if cycle[0] == module {
// We are the "start" of the cycle, so we're responsible
// for generating the errors.
errs = append(errs, cycleError(cycle)...)
// We can continue processing this module's children to
// find more cycles. Since all the modules that were
// part of the found cycle were marked as visited we
// won't run into that cycle again.
} else {
// We're not the "start" of the cycle, so we just append
// our module to the list and return it.
return append(cycle, module)
}
}
}
dep.reverseDeps = append(dep.reverseDeps, module)
}
sorted = append(sorted, module)
return nil
}
for _, module := range c.moduleInfo {
if !visited[module] {
cycle := check(module)
if cycle != nil {
if cycle[len(cycle)-1] != module {
panic("inconceivable!")
}
errs = append(errs, cycleError(cycle)...)
}
}
}
c.modulesSorted = sorted
return
}
type jsonVariationMap map[string]string
type jsonModuleName struct {
Name string
Variations jsonVariationMap
DependencyVariations jsonVariationMap
}
type jsonDep struct {
jsonModuleName
Tag string
}
type JsonModule struct {
jsonModuleName
Deps []jsonDep
Type string
Blueprint string
Module map[string]interface{}
}
func toJsonVariationMap(vm variationMap) jsonVariationMap {
return jsonVariationMap(vm)
}
func jsonModuleNameFromModuleInfo(m *moduleInfo) *jsonModuleName {
return &jsonModuleName{
Name: m.Name(),
Variations: toJsonVariationMap(m.variant.variations),
DependencyVariations: toJsonVariationMap(m.variant.dependencyVariations),
}
}
type JSONDataSupplier interface {
AddJSONData(d *map[string]interface{})
}
func jsonModuleFromModuleInfo(m *moduleInfo) *JsonModule {
result := &JsonModule{
jsonModuleName: *jsonModuleNameFromModuleInfo(m),
Deps: make([]jsonDep, 0),
Type: m.typeName,
Blueprint: m.relBlueprintsFile,
Module: make(map[string]interface{}),
}
if j, ok := m.logicModule.(JSONDataSupplier); ok {
j.AddJSONData(&result.Module)
}
for _, p := range m.providers {
if j, ok := p.(JSONDataSupplier); ok {
j.AddJSONData(&result.Module)
}
}
return result
}
func jsonModuleWithActionsFromModuleInfo(m *moduleInfo) *JsonModule {
result := &JsonModule{
jsonModuleName: jsonModuleName{
Name: m.Name(),
},
Deps: make([]jsonDep, 0),
Type: m.typeName,
Blueprint: m.relBlueprintsFile,
Module: make(map[string]interface{}),
}
var actions []map[string]interface{}
for _, bDef := range m.actionDefs.buildDefs {
actions = append(actions, map[string]interface{}{
"Inputs": append(
getNinjaStringsWithNilPkgNames(bDef.Inputs),
getNinjaStringsWithNilPkgNames(bDef.Implicits)...),
"Outputs": append(
getNinjaStringsWithNilPkgNames(bDef.Outputs),
getNinjaStringsWithNilPkgNames(bDef.ImplicitOutputs)...),
})
}
result.Module["Actions"] = actions
return result
}
// Gets a list of strings from the given list of ninjaStrings by invoking ninjaString.Value with
// nil pkgNames on each of the input ninjaStrings.
func getNinjaStringsWithNilPkgNames(nStrs []ninjaString) []string {
var strs []string
for _, nstr := range nStrs {
strs = append(strs, nstr.Value(nil))
}
return strs
}
// PrintJSONGraph prints info of modules in a JSON file.
func (c *Context) PrintJSONGraphAndActions(wGraph io.Writer, wActions io.Writer) {
modulesToGraph := make([]*JsonModule, 0)
modulesToActions := make([]*JsonModule, 0)
for _, m := range c.modulesSorted {
jm := jsonModuleFromModuleInfo(m)
jmWithActions := jsonModuleWithActionsFromModuleInfo(m)
for _, d := range m.directDeps {
jm.Deps = append(jm.Deps, jsonDep{
jsonModuleName: *jsonModuleNameFromModuleInfo(d.module),
Tag: fmt.Sprintf("%T %+v", d.tag, d.tag),
})
jmWithActions.Deps = append(jmWithActions.Deps, jsonDep{
jsonModuleName: jsonModuleName{
Name: d.module.Name(),
},
})
}
modulesToGraph = append(modulesToGraph, jm)
modulesToActions = append(modulesToActions, jmWithActions)
}
writeJson(wGraph, modulesToGraph)
writeJson(wActions, modulesToActions)
}
func writeJson(w io.Writer, modules []*JsonModule) {
e := json.NewEncoder(w)
e.SetIndent("", "\t")
e.Encode(modules)
}
// PrepareBuildActions generates an internal representation of all the build
// actions that need to be performed. This process involves invoking the
// GenerateBuildActions method on each of the Module objects created during the
// parse phase and then on each of the registered Singleton objects.
//
// If the ResolveDependencies method has not already been called it is called
// automatically by this method.
//
// The config argument is made available to all of the Module and Singleton
// objects via the Config method on the ModuleContext and SingletonContext
// objects passed to GenerateBuildActions. It is also passed to the functions
// specified via PoolFunc, RuleFunc, and VariableFunc so that they can compute
// config-specific values.
//
// The returned deps is a list of the ninja files dependencies that were added
// by the modules and singletons via the ModuleContext.AddNinjaFileDeps(),
// SingletonContext.AddNinjaFileDeps(), and PackageContext.AddNinjaFileDeps()
// methods.
func (c *Context) PrepareBuildActions(config interface{}) (deps []string, errs []error) {
pprof.Do(c.Context, pprof.Labels("blueprint", "PrepareBuildActions"), func(ctx context.Context) {
c.buildActionsReady = false
if !c.dependenciesReady {
var extraDeps []string
extraDeps, errs = c.resolveDependencies(ctx, config)
if len(errs) > 0 {
return
}
deps = append(deps, extraDeps...)
