blob: b077623f6145972ff22dfc646e052389c3e0f61a [file] [log] [blame]
// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package blueprint
import (
"bytes"
"errors"
"fmt"
"io"
"os"
"path/filepath"
"reflect"
"runtime"
"sort"
"strconv"
"strings"
"sync/atomic"
"text/scanner"
"text/template"
"github.com/google/blueprint/parser"
"github.com/google/blueprint/pathtools"
"github.com/google/blueprint/proptools"
)
var ErrBuildActionsNotReady = errors.New("build actions are not ready")
const maxErrors = 10
// A Context contains all the state needed to parse a set of Blueprints files
// and generate a Ninja file. The process of generating a Ninja file proceeds
// through a series of four phases. Each phase corresponds with a some methods
// on the Context object
//
// Phase Methods
// ------------ -------------------------------------------
// 1. Registration RegisterModuleType, RegisterSingletonType
//
// 2. Parse ParseBlueprintsFiles, Parse
//
// 3. Generate ResolveDependencies, PrepareBuildActions
//
// 4. Write WriteBuildFile
//
// The registration phase prepares the context to process Blueprints files
// containing various types of modules. The parse phase reads in one or more
// Blueprints files and validates their contents against the module types that
// have been registered. The generate phase then analyzes the parsed Blueprints
// contents to create an internal representation for the build actions that must
// be performed. This phase also performs validation of the module dependencies
// and property values defined in the parsed Blueprints files. Finally, the
// write phase generates the Ninja manifest text based on the generated build
// actions.
type Context struct {
// set at instantiation
moduleFactories map[string]ModuleFactory
moduleGroups map[string]*moduleGroup
moduleInfo map[Module]*moduleInfo
modulesSorted []*moduleInfo
singletonInfo map[string]*singletonInfo
mutatorInfo []*mutatorInfo
earlyMutatorInfo []*earlyMutatorInfo
variantMutatorNames []string
moduleNinjaNames map[string]*moduleGroup
dependenciesReady bool // set to true on a successful ResolveDependencies
buildActionsReady bool // set to true on a successful PrepareBuildActions
// set by SetIgnoreUnknownModuleTypes
ignoreUnknownModuleTypes bool
// set during PrepareBuildActions
pkgNames map[*PackageContext]string
globalVariables map[Variable]*ninjaString
globalPools map[Pool]*poolDef
globalRules map[Rule]*ruleDef
// set during PrepareBuildActions
buildDir *ninjaString // The builddir special Ninja variable
requiredNinjaMajor int // For the ninja_required_version variable
requiredNinjaMinor int // For the ninja_required_version variable
requiredNinjaMicro int // For the ninja_required_version variable
// set lazily by sortedModuleNames
cachedSortedModuleNames []string
}
// An Error describes a problem that was encountered that is related to a
// particular location in a Blueprints file.
type Error struct {
Err error // the error that occurred
Pos scanner.Position // the relevant Blueprints file location
}
type localBuildActions struct {
variables []*localVariable
rules []*localRule
buildDefs []*buildDef
}
type moduleGroup struct {
name string
ninjaName string
modules []*moduleInfo
}
type moduleInfo struct {
// set during Parse
typeName string
relBlueprintsFile string
pos scanner.Position
propertyPos map[string]scanner.Position
properties struct {
Name string
Deps []string
}
variantName string
variant variationMap
dependencyVariant variationMap
logicModule Module
group *moduleGroup
moduleProperties []interface{}
// set during ResolveDependencies
directDeps []*moduleInfo
// set during updateDependencies
reverseDeps []*moduleInfo
depsCount int
// used by parallelVisitAllBottomUp
waitingCount int
// set during each runMutator
splitModules []*moduleInfo
// set during PrepareBuildActions
actionDefs localBuildActions
}
// A Variation is a way that a variant of a module differs from other variants of the same module.
// For example, two variants of the same module might have Variation{"arch","arm"} and
// Variation{"arch","arm64"}
type Variation struct {
// Mutator is the axis on which this variation applies, i.e. "arch" or "link"
Mutator string
// Variation is the name of the variation on the axis, i.e. "arm" or "arm64" for arch, or
// "shared" or "static" for link.
Variation string
}
// A variationMap stores a map of Mutator to Variation to specify a variant of a module.
type variationMap map[string]string
func (vm variationMap) clone() variationMap {
newVm := make(variationMap)
for k, v := range vm {
newVm[k] = v
}
return newVm
}
// Compare this variationMap to another one. Returns true if the every entry in this map
// is either the same in the other map or doesn't exist in the other map.
func (vm variationMap) subset(other variationMap) bool {
for k, v1 := range vm {
if v2, ok := other[k]; ok && v1 != v2 {
return false
}
}
return true
}
func (vm variationMap) equal(other variationMap) bool {
return reflect.DeepEqual(vm, other)
}
type singletonInfo struct {
// set during RegisterSingletonType
factory SingletonFactory
singleton Singleton
// set during PrepareBuildActions
actionDefs localBuildActions
}
type mutatorInfo struct {
// set during RegisterMutator
topDownMutator TopDownMutator
bottomUpMutator BottomUpMutator
name string
}
type earlyMutatorInfo struct {
// set during RegisterEarlyMutator
mutator EarlyMutator
name string
}
func (e *Error) Error() string {
return fmt.Sprintf("%s: %s", e.Pos, e.Err)
}
// NewContext creates a new Context object. The created context initially has
// no module or singleton factories registered, so the RegisterModuleFactory and
// RegisterSingletonFactory methods must be called before it can do anything
// useful.
func NewContext() *Context {
return &Context{
moduleFactories: make(map[string]ModuleFactory),
moduleGroups: make(map[string]*moduleGroup),
moduleInfo: make(map[Module]*moduleInfo),
singletonInfo: make(map[string]*singletonInfo),
moduleNinjaNames: make(map[string]*moduleGroup),
}
}
// A ModuleFactory function creates a new Module object. See the
// Context.RegisterModuleType method for details about how a registered
// ModuleFactory is used by a Context.
type ModuleFactory func() (m Module, propertyStructs []interface{})
// RegisterModuleType associates a module type name (which can appear in a
// Blueprints file) with a Module factory function. When the given module type
// name is encountered in a Blueprints file during parsing, the Module factory
// is invoked to instantiate a new Module object to handle the build action
// generation for the module. If a Mutator splits a module into multiple variants,
// the factory is invoked again to create a new Module for each variant.
//
// The module type names given here must be unique for the context. The factory
// function should be a named function so that its package and name can be
// included in the generated Ninja file for debugging purposes.
//
// The factory function returns two values. The first is the newly created
// Module object. The second is a slice of pointers to that Module object's
// properties structs. Each properties struct is examined when parsing a module
// definition of this type in a Blueprints file. Exported fields of the
// properties structs are automatically set to the property values specified in
// the Blueprints file. The properties struct field names determine the name of
// the Blueprints file properties that are used - the Blueprints property name
// matches that of the properties struct field name with the first letter
// converted to lower-case.
//
// The fields of the properties struct must be either []string, a string, or
// bool. The Context will panic if a Module gets instantiated with a properties
// struct containing a field that is not one these supported types.
//
// Any properties that appear in the Blueprints files that are not built-in
// module properties (such as "name" and "deps") and do not have a corresponding
// field in the returned module properties struct result in an error during the
// Context's parse phase.
//
// As an example, the follow code:
//
// type myModule struct {
// properties struct {
// Foo string
// Bar []string
// }
// }
//
// func NewMyModule() (blueprint.Module, []interface{}) {
// module := new(myModule)
// properties := &module.properties
// return module, []interface{}{properties}
// }
//
// func main() {
// ctx := blueprint.NewContext()
// ctx.RegisterModuleType("my_module", NewMyModule)
// // ...
// }
//
// would support parsing a module defined in a Blueprints file as follows:
//
// my_module {
// name: "myName",
// foo: "my foo string",
// bar: ["my", "bar", "strings"],
// }
//
// The factory function may be called from multiple goroutines. Any accesses
// to global variables must be synchronized.
func (c *Context) RegisterModuleType(name string, factory ModuleFactory) {
if _, present := c.moduleFactories[name]; present {
panic(errors.New("module type name is already registered"))
}
c.moduleFactories[name] = factory
}
// A SingletonFactory function creates a new Singleton object. See the
// Context.RegisterSingletonType method for details about how a registered
// SingletonFactory is used by a Context.
type SingletonFactory func() Singleton
// RegisterSingletonType registers a singleton type that will be invoked to
// generate build actions. Each registered singleton type is instantiated and
// and invoked exactly once as part of the generate phase.
