blob: 4ab4e2a518b954f74c8962ff957750b8821b33a4 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <EGL/egl.h>
#include <EGL/eglext.h>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <jni.h>
#include <stdlib.h>
#include <android/hardware_buffer.h>
#include <android/log.h>
#include <cmath>
#include <string>
#include <sstream>
#define LOG_TAG "VrExtensionsJni"
#define LOGV(...) __android_log_print(ANDROID_LOG_VERBOSE,LOG_TAG,__VA_ARGS__)
using PFNEGLGETNATIVECLIENTBUFFERANDROID =
EGLClientBuffer(EGLAPIENTRYP)(const AHardwareBuffer* buffer);
using PFNGLEGLIMAGETARGETTEXTURE2DOESPROC = void(GL_APIENTRYP)(GLenum target,
void* image);
using PFNGLBUFFERSTORAGEEXTERNALEXTPROC =
void(GL_APIENTRYP)(GLenum target, GLintptr offset, GLsizeiptr size,
void* clientBuffer, GLbitfield flags);
using PFNGLMAPBUFFERRANGEPROC = void*(GL_APIENTRYP)(GLenum target,
GLintptr offset,
GLsizeiptr length,
GLbitfield access);
using PFNGLUNMAPBUFFERPROC = void*(GL_APIENTRYP)(GLenum target);
PFNGLEGLIMAGETARGETTEXTURE2DOESPROC glEGLImageTargetTexture2DOES;
PFNEGLGETNATIVECLIENTBUFFERANDROID eglGetNativeClientBufferANDROID;
PFNEGLCREATEIMAGEKHRPROC eglCreateImageKHR;
PFNGLFRAMEBUFFERTEXTUREMULTIVIEWOVRPROC glFramebufferTextureMultiviewOVR;
PFNGLFRAMEBUFFERTEXTUREMULTISAMPLEMULTIVIEWOVRPROC
glFramebufferTextureMultisampleMultiviewOVR;
PFNGLBUFFERSTORAGEEXTERNALEXTPROC glBufferStorageExternalEXT;
PFNGLMAPBUFFERRANGEPROC glMapBufferRange;
PFNGLUNMAPBUFFERPROC glUnmapBuffer;
#define NO_ERROR 0
#define GL_UNIFORM_BUFFER 0x8A11
// Declare flags that are added to MapBufferRange via EXT_buffer_storage.
// https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_buffer_storage.txt
#define GL_MAP_PERSISTENT_BIT_EXT 0x0040
#define GL_MAP_COHERENT_BIT_EXT 0x0080
// Declare tokens added as a part of EGL_EXT_image_gl_colorspace.
#define EGL_GL_COLORSPACE_DEFAULT_EXT 0x314D
#define LOAD_PROC(NAME, TYPE) \
NAME = reinterpret_cast<TYPE>(eglGetProcAddress(# NAME))
#define ASSERT(condition, format, args...) \
if (!(condition)) { \
fail(env, format, ## args); \
return; \
}
#define ASSERT_TRUE(a) \
ASSERT((a), "assert failed on (" #a ") at " __FILE__ ":%d", __LINE__)
#define ASSERT_FALSE(a) \
ASSERT(!(a), "assert failed on (!" #a ") at " __FILE__ ":%d", __LINE__)
#define ASSERT_EQ(a, b) \
ASSERT((a) == (b), "assert failed on (" #a ") at " __FILE__ ":%d", __LINE__)
#define ASSERT_NE(a, b) \
ASSERT((a) != (b), "assert failed on (" #a ") at " __FILE__ ":%d", __LINE__)
#define ASSERT_GT(a, b) \
ASSERT((a) > (b), "assert failed on (" #a ") at " __FILE__ ":%d", __LINE__)
#define ASSERT_NEAR(a, b, delta) \
ASSERT((a - delta) <= (b) && (b) <= (a + delta), \
"assert failed on (" #a ") at " __FILE__ ":%d", __LINE__)
void fail(JNIEnv* env, const char* format, ...) {
va_list args;
va_start(args, format);
char* msg;
vasprintf(&msg, format, args);
va_end(args);
jclass exClass;
const char* className = "java/lang/AssertionError";
exClass = env->FindClass(className);
env->ThrowNew(exClass, msg);
free(msg);
}
static void testEglImageArray(JNIEnv* env, AHardwareBuffer_Desc desc,
int nsamples) {
ASSERT_GT(desc.layers, 1);
AHardwareBuffer* hwbuffer = nullptr;
int error = AHardwareBuffer_allocate(&desc, &hwbuffer);
ASSERT_FALSE(error);
// Create EGLClientBuffer from the AHardwareBuffer.