}
var depsModules []string
depsModules, errs = c.generateModuleBuildActions(config, c.liveGlobals)
if len(errs) > 0 {
return
}
var depsSingletons []string
depsSingletons, errs = c.generateSingletonBuildActions(config, c.singletonInfo, c.liveGlobals)
if len(errs) > 0 {
return
}
deps = append(deps, depsModules...)
deps = append(deps, depsSingletons...)
if c.outDir != nil {
err := c.liveGlobals.addNinjaStringDeps(c.outDir)
if err != nil {
errs = []error{err}
return
}
}
pkgNames, depsPackages := c.makeUniquePackageNames(c.liveGlobals)
deps = append(deps, depsPackages...)
c.memoizeFullNames(c.liveGlobals, pkgNames)
// This will panic if it finds a problem since it's a programming error.
c.checkForVariableReferenceCycles(c.liveGlobals.variables, pkgNames)
c.pkgNames = pkgNames
c.globalVariables = c.liveGlobals.variables
c.globalPools = c.liveGlobals.pools
c.globalRules = c.liveGlobals.rules
c.buildActionsReady = true
})
if len(errs) > 0 {
return nil, errs
}
return deps, nil
}
func (c *Context) runMutators(ctx context.Context, config interface{}) (deps []string, errs []error) {
var mutators []*mutatorInfo
pprof.Do(ctx, pprof.Labels("blueprint", "runMutators"), func(ctx context.Context) {
mutators = append(mutators, c.earlyMutatorInfo...)
mutators = append(mutators, c.mutatorInfo...)
for _, mutator := range mutators {
pprof.Do(ctx, pprof.Labels("mutator", mutator.name), func(context.Context) {
var newDeps []string
if mutator.topDownMutator != nil {
newDeps, errs = c.runMutator(config, mutator, topDownMutator)
} else if mutator.bottomUpMutator != nil {
newDeps, errs = c.runMutator(config, mutator, bottomUpMutator)
} else {
panic("no mutator set on " + mutator.name)
}
if len(errs) > 0 {
return
}
deps = append(deps, newDeps...)
})
if len(errs) > 0 {
return
}
}
})
if len(errs) > 0 {
return nil, errs
}
return deps, nil
}
type mutatorDirection interface {
run(mutator *mutatorInfo, ctx *mutatorContext)
orderer() visitOrderer
fmt.Stringer
}
type bottomUpMutatorImpl struct{}
func (bottomUpMutatorImpl) run(mutator *mutatorInfo, ctx *mutatorContext) {
mutator.bottomUpMutator(ctx)
}
func (bottomUpMutatorImpl) orderer() visitOrderer {
return bottomUpVisitor
}
func (bottomUpMutatorImpl) String() string {
return "bottom up mutator"
}
type topDownMutatorImpl struct{}
func (topDownMutatorImpl) run(mutator *mutatorInfo, ctx *mutatorContext) {
mutator.topDownMutator(ctx)
}
func (topDownMutatorImpl) orderer() visitOrderer {
return topDownVisitor
}
func (topDownMutatorImpl) String() string {
return "top down mutator"
}
var (
topDownMutator topDownMutatorImpl
bottomUpMutator bottomUpMutatorImpl
)
type reverseDep struct {
module *moduleInfo
dep depInfo
}
func (c *Context) runMutator(config interface{}, mutator *mutatorInfo,
direction mutatorDirection) (deps []string, errs []error) {
newModuleInfo := make(map[Module]*moduleInfo)
for k, v := range c.moduleInfo {
newModuleInfo[k] = v
}
type globalStateChange struct {
reverse []reverseDep
rename []rename
replace []replace
newModules []*moduleInfo
deps []string
}
reverseDeps := make(map[*moduleInfo][]depInfo)
var rename []rename
var replace []replace
var newModules []*moduleInfo
errsCh := make(chan []error)
globalStateCh := make(chan globalStateChange)
newVariationsCh := make(chan modulesOrAliases)
done := make(chan bool)
c.depsModified = 0
visit := func(module *moduleInfo, pause chan<- pauseSpec) bool {
if module.splitModules != nil {
panic("split module found in sorted module list")
}
mctx := &mutatorContext{
baseModuleContext: baseModuleContext{
context: c,
config: config,
module: module,
},
name: mutator.name,
pauseCh: pause,
}
module.startedMutator = mutator
func() {
defer func() {
if r := recover(); r != nil {
in := fmt.Sprintf("%s %q for %s", direction, mutator.name, module)
if err, ok := r.(panicError); ok {
err.addIn(in)
mctx.error(err)
} else {
mctx.error(newPanicErrorf(r, in))
}
}
}()
direction.run(mutator, mctx)
}()
module.finishedMutator = mutator
if len(mctx.errs) > 0 {
errsCh <- mctx.errs
return true
}
if len(mctx.newVariations) > 0 {
newVariationsCh <- mctx.newVariations
}
if len(mctx.reverseDeps) > 0 || len(mctx.replace) > 0 || len(mctx.rename) > 0 || len(mctx.newModules) > 0 || len(mctx.ninjaFileDeps) > 0 {
globalStateCh <- globalStateChange{
reverse: mctx.reverseDeps,
replace: mctx.replace,
rename: mctx.rename,
newModules: mctx.newModules,
deps: mctx.ninjaFileDeps,
}
}
return false
}
// Process errs and reverseDeps in a single goroutine
go func() {
for {
select {
case newErrs := <-errsCh:
errs = append(errs, newErrs...)
case globalStateChange := <-globalStateCh:
for _, r := range globalStateChange.reverse {
reverseDeps[r.module] = append(reverseDeps[r.module], r.dep)
}
replace = append(replace, globalStateChange.replace...)
rename = append(rename, globalStateChange.rename...)
newModules = append(newModules, globalStateChange.newModules...)
deps = append(deps, globalStateChange.deps...)
case newVariations := <-newVariationsCh:
for _, moduleOrAlias := range newVariations {
if m := moduleOrAlias.module(); m != nil {
newModuleInfo[m.logicModule] = m
}
}
case <-done:
return
}
}
}()
c.startedMutator = mutator
var visitErrs []error
if mutator.parallel {
visitErrs = parallelVisit(c.modulesSorted, direction.orderer(), parallelVisitLimit, visit)
} else {
direction.orderer().visit(c.modulesSorted, visit)
}
if len(visitErrs) > 0 {
return nil, visitErrs
}
c.finishedMutators[mutator] = true
done <- true
if len(errs) > 0 {
return nil, errs
}
c.moduleInfo = newModuleInfo
for _, group := range c.moduleGroups {
for i := 0; i < len(group.modules); i++ {
module := group.modules[i].module()
if module == nil {
// Existing alias, skip it
continue
}
// Update module group to contain newly split variants
if module.splitModules != nil {
group.modules, i = spliceModules(group.modules, i, module.splitModules)
}
// Fix up any remaining dependencies on modules that were split into variants
// by replacing them with the first variant
for j, dep := range module.directDeps {
if dep.module.logicModule == nil {
module.directDeps[j].module = dep.module.splitModules.firstModule()
}
}
if module.createdBy != nil && module.createdBy.logicModule == nil {
module.createdBy = module.createdBy.splitModules.firstModule()
}
// Add in any new direct dependencies that were added by the mutator
module.directDeps = append(module.directDeps, module.newDirectDeps...)