//
// The singleton type names given here must be unique for the context. The
// factory function should be a named function so that its package and name can
// be included in the generated Ninja file for debugging purposes.
func (c *Context) RegisterSingletonType(name string, factory SingletonFactory) {
if _, present := c.singletonInfo[name]; present {
panic(errors.New("singleton name is already registered"))
}
c.singletonInfo[name] = &singletonInfo{
factory: factory,
singleton: factory(),
}
}
func singletonPkgPath(singleton Singleton) string {
typ := reflect.TypeOf(singleton)
for typ.Kind() == reflect.Ptr {
typ = typ.Elem()
}
return typ.PkgPath()
}
func singletonTypeName(singleton Singleton) string {
typ := reflect.TypeOf(singleton)
for typ.Kind() == reflect.Ptr {
typ = typ.Elem()
}
return typ.PkgPath() + "." + typ.Name()
}
// RegisterTopDownMutator registers a mutator that will be invoked to propagate
// dependency info top-down between Modules. Each registered mutator
// is invoked in registration order (mixing TopDownMutators and BottomUpMutators)
// once per Module, and is invoked on a module before being invoked on any of its
// dependencies.
//
// The mutator type names given here must be unique to all top down mutators in
// the Context.
func (c *Context) RegisterTopDownMutator(name string, mutator TopDownMutator) {
for _, m := range c.mutatorInfo {
if m.name == name && m.topDownMutator != nil {
panic(fmt.Errorf("mutator name %s is already registered", name))
}
}
c.mutatorInfo = append(c.mutatorInfo, &mutatorInfo{
topDownMutator: mutator,
name: name,
})
}
// RegisterBottomUpMutator registers a mutator that will be invoked to split
// Modules into variants. Each registered mutator is invoked in registration
// order (mixing TopDownMutators and BottomUpMutators) once per Module, and is
// invoked on dependencies before being invoked on dependers.
//
// The mutator type names given here must be unique to all bottom up or early
// mutators in the Context.
func (c *Context) RegisterBottomUpMutator(name string, mutator BottomUpMutator) {
for _, m := range c.variantMutatorNames {
if m == name {
panic(fmt.Errorf("mutator name %s is already registered", name))
}
}
c.mutatorInfo = append(c.mutatorInfo, &mutatorInfo{
bottomUpMutator: mutator,
name: name,
})
c.variantMutatorNames = append(c.variantMutatorNames, name)
}
// RegisterEarlyMutator registers a mutator that will be invoked to split
// Modules into multiple variant Modules before any dependencies have been
// created. Each registered mutator is invoked in registration order once
// per Module (including each variant from previous early mutators). Module
// order is unpredictable.
//
// In order for dependencies to be satisifed in a later pass, all dependencies
// of a module either must have an identical variant or must have no variations.
//
// The mutator type names given here must be unique to all bottom up or early
// mutators in the Context.
func (c *Context) RegisterEarlyMutator(name string, mutator EarlyMutator) {
for _, m := range c.variantMutatorNames {
if m == name {
panic(fmt.Errorf("mutator name %s is already registered", name))
}
}
c.earlyMutatorInfo = append(c.earlyMutatorInfo, &earlyMutatorInfo{
mutator: mutator,
name: name,
})
c.variantMutatorNames = append(c.variantMutatorNames, name)
}
// SetIgnoreUnknownModuleTypes sets the behavior of the context in the case
// where it encounters an unknown module type while parsing Blueprints files. By
// default, the context will report unknown module types as an error. If this
// method is called with ignoreUnknownModuleTypes set to true then the context
// will silently ignore unknown module types.
//
// This method should generally not be used. It exists to facilitate the
// bootstrapping process.
func (c *Context) SetIgnoreUnknownModuleTypes(ignoreUnknownModuleTypes bool) {
c.ignoreUnknownModuleTypes = ignoreUnknownModuleTypes
}
// Parse parses a single Blueprints file from r, creating Module objects for
// each of the module definitions encountered. If the Blueprints file contains
// an assignment to the "subdirs" variable, then the subdirectories listed are
// searched for Blueprints files returned in the subBlueprints return value.
// If the Blueprints file contains an assignment to the "build" variable, then
// the file listed are returned in the subBlueprints return value.
//
// rootDir specifies the path to the root directory of the source tree, while
// filename specifies the path to the Blueprints file. These paths are used for
// error reporting and for determining the module's directory.
func (c *Context) parse(rootDir, filename string, r io.Reader,
scope *parser.Scope) (file *parser.File, subBlueprints []stringAndScope, deps []string,
errs []error) {
relBlueprintsFile, err := filepath.Rel(rootDir, filename)
if err != nil {
return nil, nil, nil, []error{err}
}
scope = parser.NewScope(scope)
scope.Remove("subdirs")
scope.Remove("build")
file, errs = parser.ParseAndEval(filename, r, scope)
if len(errs) > 0 {
for i, err := range errs {
if parseErr, ok := err.(*parser.ParseError); ok {
err = &Error{
Err: parseErr.Err,
Pos: parseErr.Pos,
}
errs[i] = err
}
}
// If there were any parse errors don't bother trying to interpret the
// result.
return nil, nil, nil, errs
}
file.Name = relBlueprintsFile
subdirs, subdirsPos, err := getStringListFromScope(scope, "subdirs")
if err != nil {
errs = append(errs, err)
}
build, buildPos, err := getStringListFromScope(scope, "build")
if err != nil {
errs = append(errs, err)
}
subBlueprintsName, _, err := getStringFromScope(scope, "subname")
blueprints, deps, newErrs := c.findSubdirBlueprints(filepath.Dir(filename), subdirs, build,
subBlueprintsName, subdirsPos, buildPos)
if len(newErrs) > 0 {
errs = append(errs, newErrs...)
}
subBlueprintsAndScope := make([]stringAndScope, len(blueprints))
for i, b := range blueprints {
subBlueprintsAndScope[i] = stringAndScope{b, scope}
}
return file, subBlueprintsAndScope, deps, errs
}
type stringAndScope struct {
string
*parser.Scope
}
// ParseBlueprintsFiles parses a set of Blueprints files starting with the file
// at rootFile. When it encounters a Blueprints file with a set of subdirs
// listed it recursively parses any Blueprints files found in those
// subdirectories.
//
// If no errors are encountered while parsing the files, the list of paths on
// which the future output will depend is returned. This list will include both
// Blueprints file paths as well as directory paths for cases where wildcard
// subdirs are found.
func (c *Context) ParseBlueprintsFiles(rootFile string) (deps []string,
errs []error) {
c.dependenciesReady = false
moduleCh := make(chan *moduleInfo)
errsCh := make(chan []error)
doneCh := make(chan struct{})
var numErrs uint32
var numGoroutines int32
// handler must be reentrant
handler := func(file *parser.File) {
if atomic.LoadUint32(&numErrs) > maxErrors {
return
}
atomic.AddInt32(&numGoroutines, 1)
go func() {
for _, def := range file.Defs {
var module *moduleInfo
var errs []error
switch def := def.(type) {
case *parser.Module:
module, errs = c.processModuleDef(def, file.Name)
case *parser.Assignment:
// Already handled via Scope object
default:
panic("unknown definition type")
}
if len(errs) > 0 {
atomic.AddUint32(&numErrs, uint32(len(errs)))
errsCh <- errs
} else if module != nil {
moduleCh <- module
}
}
doneCh <- struct{}{}
}()
}
atomic.AddInt32(&numGoroutines, 1)
go func() {
var errs []error
deps, errs = c.WalkBlueprintsFiles(rootFile, handler)
if len(errs) > 0 {
errsCh <- errs
}
doneCh <- struct{}{}
}()
loop:
for {
select {
case newErrs := <-errsCh:
errs = append(errs, newErrs...)
case module := <-moduleCh:
newErrs := c.addModule(module)
if len(newErrs) > 0 {
errs = append(errs, newErrs...)
}
case <-doneCh:
n := atomic.AddInt32(&numGoroutines, -1)
if n == 0 {
break loop
}
}
}
return deps, errs
}
type FileHandler func(*parser.File)
// Walk a set of Blueprints files starting with the file at rootFile, calling handler on each.