EGLClientBuffer native_buffer = eglGetNativeClientBufferANDROID(hwbuffer);
ASSERT_TRUE(native_buffer);
// Create EGLImage from EGLClientBuffer.
EGLint attrs[] = {EGL_NONE};
EGLImageKHR image =
eglCreateImageKHR(eglGetCurrentDisplay(), EGL_NO_CONTEXT,
EGL_NATIVE_BUFFER_ANDROID, native_buffer, attrs);
ASSERT_TRUE(image);
// Create OpenGL texture from the EGLImage.
GLuint texid;
glGenTextures(1, &texid);
glBindTexture(GL_TEXTURE_2D_ARRAY, texid);
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D_ARRAY, image);
ASSERT_EQ(glGetError(), GL_NO_ERROR);
// Create FBO and add multiview attachment.
GLuint fboid;
glGenFramebuffers(1, &fboid);
glBindFramebuffer(GL_FRAMEBUFFER, fboid);
const GLint miplevel = 0;
const GLint base_view = 0;
const GLint num_views = desc.layers;
if (nsamples == 1) {
glFramebufferTextureMultiviewOVR(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
texid, miplevel, base_view, num_views);
} else {
glFramebufferTextureMultisampleMultiviewOVR(
GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, texid, miplevel, nsamples,
base_view, num_views);
}
ASSERT_EQ(glGetError(), GL_NO_ERROR);
ASSERT_EQ(glCheckFramebufferStatus(GL_FRAMEBUFFER),
GL_FRAMEBUFFER_COMPLETE);
// Release memory.
glDeleteTextures(1, &texid);
glDeleteFramebuffers(1, &fboid);
AHardwareBuffer_release(hwbuffer);
}
extern "C" JNIEXPORT void JNICALL
Java_android_vr_cts_VrExtensionBehaviorTest_nativeTestEglImageArray(
JNIEnv* env, jclass /* unused */) {
// First, load entry points provided by extensions.
LOAD_PROC(glEGLImageTargetTexture2DOES,
PFNGLEGLIMAGETARGETTEXTURE2DOESPROC);
ASSERT_NE(glEGLImageTargetTexture2DOES, nullptr);
LOAD_PROC(eglGetNativeClientBufferANDROID,
PFNEGLGETNATIVECLIENTBUFFERANDROID);
ASSERT_NE(eglGetNativeClientBufferANDROID, nullptr);
LOAD_PROC(eglCreateImageKHR, PFNEGLCREATEIMAGEKHRPROC);
ASSERT_NE(eglCreateImageKHR, nullptr);
LOAD_PROC(glFramebufferTextureMultiviewOVR,
PFNGLFRAMEBUFFERTEXTUREMULTIVIEWOVRPROC);
ASSERT_NE(glFramebufferTextureMultiviewOVR, nullptr);
LOAD_PROC(glFramebufferTextureMultisampleMultiviewOVR,
PFNGLFRAMEBUFFERTEXTUREMULTISAMPLEMULTIVIEWOVRPROC);
ASSERT_NE(glFramebufferTextureMultisampleMultiviewOVR, nullptr);
// Try creating a 32x32 AHardwareBuffer and attaching it to a multiview
// framebuffer, with various formats and depths.
AHardwareBuffer_Desc desc = {};
desc.width = 32;
desc.height = 32;
desc.usage = AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE |
AHARDWAREBUFFER_USAGE_GPU_COLOR_OUTPUT;
const int layers[] = {2, 4};
const int formats[] = {
AHARDWAREBUFFER_FORMAT_R5G6B5_UNORM,
AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM,
AHARDWAREBUFFER_FORMAT_R10G10B10A2_UNORM,
AHARDWAREBUFFER_FORMAT_R16G16B16A16_FLOAT,
// Do not test AHARDWAREBUFFER_FORMAT_BLOB, it isn't color-renderable.
