blob: 8d7005914a583ebd1a8ced56ad5672d396bedbb1 [file] [log] [blame]
# Copyright 2020 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os.path
import cv2
import its.caps
import its.cv2image
import its.device
import its.image
import its.objects
import numpy as np
CIRCLE_COLOR = 0 # [0: black, 255: white]
CIRCLE_TOL = 0.05 # contour area vs ideal circle area pi*((w+h)/4)**2
LINE_COLOR = (255, 0, 0) # red
LINE_THICKNESS = 5
MIN_AREA_RATIO = 0.00015 # based on 2000/(4000x3000) pixels
MIN_CIRCLE_PTS = 25
NAME = os.path.basename(__file__).split('.')[0]
NUM_STEPS = 10
OFFSET_RTOL = 0.10
RADIUS_RTOL = 0.10
ZOOM_MAX_THRESH = 10.0
ZOOM_MIN_THRESH = 2.0
def distance((x, y)):
return math.sqrt(x**2 + y**2)
def circle_cropped(circle, size):
"""Determine if a circle is cropped by edge of img.
Args:
circle: list; [x, y, radius] of circle
size: tuple; [x, y] size of img
Returns:
Boolean True if selected circle is cropped
"""
cropped = False
circle_x, circle_y = circle[0], circle[1]
circle_r = circle[2]
x_min, x_max = circle_x - circle_r, circle_x + circle_r
y_min, y_max = circle_y - circle_r, circle_y + circle_r
if x_min < 0 or y_min < 0 or x_max > size[0] or y_max > size[1]:
cropped = True
return cropped
def find_center_circle(img, name, color, min_area, debug):
"""Find the circle closest to the center of the image.
Finds all contours in the image. Rejects those too small and not enough
points to qualify as a circle. The remaining contours must have center
point of color=color and are sorted based on distance from the center
of the image. The contour closest to the center of the image is returned.
Note: hierarchy is not used as the hierarchy for black circles changes
as the zoom level changes.
Args:
img: numpy img array with pixel values in [0,255].
name: str; file name
color: int; 0: black, 255: white
min_area: int; minimum area of circles to screen out
debug: bool; save extra data
Returns:
circle: [center_x, center_y, radius]
"""
# gray scale & otsu threshold to binarize the image
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, img_bw = cv2.threshold(np.uint8(gray), 0, 255,
cv2.THRESH_BINARY + cv2.THRESH_OTSU)
# use OpenCV to find contours (connected components)
cv2_version = cv2.__version__
if cv2_version.startswith('2.4.'):
contours, _ = cv2.findContours(255-img_bw, cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
elif cv2_version.startswith('3.2.'):
_, contours, _ = cv2.findContours(255-img_bw, cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
# check contours and find the best circle candidates
circles = []
img_ctr = [gray.shape[1]/2, gray.shape[0]/2]
for contour in contours:
area = cv2.contourArea(contour)
if area > min_area and len(contour) >= MIN_CIRCLE_PTS:
shape = its.cv2image.component_shape(contour)
radius = (shape['width'] + shape['height']) / 4
colour = img_bw[shape['cty']][shape['ctx']]
circlish = round((math.pi * radius**2) / area, 4)
if colour == color and (1-CIRCLE_TOL <= circlish <= 1+CIRCLE_TOL):
circles.append([shape['ctx'], shape['cty'], radius, circlish,
area])
if debug:
circles.sort(key=lambda x: abs(x[3]-1.0)) # sort for best circles
print 'circles [x, y, r, pi*r**2/area, area]:', circles
# find circle closest to center
circles.sort(key=lambda x: distance((x[0]-img_ctr[0], x[1]-img_ctr[1])))
circle = circles[0]
# mark image center
size = gray.shape
m_x, m_y = size[1]/2, size[0]/2
marker_size = LINE_THICKNESS * 10
if cv2_version.startswith('2.4.'):
cv2.line(img, (m_x-marker_size/2, m_y), (m_x+marker_size/2, m_y),
LINE_COLOR, LINE_THICKNESS)
cv2.line(img, (m_x, m_y-marker_size/2), (m_x, m_y+marker_size/2),
LINE_COLOR, LINE_THICKNESS)
elif cv2_version.startswith('3.2.'):
cv2.drawMarker(img, (m_x, m_y), LINE_COLOR,
markerType=cv2.MARKER_CROSS,
markerSize=marker_size,
thickness=LINE_THICKNESS)
# add circle to saved image
center_i = (int(round(circle[0], 0)), int(round(circle[1], 0)))
radius_i = int(round(circle[2], 0))
cv2.circle(img, center_i, radius_i, LINE_COLOR, LINE_THICKNESS)
its.image.write_image(img/255.0, name)
if not circles:
print 'No circle was detected. Please take pictures according',
print 'to instruction carefully!\n'
assert False
return [circle[0], circle[1], circle[2]]
def main():
"""Test the camera zoom behavior."""