// When it encounters a Blueprints file with a set of subdirs listed it recursively parses any
// Blueprints files found in those subdirectories. handler will be called from a goroutine, so
// it must be reentrant.
//
// If no errors are encountered while parsing the files, the list of paths on
// which the future output will depend is returned. This list will include both
// Blueprints file paths as well as directory paths for cases where wildcard
// subdirs are found.
func (c *Context) WalkBlueprintsFiles(rootFile string, handler FileHandler) (deps []string,
errs []error) {
rootDir := filepath.Dir(rootFile)
blueprintsSet := make(map[string]bool)
// Channels to receive data back from parseBlueprintsFile goroutines
blueprintsCh := make(chan stringAndScope)
errsCh := make(chan []error)
fileCh := make(chan *parser.File)
depsCh := make(chan string)
// Channel to notify main loop that a parseBlueprintsFile goroutine has finished
doneCh := make(chan struct{})
// Number of outstanding goroutines to wait for
count := 0
startParseBlueprintsFile := func(filename string, scope *parser.Scope) {
count++
go func() {
c.parseBlueprintsFile(filename, scope, rootDir,
errsCh, fileCh, blueprintsCh, depsCh)
doneCh <- struct{}{}
}()
}
tooManyErrors := false
startParseBlueprintsFile(rootFile, nil)
loop:
for {
if len(errs) > maxErrors {
tooManyErrors = true
}
select {
case newErrs := <-errsCh:
errs = append(errs, newErrs...)
case dep := <-depsCh:
deps = append(deps, dep)
case file := <-fileCh:
handler(file)
case blueprint := <-blueprintsCh:
if tooManyErrors {
continue
}
if blueprintsSet[blueprint.string] {
continue
}
blueprintsSet[blueprint.string] = true
startParseBlueprintsFile(blueprint.string, blueprint.Scope)
case <-doneCh:
count--
if count == 0 {
break loop
}
}
}
return
}
// parseBlueprintFile parses a single Blueprints file, returning any errors through
// errsCh, any defined modules through modulesCh, any sub-Blueprints files through
// blueprintsCh, and any dependencies on Blueprints files or directories through
// depsCh.
func (c *Context) parseBlueprintsFile(filename string, scope *parser.Scope, rootDir string,
errsCh chan<- []error, fileCh chan<- *parser.File, blueprintsCh chan<- stringAndScope,
depsCh chan<- string) {
f, err := os.Open(filename)
if err != nil {
errsCh <- []error{err}
return
}
defer func() {
err = f.Close()
if err != nil {
errsCh <- []error{err}
}
}()
file, subBlueprints, deps, errs := c.parse(rootDir, filename, f, scope)
if len(errs) > 0 {
errsCh <- errs
} else {
fileCh <- file
}
for _, b := range subBlueprints {
blueprintsCh <- b
}
for _, d := range deps {
depsCh <- d
}
}
func (c *Context) findSubdirBlueprints(dir string, subdirs, build []string, subBlueprintsName string,
subdirsPos, buildPos scanner.Position) (blueprints, deps []string, errs []error) {
for _, subdir := range subdirs {
globPattern := filepath.Join(dir, subdir)
matches, matchedDirs, err := pathtools.Glob(globPattern)
if err != nil {
errs = append(errs, &Error{
Err: fmt.Errorf("%q: %s", globPattern, err.Error()),
Pos: subdirsPos,
})
continue
}
if len(matches) == 0 {
errs = append(errs, &Error{
Err: fmt.Errorf("%q: not found", globPattern),
Pos: subdirsPos,
})
}
// Depend on all searched directories so we pick up future changes.
deps = append(deps, matchedDirs...)
for _, foundSubdir := range matches {
fileInfo, subdirStatErr := os.Stat(foundSubdir)
if subdirStatErr != nil {
errs = append(errs, subdirStatErr)
continue
}
// Skip files
if !fileInfo.IsDir() {
continue
}
var subBlueprints string
if subBlueprintsName != "" {
subBlueprints = filepath.Join(foundSubdir, subBlueprintsName)
_, err = os.Stat(subBlueprints)
}
if os.IsNotExist(err) || subBlueprints == "" {
subBlueprints = filepath.Join(foundSubdir, "Blueprints")
_, err = os.Stat(subBlueprints)
}
if os.IsNotExist(err) {
// There is no Blueprints file in this subdirectory. We
// need to add the directory to the list of dependencies
// so that if someone adds a Blueprints file in the
// future we'll pick it up.
deps = append(deps, foundSubdir)
} else {
deps = append(deps, subBlueprints)
blueprints = append(blueprints, subBlueprints)
}
}
}
for _, file := range build {
globPattern := filepath.Join(dir, file)
matches, matchedDirs, err := pathtools.Glob(globPattern)
if err != nil {
errs = append(errs, &Error{
Err: fmt.Errorf("%q: %s", globPattern, err.Error()),
Pos: buildPos,
})
continue
}
if len(matches) == 0 {
errs = append(errs, &Error{
Err: fmt.Errorf("%q: not found", globPattern),
Pos: buildPos,
})
}
// Depend on all searched directories so we pick up future changes.
deps = append(deps, matchedDirs...)
for _, foundBlueprints := range matches {
fileInfo, err := os.Stat(foundBlueprints)
if os.IsNotExist(err) {
errs = append(errs, &Error{
Err: fmt.Errorf("%q not found", foundBlueprints),
})
continue
}
if fileInfo.IsDir() {
errs = append(errs, &Error{
Err: fmt.Errorf("%q is a directory", foundBlueprints),
})
continue
}
blueprints = append(blueprints, foundBlueprints)
}
}
return blueprints, deps, errs
}
func getStringListFromScope(scope *parser.Scope, v string) ([]string, scanner.Position, error) {
if assignment, err := scope.Get(v); err == nil {
switch assignment.Value.Type {
case parser.List:
ret := make([]string, 0, len(assignment.Value.ListValue))
for _, value := range assignment.Value.ListValue {
if value.Type != parser.String {
// The parser should not produce this.
panic("non-string value found in list")
}
ret = append(ret, value.StringValue)
}
return ret, assignment.Pos, nil
case parser.Bool, parser.String:
return nil, scanner.Position{}, &Error{
Err: fmt.Errorf("%q must be a list of strings", v),
Pos: assignment.Pos,
}
default:
panic(fmt.Errorf("unknown value type: %d", assignment.Value.Type))
}
}
return nil, scanner.Position{}, nil
}
func getStringFromScope(scope *parser.Scope, v string) (string, scanner.Position, error) {
if assignment, err := scope.Get(v); err == nil {
switch assignment.Value.Type {
case parser.String:
return assignment.Value.StringValue, assignment.Pos, nil
case parser.Bool, parser.List:
return "", scanner.Position{}, &Error{
Err: fmt.Errorf("%q must be a string", v),
Pos: assignment.Pos,
}
default:
panic(fmt.Errorf("unknown value type: %d", assignment.Value.Type))
}
}
return "", scanner.Position{}, nil
}
func (c *Context) createVariations(origModule *moduleInfo, mutatorName string,
variationNames []string) ([]*moduleInfo, []error) {
if len(variationNames) == 0 {
panic(fmt.Errorf("mutator %q passed zero-length variation list for module %q",
mutatorName, origModule.properties.Name))
}
newModules := []*moduleInfo{}
var errs []error
for i, variationName := range variationNames {
typeName := origModule.typeName
factory, ok := c.moduleFactories[typeName]
if !ok {
panic(fmt.Sprintf("unrecognized module type %q during cloning", typeName))
}
var newLogicModule Module
var newProperties []interface{}
if i == 0 {
// Reuse the existing module for the first new variant
// This both saves creating a new module, and causes the insertion in c.moduleInfo below
// with logicModule as the key to replace the original entry in c.moduleInfo
newLogicModule = origModule.logicModule
newProperties = origModule.moduleProperties
} else {
props := []interface{}{
&origModule.properties,
}
newLogicModule, newProperties = factory()
newProperties = append(props, newProperties...)
if len(newProperties) != len(origModule.moduleProperties) {
panic("mismatched properties array length in " + origModule.properties.Name)
}
for i := range newProperties {
dst := reflect.ValueOf(newProperties[i]).Elem()
src := reflect.ValueOf(origModule.moduleProperties[i]).Elem()
proptools.CopyProperties(dst, src)
}
}
newVariant := origModule.variant.clone()
newVariant[mutatorName] = variationName
m := *origModule
newModule := &m
newModule.directDeps = append([]*moduleInfo(nil), origModule.directDeps...)
newModule.logicModule = newLogicModule
newModule.variant = newVariant
newModule.dependencyVariant = origModule.dependencyVariant.clone()
newModule.moduleProperties = newProperties
if newModule.variantName == "" {
newModule.variantName = variationName
} else {
newModule.variantName += "_" + variationName
}
newModules = append(newModules, newModule)
// Insert the new variant into the global module map. If this is the first variant then
// it reuses logicModule from the original module, which causes this to replace the
// original module in the global module map.
c.moduleInfo[newModule.logicModule] = newModule
newErrs := c.convertDepsToVariation(newModule, mutatorName, variationName)
if len(newErrs) > 0 {
errs = append(errs, newErrs...)