module.newDirectDeps = nil
}
findAliasTarget := func(variant variant) *moduleInfo {
for _, moduleOrAlias := range group.modules {
if alias := moduleOrAlias.alias(); alias != nil {
if alias.variant.variations.equal(variant.variations) {
return alias.target
}
}
}
return nil
}
// Forward or delete any dangling aliases.
// Use a manual loop instead of range because len(group.modules) can
// change inside the loop
for i := 0; i < len(group.modules); i++ {
if alias := group.modules[i].alias(); alias != nil {
if alias.target.logicModule == nil {
newTarget := findAliasTarget(alias.target.variant)
if newTarget != nil {
alias.target = newTarget
} else {
// The alias was left dangling, remove it.
group.modules = append(group.modules[:i], group.modules[i+1:]...)
i--
}
}
}
}
}
// Add in any new reverse dependencies that were added by the mutator
for module, deps := range reverseDeps {
sort.Sort(depSorter(deps))
module.directDeps = append(module.directDeps, deps...)
c.depsModified++
}
for _, module := range newModules {
errs = c.addModule(module)
if len(errs) > 0 {
return nil, errs
}
atomic.AddUint32(&c.depsModified, 1)
}
errs = c.handleRenames(rename)
if len(errs) > 0 {
return nil, errs
}
errs = c.handleReplacements(replace)
if len(errs) > 0 {
return nil, errs
}
if c.depsModified > 0 {
errs = c.updateDependencies()
if len(errs) > 0 {
return nil, errs
}
}
return deps, errs
}
// Replaces every build logic module with a clone of itself. Prevents introducing problems where
// a mutator sets a non-property member variable on a module, which works until a later mutator
// creates variants of that module.
func (c *Context) cloneModules() {
type update struct {
orig Module
clone *moduleInfo
}
ch := make(chan update)
doneCh := make(chan bool)
go func() {
errs := parallelVisit(c.modulesSorted, unorderedVisitorImpl{}, parallelVisitLimit,
func(m *moduleInfo, pause chan<- pauseSpec) bool {
origLogicModule := m.logicModule
m.logicModule, m.properties = c.cloneLogicModule(m)
ch <- update{origLogicModule, m}
return false
})
if len(errs) > 0 {
panic(errs)
}
doneCh <- true
}()
done := false
for !done {
select {
case <-doneCh:
done = true
case update := <-ch:
delete(c.moduleInfo, update.orig)
c.moduleInfo[update.clone.logicModule] = update.clone
}
}
}
// Removes modules[i] from the list and inserts newModules... where it was located, returning
// the new slice and the index of the last inserted element
func spliceModules(modules modulesOrAliases, i int, newModules modulesOrAliases) (modulesOrAliases, int) {
spliceSize := len(newModules)
newLen := len(modules) + spliceSize - 1
var dest modulesOrAliases
if cap(modules) >= len(modules)-1+len(newModules) {
// We can fit the splice in the existing capacity, do everything in place
dest = modules[:newLen]
} else {
dest = make(modulesOrAliases, newLen)
copy(dest, modules[:i])
}
// Move the end of the slice over by spliceSize-1
copy(dest[i+spliceSize:], modules[i+1:])
// Copy the new modules into the slice
copy(dest[i:], newModules)
return dest, i + spliceSize - 1
}
func (c *Context) generateModuleBuildActions(config interface{},
liveGlobals *liveTracker) ([]string, []error) {
var deps []string
var errs []error
cancelCh := make(chan struct{})
errsCh := make(chan []error)
depsCh := make(chan []string)
go func() {
for {
select {
case <-cancelCh:
close(cancelCh)
return
case newErrs := <-errsCh:
errs = append(errs, newErrs...)
case newDeps := <-depsCh:
deps = append(deps, newDeps...)
}
}
}()
visitErrs := parallelVisit(c.modulesSorted, bottomUpVisitor, parallelVisitLimit,
func(module *moduleInfo, pause chan<- pauseSpec) bool {
uniqueName := c.nameInterface.UniqueName(newNamespaceContext(module), module.group.name)
sanitizedName := toNinjaName(uniqueName)
sanitizedVariant := toNinjaName(module.variant.name)
prefix := moduleNamespacePrefix(sanitizedName + "_" + sanitizedVariant)
// The parent scope of the moduleContext's local scope gets overridden to be that of the
// calling Go package on a per-call basis. Since the initial parent scope doesn't matter we
// just set it to nil.
scope := newLocalScope(nil, prefix)
mctx := &moduleContext{
baseModuleContext: baseModuleContext{
context: c,
config: config,
module: module,
},
scope: scope,
handledMissingDeps: module.missingDeps == nil,
}
mctx.module.startedGenerateBuildActions = true
func() {
defer func() {
if r := recover(); r != nil {
in := fmt.Sprintf("GenerateBuildActions for %s", module)
if err, ok := r.(panicError); ok {
err.addIn(in)
mctx.error(err)
} else {
mctx.error(newPanicErrorf(r, in))
}
}
}()
mctx.module.logicModule.GenerateBuildActions(mctx)
}()
mctx.module.finishedGenerateBuildActions = true
if len(mctx.errs) > 0 {
errsCh <- mctx.errs
return true
}
if module.missingDeps != nil && !mctx.handledMissingDeps {
var errs []error
for _, depName := range module.missingDeps {
errs = append(errs, c.missingDependencyError(module, depName))
}
errsCh <- errs
return true
}
depsCh <- mctx.ninjaFileDeps
newErrs := c.processLocalBuildActions(&module.actionDefs,
&mctx.actionDefs, liveGlobals)
if len(newErrs) > 0 {
errsCh <- newErrs
return true
}
return false
})
cancelCh <- struct{}{}
<-cancelCh
errs = append(errs, visitErrs...)