};
const int samples[] = {1, 2, 4};
for (int nsamples : samples) {
for (auto nlayers : layers) {
for (auto format : formats) {
desc.layers = nlayers;
desc.format = format;
testEglImageArray(env, desc, nsamples);
}
}
}
}
static void testExternalBuffer(JNIEnv* env, uint64_t usage, bool write_hwbuffer,
const std::string& test_string) {
// Create a blob AHardwareBuffer suitable for holding the string.
AHardwareBuffer_Desc desc = {};
desc.width = test_string.size();
desc.height = 1;
desc.layers = 1;
desc.format = AHARDWAREBUFFER_FORMAT_BLOB;
desc.usage = usage;
AHardwareBuffer* hwbuffer = nullptr;
int error = AHardwareBuffer_allocate(&desc, &hwbuffer);
ASSERT_EQ(error, NO_ERROR);
// Create EGLClientBuffer from the AHardwareBuffer.
EGLClientBuffer native_buffer = eglGetNativeClientBufferANDROID(hwbuffer);
ASSERT_TRUE(native_buffer);
// Create uniform buffer from EGLClientBuffer.
const GLbitfield flags = GL_MAP_READ_BIT | GL_MAP_WRITE_BIT |
GL_MAP_COHERENT_BIT_EXT | GL_MAP_PERSISTENT_BIT_EXT;
GLuint buf = 0;
glGenBuffers(1, &buf);
glBindBuffer(GL_UNIFORM_BUFFER, buf);
ASSERT_EQ(glGetError(), GL_NO_ERROR);
const GLsizeiptr bufsize = desc.width * desc.height;
glBufferStorageExternalEXT(GL_UNIFORM_BUFFER, 0,
bufsize, native_buffer, flags);
ASSERT_EQ(glGetError(), GL_NO_ERROR);
// Obtain a writeable pointer using either OpenGL or the Android API,
// then copy the test string into it.
if (write_hwbuffer) {
void* data = nullptr;
error = AHardwareBuffer_lock(hwbuffer,
AHARDWAREBUFFER_USAGE_CPU_READ_RARELY, -1,
NULL, &data);
ASSERT_EQ(error, NO_ERROR);
ASSERT_TRUE(data);
memcpy(data, test_string.c_str(), test_string.size());
error = AHardwareBuffer_unlock(hwbuffer, nullptr);
ASSERT_EQ(error, NO_ERROR);
} else {
void* data =
glMapBufferRange(GL_UNIFORM_BUFFER, 0, bufsize,
GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT_EXT);
ASSERT_EQ(glGetError(), GL_NO_ERROR);
ASSERT_TRUE(data);
memcpy(data, test_string.c_str(), test_string.size());
glUnmapBuffer(GL_UNIFORM_BUFFER);
ASSERT_EQ(glGetError(), GL_NO_ERROR);
}
// Obtain a readable pointer and verify the data.
void* data = glMapBufferRange(GL_UNIFORM_BUFFER, 0, bufsize, GL_MAP_READ_BIT);
ASSERT_TRUE(data);
ASSERT_EQ(strncmp(static_cast<char*>(data), test_string.c_str(),
test_string.size()), 0);
glUnmapBuffer(GL_UNIFORM_BUFFER);
ASSERT_EQ(glGetError(), GL_NO_ERROR);
AHardwareBuffer_release(hwbuffer);
}
extern "C" JNIEXPORT void JNICALL
Java_android_vr_cts_VrExtensionBehaviorTest_nativeTestExternalBuffer(
JNIEnv* env, jclass /* unused */) {
// First, check for EXT_external_buffer in the extension string.
auto exts = reinterpret_cast<const char*>(glGetString(GL_EXTENSIONS));
ASSERT_TRUE(exts && strstr(exts, "GL_EXT_external_buffer"));
// Next, load entry points provided by extensions.