}
}
// Mark original variant as invalid. Modules that depend on this module will still
// depend on origModule, but we'll fix it when the mutator is called on them.
origModule.logicModule = nil
origModule.splitModules = newModules
return newModules, errs
}
func (c *Context) convertDepsToVariation(module *moduleInfo,
mutatorName, variationName string) (errs []error) {
for i, dep := range module.directDeps {
if dep.logicModule == nil {
var newDep *moduleInfo
for _, m := range dep.splitModules {
if m.variant[mutatorName] == variationName {
newDep = m
break
}
}
if newDep == nil {
errs = append(errs, &Error{
Err: fmt.Errorf("failed to find variation %q for module %q needed by %q",
variationName, dep.properties.Name, module.properties.Name),
Pos: module.pos,
})
continue
}
module.directDeps[i] = newDep
}
}
return errs
}
func (c *Context) prettyPrintVariant(variant variationMap) string {
names := make([]string, 0, len(variant))
for _, m := range c.variantMutatorNames {
if v, ok := variant[m]; ok {
names = append(names, m+":"+v)
}
}
return strings.Join(names, ", ")
}
func (c *Context) processModuleDef(moduleDef *parser.Module,
relBlueprintsFile string) (*moduleInfo, []error) {
typeName := moduleDef.Type.Name
factory, ok := c.moduleFactories[typeName]
if !ok {
if c.ignoreUnknownModuleTypes {
return nil, nil
}
return nil, []error{
&Error{
Err: fmt.Errorf("unrecognized module type %q", typeName),
Pos: moduleDef.Type.Pos,
},
}
}
logicModule, properties := factory()
module := &moduleInfo{
logicModule: logicModule,
typeName: typeName,
relBlueprintsFile: relBlueprintsFile,
}
props := []interface{}{
&module.properties,
}
properties = append(props, properties...)
module.moduleProperties = properties
propertyMap, errs := unpackProperties(moduleDef.Properties, properties...)
if len(errs) > 0 {
return nil, errs
}
module.pos = moduleDef.Type.Pos
module.propertyPos = make(map[string]scanner.Position)
for name, propertyDef := range propertyMap {
module.propertyPos[name] = propertyDef.Pos
}
return module, nil
}
func (c *Context) addModule(module *moduleInfo) []error {
name := module.properties.Name
c.moduleInfo[module.logicModule] = module
if group, present := c.moduleGroups[name]; present {
return []error{
&Error{
Err: fmt.Errorf("module %q already defined", name),
Pos: module.pos,
},
&Error{
Err: fmt.Errorf("<-- previous definition here"),
Pos: group.modules[0].pos,
},
}
} else {
ninjaName := toNinjaName(module.properties.Name)
// The sanitizing in toNinjaName can result in collisions, uniquify the name if it
// already exists
for i := 0; c.moduleNinjaNames[ninjaName] != nil; i++ {
ninjaName = toNinjaName(module.properties.Name) + strconv.Itoa(i)
}
group := &moduleGroup{
name: module.properties.Name,
ninjaName: ninjaName,
modules: []*moduleInfo{module},
}
module.group = group
c.moduleGroups[name] = group
c.moduleNinjaNames[ninjaName] = group
}
return nil
}
// ResolveDependencies checks that the dependencies specified by all of the
// modules defined in the parsed Blueprints files are valid. This means that
// the modules depended upon are defined and that no circular dependencies
// exist.
//
// The config argument is made available to all of the DynamicDependerModule
// objects via the Config method on the DynamicDependerModuleContext objects
// passed to their DynamicDependencies method.
func (c *Context) ResolveDependencies(config interface{}) []error {
errs := c.runEarlyMutators(config)
if len(errs) > 0 {
return errs
}
errs = c.resolveDependencies(config)
if len(errs) > 0 {
return errs
}
errs = c.updateDependencies()
if len(errs) > 0 {
return errs
}
c.dependenciesReady = true
return nil
}
// moduleDeps adds dependencies to a module. If the module implements the
// DynamicDependerModule interface then this set consists of the union of those
// module names listed in its "deps" property, those returned by its
// DynamicDependencies method, and those added by calling AddDependencies or
// AddVariationDependencies on DynamicDependencyModuleContext. Otherwise it
// is simply those names listed in its "deps" property.
func (c *Context) moduleDeps(module *moduleInfo,
config interface{}) (errs []error) {
depNamesSet := make(map[string]bool)
depNames := []string{}
for _, depName := range module.properties.Deps {
if !depNamesSet[depName] {
depNamesSet[depName] = true
depNames = append(depNames, depName)
}
}
dynamicDepender, ok := module.logicModule.(DynamicDependerModule)
if ok {
ddmctx := &dynamicDependerModuleContext{
baseModuleContext: baseModuleContext{
context: c,
config: config,
module: module,
},
module: module,
}
dynamicDeps := dynamicDepender.DynamicDependencies(ddmctx)
if len(ddmctx.errs) > 0 {
return ddmctx.errs
}
for _, depName := range dynamicDeps {
if !depNamesSet[depName] {
depNamesSet[depName] = true
depNames = append(depNames, depName)
}
}
}
for _, depName := range depNames {
newErrs := c.addDependency(module, depName)
if len(newErrs) > 0 {
errs = append(errs, newErrs...)
}
}
return errs
}
// resolveDependencies populates the directDeps list for every module. In doing so it checks for
// missing dependencies and self-dependant modules.
func (c *Context) resolveDependencies(config interface{}) (errs []error) {
for _, group := range c.moduleGroups {
for _, module := range group.modules {
module.directDeps = make([]*moduleInfo, 0, len(module.properties.Deps))
newErrs := c.moduleDeps(module, config)
if len(newErrs) > 0 {
errs = append(errs, newErrs...)
}
}
}
return
}
func (c *Context) addDependency(module *moduleInfo, depName string) []error {
depsPos := module.propertyPos["deps"]
if depName == module.properties.Name {
return []error{&Error{
Err: fmt.Errorf("%q depends on itself", depName),
Pos: depsPos,
}}
}
depInfo, ok := c.moduleGroups[depName]
if !ok {
return []error{&Error{
Err: fmt.Errorf("%q depends on undefined module %q",
module.properties.Name, depName),
Pos: depsPos,
}}
}
for _, m := range module.directDeps {
if m.group == depInfo {
return nil
}
}
if len(depInfo.modules) == 1 {
module.directDeps = append(module.directDeps, depInfo.modules[0])
return nil
} else {
for _, m := range depInfo.modules {
if m.variant.equal(module.dependencyVariant) {
module.directDeps = append(module.directDeps, m)
return nil
}
}
}
return []error{&Error{
Err: fmt.Errorf("dependency %q of %q missing variant %q",
depInfo.modules[0].properties.Name, module.properties.Name,
c.prettyPrintVariant(module.dependencyVariant)),
Pos: depsPos,
}}
}
func (c *Context) addVariationDependency(module *moduleInfo, variations []Variation,
depName string, far bool) []error {
depsPos := module.propertyPos["deps"]
depInfo, ok := c.moduleGroups[depName]
if !ok {
return []error{&Error{
Err: fmt.Errorf("%q depends on undefined module %q",
module.properties.Name, depName),
Pos: depsPos,
}}
}
// We can't just append variant.Variant to module.dependencyVariants.variantName and
// compare the strings because the result won't be in mutator registration order.