return deps, errs
}
func (c *Context) generateSingletonBuildActions(config interface{},
singletons []*singletonInfo, liveGlobals *liveTracker) ([]string, []error) {
var deps []string
var errs []error
for _, info := range singletons {
// The parent scope of the singletonContext's local scope gets overridden to be that of the
// calling Go package on a per-call basis. Since the initial parent scope doesn't matter we
// just set it to nil.
scope := newLocalScope(nil, singletonNamespacePrefix(info.name))
sctx := &singletonContext{
name: info.name,
context: c,
config: config,
scope: scope,
globals: liveGlobals,
}
func() {
defer func() {
if r := recover(); r != nil {
in := fmt.Sprintf("GenerateBuildActions for singleton %s", info.name)
if err, ok := r.(panicError); ok {
err.addIn(in)
sctx.error(err)
} else {
sctx.error(newPanicErrorf(r, in))
}
}
}()
info.singleton.GenerateBuildActions(sctx)
}()
if len(sctx.errs) > 0 {
errs = append(errs, sctx.errs...)
if len(errs) > maxErrors {
break
}
continue
}
deps = append(deps, sctx.ninjaFileDeps...)
newErrs := c.processLocalBuildActions(&info.actionDefs,
&sctx.actionDefs, liveGlobals)
errs = append(errs, newErrs...)
if len(errs) > maxErrors {
break
}
}
return deps, errs
}
func (c *Context) processLocalBuildActions(out, in *localBuildActions,
liveGlobals *liveTracker) []error {
var errs []error
// First we go through and add everything referenced by the module's
// buildDefs to the live globals set. This will end up adding the live
// locals to the set as well, but we'll take them out after.
for _, def := range in.buildDefs {
err := liveGlobals.AddBuildDefDeps(def)
if err != nil {
errs = append(errs, err)
}
}
if len(errs) > 0 {
return errs
}
out.buildDefs = append(out.buildDefs, in.buildDefs...)
// We use the now-incorrect set of live "globals" to determine which local
// definitions are live. As we go through copying those live locals to the
// moduleGroup we remove them from the live globals set.
for _, v := range in.variables {
isLive := liveGlobals.RemoveVariableIfLive(v)
if isLive {
out.variables = append(out.variables, v)
}
}
for _, r := range in.rules {
isLive := liveGlobals.RemoveRuleIfLive(r)
if isLive {
out.rules = append(out.rules, r)
}
}
return nil
}
func (c *Context) walkDeps(topModule *moduleInfo, allowDuplicates bool,
visitDown func(depInfo, *moduleInfo) bool, visitUp func(depInfo, *moduleInfo)) {
visited := make(map[*moduleInfo]bool)
var visiting *moduleInfo
defer func() {
if r := recover(); r != nil {
panic(newPanicErrorf(r, "WalkDeps(%s, %s, %s) for dependency %s",
topModule, funcName(visitDown), funcName(visitUp), visiting))
}
}()
var walk func(module *moduleInfo)
walk = func(module *moduleInfo) {
for _, dep := range module.directDeps {
if allowDuplicates || !visited[dep.module] {
visiting = dep.module
recurse := true
if visitDown != nil {
recurse = visitDown(dep, module)
}
if recurse && !visited[dep.module] {
walk(dep.module)
visited[dep.module] = true
}
if visitUp != nil {
visitUp(dep, module)
}
}
}
}
walk(topModule)
}
type replace struct {
from, to *moduleInfo
predicate ReplaceDependencyPredicate
}
type rename struct {
group *moduleGroup
name string
}
func (c *Context) moduleMatchingVariant(module *moduleInfo, name string) *moduleInfo {
group := c.moduleGroupFromName(name, module.namespace())
if group == nil {
return nil
}
for _, m := range group.modules {
if module.variant.name == m.moduleOrAliasVariant().name {
return m.moduleOrAliasTarget()
}
}
return nil
}
func (c *Context) handleRenames(renames []rename) []error {
var errs []error
for _, rename := range renames {
group, name := rename.group, rename.name
if name == group.name || len(group.modules) < 1 {
continue
}
errs = append(errs, c.nameInterface.Rename(group.name, rename.name, group.namespace)...)
}
return errs
}
func (c *Context) handleReplacements(replacements []replace) []error {
var errs []error
changedDeps := false
for _, replace := range replacements {
for _, m := range replace.from.reverseDeps {
for i, d := range m.directDeps {
if d.module == replace.from {
// If the replacement has a predicate then check it.