LOAD_PROC(eglGetNativeClientBufferANDROID, PFNEGLGETNATIVECLIENTBUFFERANDROID);
ASSERT_NE(eglGetNativeClientBufferANDROID, nullptr);
LOAD_PROC(glBufferStorageExternalEXT, PFNGLBUFFERSTORAGEEXTERNALEXTPROC);
ASSERT_NE(glBufferStorageExternalEXT, nullptr);
LOAD_PROC(glMapBufferRange, PFNGLMAPBUFFERRANGEPROC);
ASSERT_NE(glMapBufferRange, nullptr);
LOAD_PROC(glUnmapBuffer, PFNGLUNMAPBUFFERPROC);
ASSERT_NE(glUnmapBuffer, nullptr);
const uint64_t usage = AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN |
AHARDWAREBUFFER_USAGE_CPU_READ_RARELY |
AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER |
AHARDWAREBUFFER_USAGE_SENSOR_DIRECT_DATA;
const std::string test_string = "Hello, world.";
// First try writing to the buffer using OpenGL, then try writing to it via
// the AHardwareBuffer API.
testExternalBuffer(env, usage, false, test_string);
testExternalBuffer(env, usage, true, test_string);
}
const GLchar* const kSrgbVertexCode = R"(
// vertex position in clip space (-1..1)
attribute vec4 position;
varying mediump vec2 uv;
void main() {
gl_Position = position;
uv = vec2(0.5 * (position.x + 1.0), 0.5);
})";
const GLchar* const kSrgbFragmentCode = R"(
varying mediump vec2 uv;
uniform sampler2D tex;
void main() {
gl_FragColor = texture2D(tex, uv);
})";
static inline float SrgbChannelToLinear(float cs) {
if (cs <= 0.04045)
return cs / 12.92f;
else
return std::pow((cs + 0.055f) / 1.055f, 2.4f);
}
static inline float LinearChannelToSrgb(float cs) {
if (cs <= 0.0f)
return 0.0f;
else if (cs < 0.0031308f)
return 12.92f * cs;
else if (cs < 1.0f)
return 1.055f * std::pow(cs, 0.41666f) - 0.055f;
else
return 1.0f;
}
static uint32_t SrgbColorToLinear(uint32_t color) {
float r = SrgbChannelToLinear((color & 0xff) / 255.0f);
float g = SrgbChannelToLinear(((color >> 8) & 0xff) / 255.0f);
float b = SrgbChannelToLinear(((color >> 16) & 0xff) / 255.0f);
uint32_t r8 = r * 255.0f;
uint32_t g8 = g * 255.0f;
uint32_t b8 = b * 255.0f;
uint32_t a8 = color >> 24;
return (a8 << 24) | (b8 << 16) | (g8 << 8) | r8;
}
static uint32_t LinearColorToSrgb(uint32_t color) {
float r = LinearChannelToSrgb((color & 0xff) / 255.0f);
float g = LinearChannelToSrgb(((color >> 8) & 0xff) / 255.0f);
float b = LinearChannelToSrgb(((color >> 16) & 0xff) / 255.0f);
uint32_t r8 = r * 255.0f;
uint32_t g8 = g * 255.0f;
uint32_t b8 = b * 255.0f;
uint32_t a8 = color >> 24;
return (a8 << 24) | (b8 << 16) | (g8 << 8) | r8;
}
static uint32_t LerpColor(uint32_t color0, uint32_t color1, float t) {
float r0 = (color0 & 0xff) / 255.0f;
float g0 = ((color0 >> 8) & 0xff) / 255.0f;
float b0 = ((color0 >> 16) & 0xff) / 255.0f;
float a0 = ((color0 >> 24) & 0xff) / 255.0f;
float r1 = (color1 & 0xff) / 255.0f;
float g1 = ((color1 >> 8) & 0xff) / 255.0f;
float b1 = ((color1 >> 16) & 0xff) / 255.0f;
float a1 = ((color1 >> 24) & 0xff) / 255.0f;
uint32_t r8 = (r0 * (1.0f - t) + r1 * t) * 255.0f;
uint32_t g8 = (g0 * (1.0f - t) + g1 * t) * 255.0f;
uint32_t b8 = (b0 * (1.0f - t) + b1 * t) * 255.0f;
uint32_t a8 = (a0 * (1.0f - t) + a1 * t) * 255.0f;
return (a8 << 24) | (b8 << 16) | (g8 << 8) | r8;
}
// Choose an odd-numbered framebuffer width so that we can
// extract the middle pixel of a gradient.
constexpr uint32_t kFramebufferWidth = 31;
// Declare the pixel data for the 2x1 texture.