// Create a new map instead, and then deep compare the maps.
var newVariant variationMap
if !far {
newVariant = module.dependencyVariant.clone()
} else {
newVariant = make(variationMap)
}
for _, v := range variations {
newVariant[v.Mutator] = v.Variation
}
for _, m := range depInfo.modules {
var found bool
if far {
found = m.variant.subset(newVariant)
} else {
found = m.variant.equal(newVariant)
}
if found {
// AddVariationDependency allows adding a dependency on itself, but only if
// that module is earlier in the module list than this one, since we always
// run GenerateBuildActions in order for the variants of a module
if depInfo == module.group && beforeInModuleList(module, m, module.group.modules) {
return []error{&Error{
Err: fmt.Errorf("%q depends on later version of itself", depName),
Pos: depsPos,
}}
}
module.directDeps = append(module.directDeps, m)
return nil
}
}
return []error{&Error{
Err: fmt.Errorf("dependency %q of %q missing variant %q",
depInfo.modules[0].properties.Name, module.properties.Name,
c.prettyPrintVariant(newVariant)),
Pos: depsPos,
}}
}
func (c *Context) parallelVisitAllBottomUp(visit func(group *moduleInfo) bool) {
doneCh := make(chan *moduleInfo)
count := 0
cancel := false
for _, module := range c.modulesSorted {
module.waitingCount = module.depsCount
}
visitOne := func(module *moduleInfo) {
count++
go func() {
ret := visit(module)
if ret {
cancel = true
}
doneCh <- module
}()
}
for _, module := range c.modulesSorted {
if module.waitingCount == 0 {
visitOne(module)
}
}
for count > 0 {
select {
case doneModule := <-doneCh:
if !cancel {
for _, parent := range doneModule.reverseDeps {
parent.waitingCount--
if parent.waitingCount == 0 {
visitOne(parent)
}
}
}
count--
}
}
}
// updateDependencies recursively walks the module dependency graph and updates
// additional fields based on the dependencies. It builds a sorted list of modules
// such that dependencies of a module always appear first, and populates reverse
// dependency links and counts of total dependencies. It also reports errors when
// it encounters dependency cycles. This should called after resolveDependencies,
// as well as after any mutator pass has called addDependency
func (c *Context) updateDependencies() (errs []error) {
visited := make(map[*moduleInfo]bool) // modules that were already checked
checking := make(map[*moduleInfo]bool) // modules actively being checked
sorted := make([]*moduleInfo, 0, len(c.moduleInfo))
var check func(group *moduleInfo) []*moduleInfo
cycleError := func(cycle []*moduleInfo) {
// We are the "start" of the cycle, so we're responsible
// for generating the errors. The cycle list is in
// reverse order because all the 'check' calls append
// their own module to the list.
errs = append(errs, &Error{
Err: fmt.Errorf("encountered dependency cycle:"),
Pos: cycle[len(cycle)-1].pos,
})
// Iterate backwards through the cycle list.
curModule := cycle[0]
for i := len(cycle) - 1; i >= 0; i-- {
nextModule := cycle[i]
errs = append(errs, &Error{
Err: fmt.Errorf(" %q depends on %q",
curModule.properties.Name,
nextModule.properties.Name),
Pos: curModule.propertyPos["deps"],
})
curModule = nextModule
}
}
check = func(module *moduleInfo) []*moduleInfo {
visited[module] = true
checking[module] = true
defer delete(checking, module)
deps := make(map[*moduleInfo]bool)
// Add an implicit dependency ordering on all earlier modules in the same module group
for _, dep := range module.group.modules {
if dep == module {
break
}
deps[dep] = true
}
for _, dep := range module.directDeps {
deps[dep] = true
}
module.reverseDeps = []*moduleInfo{}
module.depsCount = len(deps)
for dep := range deps {
if checking[dep] {
// This is a cycle.
return []*moduleInfo{dep, module}
}
if !visited[dep] {
cycle := check(dep)
if cycle != nil {
if cycle[0] == module {
// We are the "start" of the cycle, so we're responsible
// for generating the errors. The cycle list is in
// reverse order because all the 'check' calls append
// their own module to the list.
cycleError(cycle)
// We can continue processing this module's children to
// find more cycles. Since all the modules that were
// part of the found cycle were marked as visited we
// won't run into that cycle again.
} else {
// We're not the "start" of the cycle, so we just append
// our module to the list and return it.
return append(cycle, module)
}
}
}
dep.reverseDeps = append(dep.reverseDeps, module)
}
sorted = append(sorted, module)
return nil
}
for _, module := range c.moduleInfo {
if !visited[module] {
cycle := check(module)
if cycle != nil {
if cycle[len(cycle)-1] != module {
panic("inconceivable!")
}
cycleError(cycle)
}
}
}
c.modulesSorted = sorted
return
}
// PrepareBuildActions generates an internal representation of all the build
// actions that need to be performed. This process involves invoking the
// GenerateBuildActions method on each of the Module objects created during the
// parse phase and then on each of the registered Singleton objects.
//
// If the ResolveDependencies method has not already been called it is called
// automatically by this method.
//
// The config argument is made available to all of the Module and Singleton
// objects via the Config method on the ModuleContext and SingletonContext
// objects passed to GenerateBuildActions. It is also passed to the functions
// specified via PoolFunc, RuleFunc, and VariableFunc so that they can compute
// config-specific values.
//
// The returned deps is a list of the ninja files dependencies that were added
// by the modules and singletons via the ModuleContext.AddNinjaFileDeps() and
// SingletonContext.AddNinjaFileDeps() methods.
func (c *Context) PrepareBuildActions(config interface{}) (deps []string, errs []error) {
c.buildActionsReady = false
if !c.dependenciesReady {
errs := c.ResolveDependencies(config)
if len(errs) > 0 {
return nil, errs
}
}
errs = c.runMutators(config)
if len(errs) > 0 {
return nil, errs
}
liveGlobals := newLiveTracker(config)
c.initSpecialVariables()
depsModules, errs := c.generateModuleBuildActions(config, liveGlobals)
if len(errs) > 0 {
return nil, errs
}
depsSingletons, errs := c.generateSingletonBuildActions(config, liveGlobals)
if len(errs) > 0 {
return nil, errs
}
deps = append(depsModules, depsSingletons...)
if c.buildDir != nil {
liveGlobals.addNinjaStringDeps(c.buildDir)
}
pkgNames := c.makeUniquePackageNames(liveGlobals)
// This will panic if it finds a problem since it's a programming error.
c.checkForVariableReferenceCycles(liveGlobals.variables, pkgNames)
c.pkgNames = pkgNames
c.globalVariables = liveGlobals.variables
c.globalPools = liveGlobals.pools
c.globalRules = liveGlobals.rules
c.buildActionsReady = true
return deps, nil
}
func (c *Context) runEarlyMutators(config interface{}) (errs []error) {
for _, mutator := range c.earlyMutatorInfo {
for _, group := range c.moduleGroups {
newModules := make([]*moduleInfo, 0, len(group.modules))
for _, module := range group.modules {
mctx := &mutatorContext{
baseModuleContext: baseModuleContext{
context: c,
config: config,
module: module,
},
name: mutator.name,
}
mutator.mutator(mctx)
if len(mctx.errs) > 0 {
errs = append(errs, mctx.errs...)
return errs
}
if module.splitModules != nil {
newModules = append(newModules, module.splitModules...)
} else {
newModules = append(newModules, module)
}
}
group.modules = newModules
}
}
return nil
}
func (c *Context) runMutators(config interface{}) (errs []error) {
for _, mutator := range c.mutatorInfo {
if mutator.topDownMutator != nil {
errs = c.runTopDownMutator(config, mutator.name, mutator.topDownMutator)
} else if mutator.bottomUpMutator != nil {
errs = c.runBottomUpMutator(config, mutator.name, mutator.bottomUpMutator)
} else {
panic("no mutator set on " + mutator.name)
}
if len(errs) > 0 {
return errs
}
}
return nil
}
func (c *Context) runTopDownMutator(config interface{},
name string, mutator TopDownMutator) (errs []error) {
for i := 0; i < len(c.modulesSorted); i++ {
module := c.modulesSorted[len(c.modulesSorted)-1-i]
mctx := &mutatorContext{
baseModuleContext: baseModuleContext{
context: c,
config: config,
module: module,
},
name: name,
}
mutator(mctx)
if len(mctx.errs) > 0 {
errs = append(errs, mctx.errs...)
return errs
}
}
return errs
}
func (c *Context) runBottomUpMutator(config interface{},
name string, mutator BottomUpMutator) (errs []error) {
for _, module := range c.modulesSorted {
newModules := make([]*moduleInfo, 0, 1)
if module.splitModules != nil {
panic("split module found in sorted module list")
}
mctx := &mutatorContext{
baseModuleContext: baseModuleContext{
context: c,
config: config,
module: module,
},
name: name,
}
mutator(mctx)
if len(mctx.errs) > 0 {
errs = append(errs, mctx.errs...)
return errs
}
// Fix up any remaining dependencies on modules that were split into variants
// by replacing them with the first variant
for i, dep := range module.directDeps {
if dep.logicModule == nil {
module.directDeps[i] = dep.splitModules[0]
}
}
if module.splitModules != nil {
newModules = append(newModules, module.splitModules...)