if replace.predicate == nil || replace.predicate(m.logicModule, d.tag, d.module.logicModule) {
m.directDeps[i].module = replace.to
changedDeps = true
}
}
}
}
}
if changedDeps {
atomic.AddUint32(&c.depsModified, 1)
}
return errs
}
func (c *Context) discoveredMissingDependencies(module *moduleInfo, depName string, depVariations variationMap) (errs []error) {
if depVariations != nil {
depName = depName + "{" + c.prettyPrintVariant(depVariations) + "}"
}
if c.allowMissingDependencies {
module.missingDeps = append(module.missingDeps, depName)
return nil
}
return []error{c.missingDependencyError(module, depName)}
}
func (c *Context) missingDependencyError(module *moduleInfo, depName string) (errs error) {
err := c.nameInterface.MissingDependencyError(module.Name(), module.namespace(), depName)
return &BlueprintError{
Err: err,
Pos: module.pos,
}
}
func (c *Context) moduleGroupFromName(name string, namespace Namespace) *moduleGroup {
group, exists := c.nameInterface.ModuleFromName(name, namespace)
if exists {
return group.moduleGroup
}
return nil
}
func (c *Context) sortedModuleGroups() []*moduleGroup {
if c.cachedSortedModuleGroups == nil || c.cachedDepsModified {
unwrap := func(wrappers []ModuleGroup) []*moduleGroup {
result := make([]*moduleGroup, 0, len(wrappers))
for _, group := range wrappers {
result = append(result, group.moduleGroup)
}
return result
}
c.cachedSortedModuleGroups = unwrap(c.nameInterface.AllModules())
c.cachedDepsModified = false
}
return c.cachedSortedModuleGroups
}
func (c *Context) visitAllModules(visit func(Module)) {
var module *moduleInfo
defer func() {
if r := recover(); r != nil {
panic(newPanicErrorf(r, "VisitAllModules(%s) for %s",
funcName(visit), module))
}
}()
for _, moduleGroup := range c.sortedModuleGroups() {
for _, moduleOrAlias := range moduleGroup.modules {
if module = moduleOrAlias.module(); module != nil {
visit(module.logicModule)
}
}
}
}
func (c *Context) visitAllModulesIf(pred func(Module) bool,
visit func(Module)) {
var module *moduleInfo
defer func() {
if r := recover(); r != nil {
panic(newPanicErrorf(r, "VisitAllModulesIf(%s, %s) for %s",
funcName(pred), funcName(visit), module))
}
}()
for _, moduleGroup := range c.sortedModuleGroups() {
for _, moduleOrAlias := range moduleGroup.modules {
if module = moduleOrAlias.module(); module != nil {
if pred(module.logicModule) {
visit(module.logicModule)
}
}
}
}
}
func (c *Context) visitAllModuleVariants(module *moduleInfo,
visit func(Module)) {
var variant *moduleInfo
defer func() {
if r := recover(); r != nil {
panic(newPanicErrorf(r, "VisitAllModuleVariants(%s, %s) for %s",
module, funcName(visit), variant))
}
}()
for _, moduleOrAlias := range module.group.modules {
if variant = moduleOrAlias.module(); variant != nil {
visit(variant.logicModule)
}
}
}
func (c *Context) requireNinjaVersion(major, minor, micro int) {
if major != 1 {
panic("ninja version with major version != 1 not supported")
}
if c.requiredNinjaMinor < minor {
c.requiredNinjaMinor = minor
c.requiredNinjaMicro = micro
}
if c.requiredNinjaMinor == minor && c.requiredNinjaMicro < micro {
c.requiredNinjaMicro = micro
}
}
func (c *Context) setOutDir(value ninjaString) {
if c.outDir == nil {
c.outDir = value
}
}
func (c *Context) makeUniquePackageNames(
liveGlobals *liveTracker) (map[*packageContext]string, []string) {
pkgs := make(map[string]*packageContext)
pkgNames := make(map[*packageContext]string)
longPkgNames := make(map[*packageContext]bool)
processPackage := func(pctx *packageContext) {
if pctx == nil {
// This is a built-in rule and has no package.
return
}
if _, ok := pkgNames[pctx]; ok {
// We've already processed this package.
return
}
otherPkg, present := pkgs[pctx.shortName]
if present {
// Short name collision. Both this package and the one that's
// already there need to use their full names. We leave the short
// name in pkgNames for now so future collisions still get caught.
longPkgNames[pctx] = true
longPkgNames[otherPkg] = true
} else {
// No collision so far. Tentatively set the package's name to be
// its short name.
pkgNames[pctx] = pctx.shortName
pkgs[pctx.shortName] = pctx
}
}
// We try to give all packages their short name, but when we get collisions
// we need to use the full unique package name.
for v, _ := range liveGlobals.variables {
processPackage(v.packageContext())
}
for p, _ := range liveGlobals.pools {
processPackage(p.packageContext())
}
for r, _ := range liveGlobals.rules {
processPackage(r.packageContext())
}
// Add the packages that had collisions using their full unique names. This
// will overwrite any short names that were added in the previous step.
for pctx := range longPkgNames {
pkgNames[pctx] = pctx.fullName
}
// Create deps list from calls to PackageContext.AddNinjaFileDeps
deps := []string{}
for _, pkg := range pkgs {
deps = append(deps, pkg.ninjaFileDeps...)
}
return pkgNames, deps
}
// memoizeFullNames stores the full name of each live global variable, rule and pool since each is
// guaranteed to be used at least twice, once in the definition and once for each usage, and many
// are used much more than once.
func (c *Context) memoizeFullNames(liveGlobals *liveTracker, pkgNames map[*packageContext]string) {
for v := range liveGlobals.variables {
v.memoizeFullName(pkgNames)
}
for r := range liveGlobals.rules {
r.memoizeFullName(pkgNames)
}
for p := range liveGlobals.pools {
p.memoizeFullName(pkgNames)
}
}
func (c *Context) checkForVariableReferenceCycles(
variables map[Variable]ninjaString, pkgNames map[*packageContext]string) {
visited := make(map[Variable]bool) // variables that were already checked
checking := make(map[Variable]bool) // variables actively being checked
var check func(v Variable) []Variable
check = func(v Variable) []Variable {
visited[v] = true
checking[v] = true
defer delete(checking, v)
value := variables[v]
for _, dep := range value.Variables() {
if checking[dep] {
// This is a cycle.
return []Variable{dep, v}
}
if !visited[dep] {
cycle := check(dep)
if cycle != nil {
if cycle[0] == v {
// We are the "start" of the cycle, so we're responsible
// for generating the errors. The cycle list is in
// reverse order because all the 'check' calls append
// their own module to the list.
msgs := []string{"detected variable reference cycle:"}
// Iterate backwards through the cycle list.
curName := v.fullName(pkgNames)
curValue := value.Value(pkgNames)
for i := len(cycle) - 1; i >= 0; i-- {
next := cycle[i]
nextName := next.fullName(pkgNames)
nextValue := variables[next].Value(pkgNames)
msgs = append(msgs, fmt.Sprintf(
" %q depends on %q", curName, nextName))
msgs = append(msgs, fmt.Sprintf(
" [%s = %s]", curName, curValue))
curName = nextName
curValue = nextValue
}
// Variable reference cycles are a programming error,
// not the fault of the Blueprint file authors.
panic(strings.Join(msgs, "\n"))
} else {
// We're not the "start" of the cycle, so we just append
// our module to the list and return it.
return append(cycle, v)
}
}
}
}
return nil
}
for v := range variables {
if !visited[v] {
cycle := check(v)
if cycle != nil {
panic("inconceivable!")