z_test_list = []
fls = []
circles = []
with its.device.ItsSession() as cam:
props = cam.get_camera_properties()
its.caps.skip_unless(its.caps.zoom_ratio_range(props))
z_range = props['android.control.zoomRatioRange']
print 'testing zoomRatioRange:', z_range
yuv_size = its.objects.get_largest_yuv_format(props)
size = [yuv_size['width'], yuv_size['height']]
debug = its.caps.debug_mode()
z_min, z_max = float(z_range[0]), float(z_range[1])
its.caps.skip_unless(z_max >= z_min*ZOOM_MIN_THRESH)
z_list = np.arange(z_min, z_max, float(z_max-z_min)/(NUM_STEPS-1))
z_list = np.append(z_list, z_max)
# do captures over zoom range
req = its.objects.auto_capture_request()
for i, z in enumerate(z_list):
print 'zoom ratio: %.2f' % z
req['android.control.zoomRatio'] = z
cap = cam.do_capture(req, cam.CAP_YUV)
img = its.image.convert_capture_to_rgb_image(cap, props=props)
# convert to [0, 255] images with unsigned integer
img *= 255
img = img.astype(np.uint8)
# Find the circles in img
circle = find_center_circle(
img, '%s_%s.jpg' % (NAME, round(z, 2)), CIRCLE_COLOR,
min_area=MIN_AREA_RATIO*size[0]*size[1]*z*z, debug=debug)
if circle_cropped(circle, size):
print 'zoom %.2f is too large! Skip further captures' % z
break
circles.append(circle)
z_test_list.append(z)
fls.append(cap['metadata']['android.lens.focalLength'])
# assert some range is tested before circles get too big
zoom_max_thresh = ZOOM_MAX_THRESH
if z_max < ZOOM_MAX_THRESH:
zoom_max_thresh = z_max
msg = 'Max zoom level tested: %d, THRESH: %d' % (
z_test_list[-1], zoom_max_thresh)
assert z_test_list[-1] >= zoom_max_thresh, msg
# initialize relative size w/ zoom[0] for diff zoom ratio checks
radius_0 = float(circles[0][2])
z_0 = float(z_test_list[0])
for i, z in enumerate(z_test_list):
print '\nZoom: %.2f, fl: %.2f' % (z, fls[i])
offset_abs = ((circles[i][0] - size[0]/2), (circles[i][1] - size[1]/2))
print 'Circle r: %.1f, center offset x, y: %d, %d' % (
circles[i][2], offset_abs[0], offset_abs[1])
z_ratio = z / z_0
# check relative size against zoom[0]
radius_ratio = circles[i][2]/radius_0
print 'radius_ratio: %.3f' % radius_ratio
msg = 'zoom: %.2f, radius ratio: %.2f, RTOL: %.2f' % (
z_ratio, radius_ratio, RADIUS_RTOL)
assert np.isclose(z_ratio, radius_ratio, rtol=RADIUS_RTOL), msg
# check relative offset against init vals w/ no focal length change
if i == 0 or fls[i-1] != fls[i]: # set init values
z_init = float(z_test_list[i])
offset_init = (circles[i][0] - size[0] / 2,
circles[i][1] - size[1] / 2)
else: # check
z_ratio = z / z_init
offset_rel = (distance(offset_abs) / z_ratio /
distance(offset_init))
print 'offset_rel: %.3f' % offset_rel
msg = 'zoom: %.2f, offset(rel): %.2f, RTOL: %.2f' % (
z, offset_rel, OFFSET_RTOL)
assert np.isclose(offset_rel, 1.0, rtol=OFFSET_RTOL), msg
if __name__ == '__main__':
main()