} else {
newModules = append(newModules, module)
}
module.group.modules = spliceModules(module.group.modules, module, newModules)
}
errs = c.updateDependencies()
if len(errs) > 0 {
return errs
}
return errs
}
func spliceModules(modules []*moduleInfo, origModule *moduleInfo,
newModules []*moduleInfo) []*moduleInfo {
for i, m := range modules {
if m == origModule {
return spliceModulesAtIndex(modules, i, newModules)
}
}
panic("failed to find original module to splice")
}
func spliceModulesAtIndex(modules []*moduleInfo, i int, newModules []*moduleInfo) []*moduleInfo {
spliceSize := len(newModules)
newLen := len(modules) + spliceSize - 1
var dest []*moduleInfo
if cap(modules) >= len(modules)-1+len(newModules) {
// We can fit the splice in the existing capacity, do everything in place
dest = modules[:newLen]
} else {
dest = make([]*moduleInfo, newLen)
copy(dest, modules[:i])
}
// Move the end of the slice over by spliceSize-1
copy(dest[i+spliceSize:], modules[i+1:])
// Copy the new modules into the slice
copy(dest[i:], newModules)
return dest
}
func (c *Context) initSpecialVariables() {
c.buildDir = nil
c.requiredNinjaMajor = 1
c.requiredNinjaMinor = 1
c.requiredNinjaMicro = 0
}
func (c *Context) generateModuleBuildActions(config interface{},
liveGlobals *liveTracker) ([]string, []error) {
var deps []string
var errs []error
cancelCh := make(chan struct{})
errsCh := make(chan []error)
depsCh := make(chan []string)
go func() {
for {
select {
case <-cancelCh:
close(cancelCh)
return
case newErrs := <-errsCh:
errs = append(errs, newErrs...)
case newDeps := <-depsCh:
deps = append(deps, newDeps...)
}
}
}()
c.parallelVisitAllBottomUp(func(module *moduleInfo) bool {
// The parent scope of the moduleContext's local scope gets overridden to be that of the
// calling Go package on a per-call basis. Since the initial parent scope doesn't matter we
// just set it to nil.
prefix := moduleNamespacePrefix(module.group.ninjaName + "_" + module.variantName)
scope := newLocalScope(nil, prefix)
mctx := &moduleContext{
baseModuleContext: baseModuleContext{
context: c,
config: config,
module: module,
},
scope: scope,
}
mctx.module.logicModule.GenerateBuildActions(mctx)
if len(mctx.errs) > 0 {
errsCh <- mctx.errs
return true
}
depsCh <- mctx.ninjaFileDeps
newErrs := c.processLocalBuildActions(&module.actionDefs,
&mctx.actionDefs, liveGlobals)
if len(newErrs) > 0 {
errsCh <- newErrs
return true
}
return false
})
cancelCh <- struct{}{}
<-cancelCh
return deps, errs
}
func (c *Context) generateSingletonBuildActions(config interface{},
liveGlobals *liveTracker) ([]string, []error) {
var deps []string
var errs []error
for name, info := range c.singletonInfo {
// The parent scope of the singletonContext's local scope gets overridden to be that of the
// calling Go package on a per-call basis. Since the initial parent scope doesn't matter we
// just set it to nil.
scope := newLocalScope(nil, singletonNamespacePrefix(name))
sctx := &singletonContext{
context: c,
config: config,
scope: scope,
}
info.singleton.GenerateBuildActions(sctx)
if len(sctx.errs) > 0 {
errs = append(errs, sctx.errs...)
if len(errs) > maxErrors {
break
}
continue
}
deps = append(deps, sctx.ninjaFileDeps...)
newErrs := c.processLocalBuildActions(&info.actionDefs,
&sctx.actionDefs, liveGlobals)
errs = append(errs, newErrs...)
if len(errs) > maxErrors {
break
}
}
return deps, errs
}
func (c *Context) processLocalBuildActions(out, in *localBuildActions,
liveGlobals *liveTracker) []error {
var errs []error
// First we go through and add everything referenced by the module's
// buildDefs to the live globals set. This will end up adding the live
// locals to the set as well, but we'll take them out after.
for _, def := range in.buildDefs {
err := liveGlobals.AddBuildDefDeps(def)
if err != nil {
errs = append(errs, err)
}
}
if len(errs) > 0 {
return errs
}
out.buildDefs = append(out.buildDefs, in.buildDefs...)
// We use the now-incorrect set of live "globals" to determine which local
// definitions are live. As we go through copying those live locals to the
// moduleGroup we remove them from the live globals set.
for _, v := range in.variables {
isLive := liveGlobals.RemoveVariableIfLive(v)
if isLive {
out.variables = append(out.variables, v)
}
}
for _, r := range in.rules {
isLive := liveGlobals.RemoveRuleIfLive(r)
if isLive {
out.rules = append(out.rules, r)
}
}
return nil
}
func (c *Context) visitDepsDepthFirst(topModule *moduleInfo, visit func(Module)) {
visited := make(map[*moduleInfo]bool)
var walk func(module *moduleInfo)
walk = func(module *moduleInfo) {
visited[module] = true
for _, moduleDep := range module.directDeps {
if !visited[moduleDep] {
walk(moduleDep)
}
}
if module != topModule {
visit(module.logicModule)
}
}
walk(topModule)
}
func (c *Context) visitDepsDepthFirstIf(topModule *moduleInfo, pred func(Module) bool,
visit func(Module)) {
visited := make(map[*moduleInfo]bool)
var walk func(module *moduleInfo)
walk = func(module *moduleInfo) {
visited[module] = true
for _, moduleDep := range module.directDeps {
if !visited[moduleDep] {
walk(moduleDep)
}
}
if module != topModule {
if pred(module.logicModule) {
visit(module.logicModule)
}
}
}
walk(topModule)
}
func (c *Context) visitDirectDeps(module *moduleInfo, visit func(Module)) {
for _, dep := range module.directDeps {
visit(dep.logicModule)
}
}
func (c *Context) visitDirectDepsIf(module *moduleInfo, pred func(Module) bool,
visit func(Module)) {
for _, dep := range module.directDeps {
if pred(dep.logicModule) {
visit(dep.logicModule)
}
}
}
func (c *Context) sortedModuleNames() []string {
if c.cachedSortedModuleNames == nil {
c.cachedSortedModuleNames = make([]string, 0, len(c.moduleGroups))
for moduleName := range c.moduleGroups {
c.cachedSortedModuleNames = append(c.cachedSortedModuleNames,
moduleName)
}
sort.Strings(c.cachedSortedModuleNames)
}
return c.cachedSortedModuleNames
}
func (c *Context) visitAllModules(visit func(Module)) {
for _, moduleName := range c.sortedModuleNames() {
group := c.moduleGroups[moduleName]
for _, module := range group.modules {
visit(module.logicModule)
}
}
}
func (c *Context) visitAllModulesIf(pred func(Module) bool,
visit func(Module)) {
for _, moduleName := range c.sortedModuleNames() {
group := c.moduleGroups[moduleName]
for _, module := range group.modules {
if pred(module.logicModule) {
visit(module.logicModule)
}
}
}
}
func (c *Context) requireNinjaVersion(major, minor, micro int) {
if major != 1 {
panic("ninja version with major version != 1 not supported")
}
if c.requiredNinjaMinor < minor {
c.requiredNinjaMinor = minor
c.requiredNinjaMicro = micro
}
if c.requiredNinjaMinor == minor && c.requiredNinjaMicro < micro {
c.requiredNinjaMicro = micro
}
}
func (c *Context) setBuildDir(value *ninjaString) {
if c.buildDir != nil {
panic("buildDir set multiple times")
}
c.buildDir = value
}
func (c *Context) makeUniquePackageNames(
liveGlobals *liveTracker) map[*PackageContext]string {
pkgs := make(map[string]*PackageContext)
pkgNames := make(map[*PackageContext]string)
longPkgNames := make(map[*PackageContext]bool)
processPackage := func(pctx *PackageContext) {
if pctx == nil {
// This is a built-in rule and has no package.