}
}
}
}
// AllTargets returns a map all the build target names to the rule used to build
// them. This is the same information that is output by running 'ninja -t
// targets all'. If this is called before PrepareBuildActions successfully
// completes then ErrbuildActionsNotReady is returned.
func (c *Context) AllTargets() (map[string]string, error) {
if !c.buildActionsReady {
return nil, ErrBuildActionsNotReady
}
targets := map[string]string{}
// Collect all the module build targets.
for _, module := range c.moduleInfo {
for _, buildDef := range module.actionDefs.buildDefs {
ruleName := buildDef.Rule.fullName(c.pkgNames)
for _, output := range append(buildDef.Outputs, buildDef.ImplicitOutputs...) {
outputValue, err := output.Eval(c.globalVariables)
if err != nil {
return nil, err
}
targets[outputValue] = ruleName
}
}
}
// Collect all the singleton build targets.
for _, info := range c.singletonInfo {
for _, buildDef := range info.actionDefs.buildDefs {
ruleName := buildDef.Rule.fullName(c.pkgNames)
for _, output := range append(buildDef.Outputs, buildDef.ImplicitOutputs...) {
outputValue, err := output.Eval(c.globalVariables)
if err != nil {
return nil, err
}
targets[outputValue] = ruleName
}
}
}
return targets, nil
}
func (c *Context) OutDir() (string, error) {
if c.outDir != nil {
return c.outDir.Eval(c.globalVariables)
} else {
return "", nil
}
}
// ModuleTypePropertyStructs returns a mapping from module type name to a list of pointers to
// property structs returned by the factory for that module type.
func (c *Context) ModuleTypePropertyStructs() map[string][]interface{} {
ret := make(map[string][]interface{})
for moduleType, factory := range c.moduleFactories {
_, ret[moduleType] = factory()
}
return ret
}
func (c *Context) ModuleTypeFactories() map[string]ModuleFactory {
ret := make(map[string]ModuleFactory)
for k, v := range c.moduleFactories {
ret[k] = v
}
return ret
}
func (c *Context) ModuleName(logicModule Module) string {
module := c.moduleInfo[logicModule]
return module.Name()
}
func (c *Context) ModuleDir(logicModule Module) string {
return filepath.Dir(c.BlueprintFile(logicModule))
}
func (c *Context) ModuleSubDir(logicModule Module) string {
module := c.moduleInfo[logicModule]
return module.variant.name
}
func (c *Context) ModuleType(logicModule Module) string {
module := c.moduleInfo[logicModule]
return module.typeName
}
// ModuleProvider returns the value, if any, for the provider for a module. If the value for the
// provider was not set it returns the zero value of the type of the provider, which means the
// return value can always be type-asserted to the type of the provider. The return value should
// always be considered read-only. It panics if called before the appropriate mutator or
// GenerateBuildActions pass for the provider on the module. The value returned may be a deep
// copy of the value originally passed to SetProvider.
func (c *Context) ModuleProvider(logicModule Module, provider ProviderKey) interface{} {
module := c.moduleInfo[logicModule]
value, _ := c.provider(module, provider)
return value
}
// ModuleHasProvider returns true if the provider for the given module has been set.
func (c *Context) ModuleHasProvider(logicModule Module, provider ProviderKey) bool {
module := c.moduleInfo[logicModule]
_, ok := c.provider(module, provider)
return ok
}
func (c *Context) BlueprintFile(logicModule Module) string {
module := c.moduleInfo[logicModule]
return module.relBlueprintsFile
}
func (c *Context) ModuleErrorf(logicModule Module, format string,
args ...interface{}) error {
module := c.moduleInfo[logicModule]
return &BlueprintError{
Err: fmt.Errorf(format, args...),
Pos: module.pos,
}
}
func (c *Context) VisitAllModules(visit func(Module)) {
c.visitAllModules(visit)
}
func (c *Context) VisitAllModulesIf(pred func(Module) bool,
visit func(Module)) {
c.visitAllModulesIf(pred, visit)
}
func (c *Context) VisitDirectDeps(module Module, visit func(Module)) {
topModule := c.moduleInfo[module]
var visiting *moduleInfo
defer func() {
if r := recover(); r != nil {
panic(newPanicErrorf(r, "VisitDirectDeps(%s, %s) for dependency %s",
topModule, funcName(visit), visiting))
}
}()
for _, dep := range topModule.directDeps {
visiting = dep.module
visit(dep.module.logicModule)
}
}
func (c *Context) VisitDirectDepsIf(module Module, pred func(Module) bool, visit func(Module)) {
topModule := c.moduleInfo[module]
var visiting *moduleInfo
defer func() {
if r := recover(); r != nil {
panic(newPanicErrorf(r, "VisitDirectDepsIf(%s, %s, %s) for dependency %s",
topModule, funcName(pred), funcName(visit), visiting))
}
}()
for _, dep := range topModule.directDeps {
visiting = dep.module
if pred(dep.module.logicModule) {
visit(dep.module.logicModule)
}
}
}
func (c *Context) VisitDepsDepthFirst(module Module, visit func(Module)) {
topModule := c.moduleInfo[module]
var visiting *moduleInfo
defer func() {
if r := recover(); r != nil {
panic(newPanicErrorf(r, "VisitDepsDepthFirst(%s, %s) for dependency %s",
topModule, funcName(visit), visiting))
}
}()
c.walkDeps(topModule, false, nil, func(dep depInfo, parent *moduleInfo) {
visiting = dep.module
visit(dep.module.logicModule)
})
}
func (c *Context) VisitDepsDepthFirstIf(module Module, pred func(Module) bool, visit func(Module)) {
topModule := c.moduleInfo[module]
var visiting *moduleInfo
defer func() {
if r := recover(); r != nil {
panic(newPanicErrorf(r, "VisitDepsDepthFirstIf(%s, %s, %s) for dependency %s",
topModule, funcName(pred), funcName(visit), visiting))
}
}()
c.walkDeps(topModule, false, nil, func(dep depInfo, parent *moduleInfo) {
if pred(dep.module.logicModule) {
visiting = dep.module
visit(dep.module.logicModule)
}
})
}
func (c *Context) PrimaryModule(module Module) Module {
return c.moduleInfo[module].group.modules.firstModule().logicModule
}
func (c *Context) FinalModule(module Module) Module {
return c.moduleInfo[module].group.modules.lastModule().logicModule
}
func (c *Context) VisitAllModuleVariants(module Module,
visit func(Module)) {
c.visitAllModuleVariants(c.moduleInfo[module], visit)
}
// Singletons returns a list of all registered Singletons.
func (c *Context) Singletons() []Singleton {
var ret []Singleton
for _, s := range c.singletonInfo {
ret = append(ret, s.singleton)
}
return ret
}
// SingletonName returns the name that the given singleton was registered with.
func (c *Context) SingletonName(singleton Singleton) string {
for _, s := range c.singletonInfo {
if s.singleton == singleton {
return s.name
}
}
return ""
}
// WriteBuildFile writes the Ninja manifeset text for the generated build
// actions to w. If this is called before PrepareBuildActions successfully
// completes then ErrBuildActionsNotReady is returned.
func (c *Context) WriteBuildFile(w io.StringWriter) error {
var err error
pprof.Do(c.Context, pprof.Labels("blueprint", "WriteBuildFile"), func(ctx context.Context) {
if !c.buildActionsReady {
err = ErrBuildActionsNotReady
return
}
nw := newNinjaWriter(w)
err = c.writeBuildFileHeader(nw)
if err != nil {
return
}
err = c.writeNinjaRequiredVersion(nw)
if err != nil {
return
}
err = c.writeSubninjas(nw)
if err != nil {
return
}
// TODO: Group the globals by package.
err = c.writeGlobalVariables(nw)
if err != nil {
return
}
err = c.writeGlobalPools(nw)
if err != nil {
return
}
err = c.writeBuildDir(nw)
if err != nil {
return
}
err = c.writeGlobalRules(nw)
if err != nil {
return
}
err = c.writeAllModuleActions(nw)
if err != nil {
return
}
err = c.writeAllSingletonActions(nw)
if err != nil {
return
}
})
if err != nil {
return err
}
return nil
}
type pkgAssociation struct {
PkgName string
PkgPath string
}
type pkgAssociationSorter struct {
pkgs []pkgAssociation
}
func (s *pkgAssociationSorter) Len() int {
return len(s.pkgs)
}
func (s *pkgAssociationSorter) Less(i, j int) bool {
iName := s.pkgs[i].PkgName
jName := s.pkgs[j].PkgName
return iName < jName
}
func (s *pkgAssociationSorter) Swap(i, j int) {
s.pkgs[i], s.pkgs[j] = s.pkgs[j], s.pkgs[i]
}
func (c *Context) writeBuildFileHeader(nw *ninjaWriter) error {
headerTemplate := template.New("fileHeader")
_, err := headerTemplate.Parse(fileHeaderTemplate)
if err != nil {
// This is a programming error.
panic(err)
}
var pkgs []pkgAssociation
maxNameLen := 0
for pkg, name := range c.pkgNames {
pkgs = append(pkgs, pkgAssociation{
PkgName: name,
PkgPath: pkg.pkgPath,
})
if len(name) > maxNameLen {
maxNameLen = len(name)
}
}
for i := range pkgs {
pkgs[i].PkgName += strings.Repeat(" ", maxNameLen-len(pkgs[i].PkgName))
}
sort.Sort(&pkgAssociationSorter{pkgs})
params := map[string]interface{}{
"Pkgs": pkgs,
}
buf := bytes.NewBuffer(nil)
err = headerTemplate.Execute(buf, params)
if err != nil {
return err
}
return nw.Comment(buf.String())
}
func (c *Context) writeNinjaRequiredVersion(nw *ninjaWriter) error {
value := fmt.Sprintf("%d.%d.%d", c.requiredNinjaMajor, c.requiredNinjaMinor,
c.requiredNinjaMicro)
err := nw.Assign("ninja_required_version", value)
if err != nil {
return err
}
return nw.BlankLine()
}
func (c *Context) writeSubninjas(nw *ninjaWriter) error {
for _, subninja := range c.subninjas {
err := nw.Subninja(subninja)
if err != nil {
return err
}
}
return nw.BlankLine()
}
func (c *Context) writeBuildDir(nw *ninjaWriter) error {
if c.outDir != nil {
err := nw.Assign("builddir", c.outDir.Value(c.pkgNames))
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
return nil
}
type globalEntity interface {
fullName(pkgNames map[*packageContext]string) string
}
type globalEntitySorter struct {
pkgNames map[*packageContext]string
entities []globalEntity
}
func (s *globalEntitySorter) Len() int {
return len(s.entities)
}
func (s *globalEntitySorter) Less(i, j int) bool {
iName := s.entities[i].fullName(s.pkgNames)
jName := s.entities[j].fullName(s.pkgNames)
return iName < jName
}
func (s *globalEntitySorter) Swap(i, j int) {
s.entities[i], s.entities[j] = s.entities[j], s.entities[i]
}
func (c *Context) writeGlobalVariables(nw *ninjaWriter) error {
visited := make(map[Variable]bool)
var walk func(v Variable) error
walk = func(v Variable) error {
visited[v] = true
// First visit variables on which this variable depends.
value := c.globalVariables[v]
for _, dep := range value.Variables() {
if !visited[dep] {
err := walk(dep)
if err != nil {
return err
}
}
}
err := nw.Assign(v.fullName(c.pkgNames), value.Value(c.pkgNames))
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
return nil
}
globalVariables := make([]globalEntity, 0, len(c.globalVariables))
for variable := range c.globalVariables {
globalVariables = append(globalVariables, variable)
}
sort.Sort(&globalEntitySorter{c.pkgNames, globalVariables})
for _, entity := range globalVariables {
v := entity.(Variable)
if !visited[v] {
err := walk(v)
if err != nil {
return nil
}
}
}
return nil
}
func (c *Context) writeGlobalPools(nw *ninjaWriter) error {
globalPools := make([]globalEntity, 0, len(c.globalPools))
for pool := range c.globalPools {
globalPools = append(globalPools, pool)
}
sort.Sort(&globalEntitySorter{c.pkgNames, globalPools})
for _, entity := range globalPools {
pool := entity.(Pool)
name := pool.fullName(c.pkgNames)
def := c.globalPools[pool]
err := def.WriteTo(nw, name)
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
return nil
}
func (c *Context) writeGlobalRules(nw *ninjaWriter) error {
globalRules := make([]globalEntity, 0, len(c.globalRules))
for rule := range c.globalRules {
globalRules = append(globalRules, rule)
}
sort.Sort(&globalEntitySorter{c.pkgNames, globalRules})
for _, entity := range globalRules {
rule := entity.(Rule)
name := rule.fullName(c.pkgNames)
def := c.globalRules[rule]
err := def.WriteTo(nw, name, c.pkgNames)
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
return nil
}
type depSorter []depInfo
func (s depSorter) Len() int {
return len(s)
}
func (s depSorter) Less(i, j int) bool {
iName := s[i].module.Name()
jName := s[j].module.Name()
if iName == jName {
iName = s[i].module.variant.name
jName = s[j].module.variant.name
}
return iName < jName
}
func (s depSorter) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
type moduleSorter struct {
modules []*moduleInfo
nameInterface NameInterface
}
func (s moduleSorter) Len() int {
return len(s.modules)
}
func (s moduleSorter) Less(i, j int) bool {
iMod := s.modules[i]
jMod := s.modules[j]
iName := s.nameInterface.UniqueName(newNamespaceContext(iMod), iMod.group.name)
jName := s.nameInterface.UniqueName(newNamespaceContext(jMod), jMod.group.name)
if iName == jName {
iVariantName := s.modules[i].variant.name
jVariantName := s.modules[j].variant.name
if iVariantName == jVariantName {
panic(fmt.Sprintf("duplicate module name: %s %s: %#v and %#v\n",
iName, iVariantName, iMod.variant.variations, jMod.variant.variations))
} else {
return iVariantName < jVariantName
}
} else {
return iName < jName
}
}
func (s moduleSorter) Swap(i, j int) {
s.modules[i], s.modules[j] = s.modules[j], s.modules[i]
}
func (c *Context) writeAllModuleActions(nw *ninjaWriter) error {
headerTemplate := template.New("moduleHeader")
_, err := headerTemplate.Parse(moduleHeaderTemplate)
if err != nil {
// This is a programming error.