return
}
if _, ok := pkgNames[pctx]; ok {
// We've already processed this package.
return
}
otherPkg, present := pkgs[pctx.shortName]
if present {
// Short name collision. Both this package and the one that's
// already there need to use their full names. We leave the short
// name in pkgNames for now so future collisions still get caught.
longPkgNames[pctx] = true
longPkgNames[otherPkg] = true
} else {
// No collision so far. Tentatively set the package's name to be
// its short name.
pkgNames[pctx] = pctx.shortName
pkgs[pctx.shortName] = pctx
}
}
// We try to give all packages their short name, but when we get collisions
// we need to use the full unique package name.
for v, _ := range liveGlobals.variables {
processPackage(v.packageContext())
}
for p, _ := range liveGlobals.pools {
processPackage(p.packageContext())
}
for r, _ := range liveGlobals.rules {
processPackage(r.packageContext())
}
// Add the packages that had collisions using their full unique names. This
// will overwrite any short names that were added in the previous step.
for pctx := range longPkgNames {
pkgNames[pctx] = pctx.fullName
}
return pkgNames
}
func (c *Context) checkForVariableReferenceCycles(
variables map[Variable]*ninjaString, pkgNames map[*PackageContext]string) {
visited := make(map[Variable]bool) // variables that were already checked
checking := make(map[Variable]bool) // variables actively being checked
var check func(v Variable) []Variable
check = func(v Variable) []Variable {
visited[v] = true
checking[v] = true
defer delete(checking, v)
value := variables[v]
for _, dep := range value.variables {
if checking[dep] {
// This is a cycle.
return []Variable{dep, v}
}
if !visited[dep] {
cycle := check(dep)
if cycle != nil {
if cycle[0] == v {
// We are the "start" of the cycle, so we're responsible
// for generating the errors. The cycle list is in
// reverse order because all the 'check' calls append
// their own module to the list.
msgs := []string{"detected variable reference cycle:"}
// Iterate backwards through the cycle list.
curName := v.fullName(pkgNames)
curValue := value.Value(pkgNames)
for i := len(cycle) - 1; i >= 0; i-- {
next := cycle[i]
nextName := next.fullName(pkgNames)
nextValue := variables[next].Value(pkgNames)
msgs = append(msgs, fmt.Sprintf(
" %q depends on %q", curName, nextName))
msgs = append(msgs, fmt.Sprintf(
" [%s = %s]", curName, curValue))
curName = nextName
curValue = nextValue
}
// Variable reference cycles are a programming error,
// not the fault of the Blueprint file authors.
panic(strings.Join(msgs, "\n"))
} else {
// We're not the "start" of the cycle, so we just append
// our module to the list and return it.
return append(cycle, v)
}
}
}
}
return nil
}
for v := range variables {
if !visited[v] {
cycle := check(v)
if cycle != nil {
panic("inconceivable!")
}
}
}
}
// AllTargets returns a map all the build target names to the rule used to build
// them. This is the same information that is output by running 'ninja -t
// targets all'. If this is called before PrepareBuildActions successfully
// completes then ErrbuildActionsNotReady is returned.
func (c *Context) AllTargets() (map[string]string, error) {
if !c.buildActionsReady {
return nil, ErrBuildActionsNotReady
}
targets := map[string]string{}
// Collect all the module build targets.
for _, module := range c.moduleInfo {
for _, buildDef := range module.actionDefs.buildDefs {
ruleName := buildDef.Rule.fullName(c.pkgNames)
for _, output := range buildDef.Outputs {
outputValue, err := output.Eval(c.globalVariables)
if err != nil {
return nil, err
}
targets[outputValue] = ruleName
}
}
}
// Collect all the singleton build targets.
for _, info := range c.singletonInfo {
for _, buildDef := range info.actionDefs.buildDefs {
ruleName := buildDef.Rule.fullName(c.pkgNames)
for _, output := range buildDef.Outputs {
outputValue, err := output.Eval(c.globalVariables)
if err != nil {
return nil, err
}
targets[outputValue] = ruleName
}
}
}
return targets, nil
}
// ModuleTypePropertyStructs returns a mapping from module type name to a list of pointers to
// property structs returned by the factory for that module type.
func (c *Context) ModuleTypePropertyStructs() map[string][]interface{} {
ret := make(map[string][]interface{})
for moduleType, factory := range c.moduleFactories {
_, ret[moduleType] = factory()
}
return ret
}
func (c *Context) ModuleName(logicModule Module) string {
module := c.moduleInfo[logicModule]
return module.properties.Name
}
func (c *Context) ModuleDir(logicModule Module) string {
module := c.moduleInfo[logicModule]
return filepath.Dir(module.relBlueprintsFile)
}
func (c *Context) BlueprintFile(logicModule Module) string {
module := c.moduleInfo[logicModule]
return module.relBlueprintsFile
}
func (c *Context) ModuleErrorf(logicModule Module, format string,
args ...interface{}) error {
module := c.moduleInfo[logicModule]
return &Error{
Err: fmt.Errorf(format, args...),
Pos: module.pos,
}
}
func (c *Context) VisitAllModules(visit func(Module)) {
c.visitAllModules(visit)
}
func (c *Context) VisitAllModulesIf(pred func(Module) bool,
visit func(Module)) {
c.visitAllModulesIf(pred, visit)
}
func (c *Context) VisitDepsDepthFirst(module Module,
visit func(Module)) {
c.visitDepsDepthFirst(c.moduleInfo[module], visit)
}
func (c *Context) VisitDepsDepthFirstIf(module Module,
pred func(Module) bool, visit func(Module)) {
c.visitDepsDepthFirstIf(c.moduleInfo[module], pred, visit)
}
// WriteBuildFile writes the Ninja manifeset text for the generated build
// actions to w. If this is called before PrepareBuildActions successfully
// completes then ErrBuildActionsNotReady is returned.
func (c *Context) WriteBuildFile(w io.Writer) error {
if !c.buildActionsReady {
return ErrBuildActionsNotReady
}
nw := newNinjaWriter(w)
err := c.writeBuildFileHeader(nw)
if err != nil {
return err
}
err = c.writeNinjaRequiredVersion(nw)
if err != nil {
return err
}
// TODO: Group the globals by package.
err = c.writeGlobalVariables(nw)
if err != nil {
return err
}
err = c.writeGlobalPools(nw)
if err != nil {
return err
}
err = c.writeBuildDir(nw)
if err != nil {
return err
}
err = c.writeGlobalRules(nw)
if err != nil {
return err
}
err = c.writeAllModuleActions(nw)
if err != nil {
return err
}
err = c.writeAllSingletonActions(nw)
if err != nil {
return err
}
return nil
}
type pkgAssociation struct {
PkgName string
PkgPath string
}
type pkgAssociationSorter struct {
pkgs []pkgAssociation
}
func (s *pkgAssociationSorter) Len() int {
return len(s.pkgs)
}
func (s *pkgAssociationSorter) Less(i, j int) bool {
iName := s.pkgs[i].PkgName
jName := s.pkgs[j].PkgName
return iName < jName
}
func (s *pkgAssociationSorter) Swap(i, j int) {
s.pkgs[i], s.pkgs[j] = s.pkgs[j], s.pkgs[i]
}
func (c *Context) writeBuildFileHeader(nw *ninjaWriter) error {
headerTemplate := template.New("fileHeader")
_, err := headerTemplate.Parse(fileHeaderTemplate)
if err != nil {
// This is a programming error.