panic(err)
}
modules := make([]*moduleInfo, 0, len(c.moduleInfo))
for _, module := range c.moduleInfo {
modules = append(modules, module)
}
sort.Sort(moduleSorter{modules, c.nameInterface})
buf := bytes.NewBuffer(nil)
for _, module := range modules {
if len(module.actionDefs.variables)+len(module.actionDefs.rules)+len(module.actionDefs.buildDefs) == 0 {
continue
}
buf.Reset()
// In order to make the bootstrap build manifest independent of the
// build dir we need to output the Blueprints file locations in the
// comments as paths relative to the source directory.
relPos := module.pos
relPos.Filename = module.relBlueprintsFile
// Get the name and location of the factory function for the module.
factoryFunc := runtime.FuncForPC(reflect.ValueOf(module.factory).Pointer())
factoryName := factoryFunc.Name()
infoMap := map[string]interface{}{
"name": module.Name(),
"typeName": module.typeName,
"goFactory": factoryName,
"pos": relPos,
"variant": module.variant.name,
}
err = headerTemplate.Execute(buf, infoMap)
if err != nil {
return err
}
err = nw.Comment(buf.String())
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
err = c.writeLocalBuildActions(nw, &module.actionDefs)
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
return nil
}
func (c *Context) writeAllSingletonActions(nw *ninjaWriter) error {
headerTemplate := template.New("singletonHeader")
_, err := headerTemplate.Parse(singletonHeaderTemplate)
if err != nil {
// This is a programming error.
panic(err)
}
buf := bytes.NewBuffer(nil)
for _, info := range c.singletonInfo {
if len(info.actionDefs.variables)+len(info.actionDefs.rules)+len(info.actionDefs.buildDefs) == 0 {
continue
}
// Get the name of the factory function for the module.
factory := info.factory
factoryFunc := runtime.FuncForPC(reflect.ValueOf(factory).Pointer())
factoryName := factoryFunc.Name()
buf.Reset()
infoMap := map[string]interface{}{
"name": info.name,
"goFactory": factoryName,
}
err = headerTemplate.Execute(buf, infoMap)
if err != nil {
return err
}
err = nw.Comment(buf.String())
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
err = c.writeLocalBuildActions(nw, &info.actionDefs)
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
return nil
}
func (c *Context) writeLocalBuildActions(nw *ninjaWriter,
defs *localBuildActions) error {
// Write the local variable assignments.
for _, v := range defs.variables {
// A localVariable doesn't need the package names or config to
// determine its name or value.
name := v.fullName(nil)
value, err := v.value(nil)
if err != nil {
panic(err)
}
err = nw.Assign(name, value.Value(c.pkgNames))
if err != nil {
return err
}
}
if len(defs.variables) > 0 {
err := nw.BlankLine()
if err != nil {
return err
}
}
// Write the local rules.
for _, r := range defs.rules {
// A localRule doesn't need the package names or config to determine
// its name or definition.
name := r.fullName(nil)
def, err := r.def(nil)
if err != nil {
panic(err)
}
err = def.WriteTo(nw, name, c.pkgNames)
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
// Write the build definitions.
for _, buildDef := range defs.buildDefs {
err := buildDef.WriteTo(nw, c.pkgNames)
if err != nil {
return err
}
if len(buildDef.Args) > 0 {
err = nw.BlankLine()
if err != nil {
return err
}
}
}
return nil
}
func beforeInModuleList(a, b *moduleInfo, list modulesOrAliases) bool {
found := false
if a == b {
return false
}
for _, l := range list {
if l.module() == a {
found = true
} else if l.module() == b {
return found
}
}
missing := a
if found {
missing = b
}
panic(fmt.Errorf("element %v not found in list %v", missing, list))
}
type panicError struct {
panic interface{}
stack []byte
in string
}
func newPanicErrorf(panic interface{}, in string, a ...interface{}) error {
buf := make([]byte, 4096)
count := runtime.Stack(buf, false)
return panicError{
panic: panic,
in: fmt.Sprintf(in, a...),
stack: buf[:count],
}
}
func (p panicError) Error() string {
return fmt.Sprintf("panic in %s\n%s\n%s\n", p.in, p.panic, p.stack)
}
func (p *panicError) addIn(in string) {
p.in += " in " + in
}
func funcName(f interface{}) string {
return runtime.FuncForPC(reflect.ValueOf(f).Pointer()).Name()
}
var fileHeaderTemplate = `******************************************************************************
*** This file is generated and should not be edited ***
******************************************************************************
{{if .Pkgs}}
This file contains variables, rules, and pools with name prefixes indicating
they were generated by the following Go packages:
{{range .Pkgs}}
{{.PkgName}} [from Go package {{.PkgPath}}]{{end}}{{end}}
`
var moduleHeaderTemplate = `# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
Module: {{.name}}
Variant: {{.variant}}
Type: {{.typeName}}
Factory: {{.goFactory}}
Defined: {{.pos}}
`
var singletonHeaderTemplate = `# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
Singleton: {{.name}}
Factory: {{.goFactory}}
`