panic(err)
}
var pkgs []pkgAssociation
maxNameLen := 0
for pkg, name := range c.pkgNames {
pkgs = append(pkgs, pkgAssociation{
PkgName: name,
PkgPath: pkg.pkgPath,
})
if len(name) > maxNameLen {
maxNameLen = len(name)
}
}
for i := range pkgs {
pkgs[i].PkgName += strings.Repeat(" ", maxNameLen-len(pkgs[i].PkgName))
}
sort.Sort(&pkgAssociationSorter{pkgs})
params := map[string]interface{}{
"Pkgs": pkgs,
}
buf := bytes.NewBuffer(nil)
err = headerTemplate.Execute(buf, params)
if err != nil {
return err
}
return nw.Comment(buf.String())
}
func (c *Context) writeNinjaRequiredVersion(nw *ninjaWriter) error {
value := fmt.Sprintf("%d.%d.%d", c.requiredNinjaMajor, c.requiredNinjaMinor,
c.requiredNinjaMicro)
err := nw.Assign("ninja_required_version", value)
if err != nil {
return err
}
return nw.BlankLine()
}
func (c *Context) writeBuildDir(nw *ninjaWriter) error {
if c.buildDir != nil {
err := nw.Assign("builddir", c.buildDir.Value(c.pkgNames))
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
return nil
}
type globalEntity interface {
fullName(pkgNames map[*PackageContext]string) string
}
type globalEntitySorter struct {
pkgNames map[*PackageContext]string
entities []globalEntity
}
func (s *globalEntitySorter) Len() int {
return len(s.entities)
}
func (s *globalEntitySorter) Less(i, j int) bool {
iName := s.entities[i].fullName(s.pkgNames)
jName := s.entities[j].fullName(s.pkgNames)
return iName < jName
}
func (s *globalEntitySorter) Swap(i, j int) {
s.entities[i], s.entities[j] = s.entities[j], s.entities[i]
}
func (c *Context) writeGlobalVariables(nw *ninjaWriter) error {
visited := make(map[Variable]bool)
var walk func(v Variable) error
walk = func(v Variable) error {
visited[v] = true
// First visit variables on which this variable depends.
value := c.globalVariables[v]
for _, dep := range value.variables {
if !visited[dep] {
err := walk(dep)
if err != nil {
return err
}
}
}
err := nw.Assign(v.fullName(c.pkgNames), value.Value(c.pkgNames))
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
return nil
}
globalVariables := make([]globalEntity, 0, len(c.globalVariables))
for variable := range c.globalVariables {
globalVariables = append(globalVariables, variable)
}
sort.Sort(&globalEntitySorter{c.pkgNames, globalVariables})
for _, entity := range globalVariables {
v := entity.(Variable)
if !visited[v] {
err := walk(v)
if err != nil {
return nil
}
}
}
return nil
}
func (c *Context) writeGlobalPools(nw *ninjaWriter) error {
globalPools := make([]globalEntity, 0, len(c.globalPools))
for pool := range c.globalPools {
globalPools = append(globalPools, pool)
}
sort.Sort(&globalEntitySorter{c.pkgNames, globalPools})
for _, entity := range globalPools {
pool := entity.(Pool)
name := pool.fullName(c.pkgNames)
def := c.globalPools[pool]
err := def.WriteTo(nw, name)
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
return nil
}
func (c *Context) writeGlobalRules(nw *ninjaWriter) error {
globalRules := make([]globalEntity, 0, len(c.globalRules))
for rule := range c.globalRules {
globalRules = append(globalRules, rule)
}
sort.Sort(&globalEntitySorter{c.pkgNames, globalRules})
for _, entity := range globalRules {
rule := entity.(Rule)
name := rule.fullName(c.pkgNames)
def := c.globalRules[rule]
err := def.WriteTo(nw, name, c.pkgNames)
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
return nil
}
type moduleSorter []*moduleInfo
func (s moduleSorter) Len() int {
return len(s)
}
func (s moduleSorter) Less(i, j int) bool {
iName := s[i].properties.Name
jName := s[j].properties.Name
if iName == jName {
iName = s[i].variantName
jName = s[j].variantName
}
return iName < jName
}
func (s moduleSorter) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func (c *Context) writeAllModuleActions(nw *ninjaWriter) error {
headerTemplate := template.New("moduleHeader")
_, err := headerTemplate.Parse(moduleHeaderTemplate)
if err != nil {
// This is a programming error.
panic(err)
}
modules := make([]*moduleInfo, 0, len(c.moduleInfo))
for _, module := range c.moduleInfo {
modules = append(modules, module)
}
sort.Sort(moduleSorter(modules))
buf := bytes.NewBuffer(nil)
for _, module := range modules {
buf.Reset()
// In order to make the bootstrap build manifest independent of the
// build dir we need to output the Blueprints file locations in the
// comments as paths relative to the source directory.
relPos := module.pos
relPos.Filename = module.relBlueprintsFile
// Get the name and location of the factory function for the module.
factory := c.moduleFactories[module.typeName]
factoryFunc := runtime.FuncForPC(reflect.ValueOf(factory).Pointer())
factoryName := factoryFunc.Name()
infoMap := map[string]interface{}{
"properties": module.properties,
"typeName": module.typeName,
"goFactory": factoryName,
"pos": relPos,
"variant": module.variantName,
}
err = headerTemplate.Execute(buf, infoMap)
if err != nil {
return err
}
err = nw.Comment(buf.String())
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
err = c.writeLocalBuildActions(nw, &module.actionDefs)
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
return nil
}
func (c *Context) writeAllSingletonActions(nw *ninjaWriter) error {
headerTemplate := template.New("singletonHeader")
_, err := headerTemplate.Parse(singletonHeaderTemplate)
if err != nil {
// This is a programming error.
panic(err)
}
buf := bytes.NewBuffer(nil)
singletonNames := make([]string, 0, len(c.singletonInfo))
for name := range c.singletonInfo {
singletonNames = append(singletonNames, name)
}
sort.Strings(singletonNames)
for _, name := range singletonNames {
info := c.singletonInfo[name]
// Get the name of the factory function for the module.
factory := info.factory
factoryFunc := runtime.FuncForPC(reflect.ValueOf(factory).Pointer())
factoryName := factoryFunc.Name()
buf.Reset()
infoMap := map[string]interface{}{
"name": name,
"goFactory": factoryName,
}
err = headerTemplate.Execute(buf, infoMap)
if err != nil {
return err
}
err = nw.Comment(buf.String())
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
err = c.writeLocalBuildActions(nw, &info.actionDefs)
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
return nil
}
func (c *Context) writeLocalBuildActions(nw *ninjaWriter,
defs *localBuildActions) error {
// Write the local variable assignments.
for _, v := range defs.variables {
// A localVariable doesn't need the package names or config to
// determine its name or value.
name := v.fullName(nil)
value, err := v.value(nil)
if err != nil {
panic(err)
}
err = nw.Assign(name, value.Value(c.pkgNames))
if err != nil {
return err
}
}
if len(defs.variables) > 0 {
err := nw.BlankLine()
if err != nil {
return err
}
}
// Write the local rules.
for _, r := range defs.rules {
// A localRule doesn't need the package names or config to determine
// its name or definition.
name := r.fullName(nil)
def, err := r.def(nil)
if err != nil {
panic(err)
}
err = def.WriteTo(nw, name, c.pkgNames)
if err != nil {
return err
}
err = nw.BlankLine()
if err != nil {
return err
}
}
// Write the build definitions.
for _, buildDef := range defs.buildDefs {
err := buildDef.WriteTo(nw, c.pkgNames)
if err != nil {
return err
}
if len(buildDef.Args) > 0 {
err = nw.BlankLine()
if err != nil {
return err
}
}
}
return nil
}
func beforeInModuleList(a, b *moduleInfo, list []*moduleInfo) bool {
found := false
for _, l := range list {
if l == a {
found = true
} else if l == b {
return found
}
}
missing := a
if found {
missing = b
}
panic(fmt.Errorf("element %v not found in list %v", missing, list))
}
var fileHeaderTemplate = `******************************************************************************
*** This file is generated and should not be edited ***
******************************************************************************
{{if .Pkgs}}
This file contains variables, rules, and pools with name prefixes indicating
they were generated by the following Go packages:
{{range .Pkgs}}
{{.PkgName}} [from Go package {{.PkgPath}}]{{end}}{{end}}
`
var moduleHeaderTemplate = `# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
Module: {{.properties.Name}}
Variant: {{.variant}}
Type: {{.typeName}}
Factory: {{.goFactory}}
Defined: {{.pos}}
`
var singletonHeaderTemplate = `# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
Singleton: {{.name}}
Factory: {{.goFactory}}
`