// Color components are ordered like this: AABBGGRR
constexpr uint32_t kTextureData[] = {
0xff800000, // Half-Blue
0xff000080, // Half-Red
};
constexpr uint32_t kTextureWidth = sizeof(kTextureData) / sizeof(kTextureData[0]);
// Declare expected values for the middle pixel for various sampling behaviors.
const uint32_t kExpectedMiddlePixel_NoSrgb = LerpColor(kTextureData[0], kTextureData[1], 0.5f);
const uint32_t kExpectedMiddlePixel_LinearizeAfterFiltering =
SrgbColorToLinear(kExpectedMiddlePixel_NoSrgb);
const uint32_t kExpectedMiddlePixel_LinearizeBeforeFiltering =
LerpColor(SrgbColorToLinear(kTextureData[0]), SrgbColorToLinear(kTextureData[1]), 0.5f);
// Declare expected values for the final pixel color for various blending behaviors.
constexpr uint32_t kBlendDestColor = 0xff000080;
constexpr uint32_t kBlendSourceColor = 0x80800000;
const uint32_t kExpectedBlendedPixel_NoSrgb = LerpColor(kBlendSourceColor, kBlendDestColor, 0.5f);
const uint32_t kExpectedBlendedPixel_Srgb =
LinearColorToSrgb(LerpColor(kBlendSourceColor, SrgbColorToLinear(kBlendDestColor), 0.5f));
// Define a set of test flags. Not using an enum to avoid lots of casts.
namespace SrgbFlag {
constexpr uint32_t kHardwareBuffer = 1 << 0;
constexpr uint32_t kSrgbFormat = 1 << 1;
constexpr uint32_t kEglColorspaceDefault = 1 << 2;
constexpr uint32_t kEglColorspaceLinear = 1 << 3;
constexpr uint32_t kEglColorspaceSrgb = 1 << 4;
} // namespace SrgbFlag
static void configureEglColorspace(EGLint attrs[4], uint32_t srgb_flags) {
if (srgb_flags & SrgbFlag::kEglColorspaceDefault) {
attrs[0] = EGL_GL_COLORSPACE_KHR;
attrs[1] = EGL_GL_COLORSPACE_DEFAULT_EXT;
} else if (srgb_flags & SrgbFlag::kEglColorspaceLinear) {
attrs[0] = EGL_GL_COLORSPACE_KHR;
attrs[1] = EGL_GL_COLORSPACE_LINEAR_KHR;
} else if (srgb_flags & SrgbFlag::kEglColorspaceSrgb) {
attrs[0] = EGL_GL_COLORSPACE_KHR;
attrs[1] = EGL_GL_COLORSPACE_SRGB_KHR;
} else {
attrs[0] = EGL_NONE;
attrs[1] = EGL_NONE;
}
attrs[2] = EGL_NONE;
attrs[3] = EGL_NONE;
}
static void printSrgbFlags(std::ostream& out, uint32_t srgb_flags) {
if (srgb_flags & SrgbFlag::kHardwareBuffer) {
out << " AHardwareBuffer";
}
if (srgb_flags & SrgbFlag::kSrgbFormat) {
out << " GL_SRGB_ALPHA";
}
if (srgb_flags & SrgbFlag::kEglColorspaceDefault) {
out << " EGL_GL_COLORSPACE_DEFAULT_KHR";
}
if (srgb_flags & SrgbFlag::kEglColorspaceLinear) {
out << " EGL_GL_COLORSPACE_LINEAR_KHR";
}
if (srgb_flags & SrgbFlag::kEglColorspaceSrgb) {
out << " EGL_GL_COLORSPACE_SRGB_KHR";
}
}
// Draws a gradient and extracts the middle pixel. Returns void to allow ASSERT to work.
static void testLinearMagnification(JNIEnv* env, uint32_t flags, uint32_t* middle_pixel) {
const bool use_hwbuffer = flags & SrgbFlag::kHardwareBuffer;
const bool use_srgb_format = flags & SrgbFlag::kSrgbFormat;
GLuint srgbtex;
glGenTextures(1, &srgbtex);
glBindTexture(GL_TEXTURE_2D, srgbtex);
if (use_hwbuffer) {
// Create a one-dimensional AHardwareBuffer.
AHardwareBuffer_Desc desc = {};
desc.width = kTextureWidth;
desc.height = 1;
desc.layers = 1;
desc.format = AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM;
desc.usage =
AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE | AHARDWAREBUFFER_USAGE_GPU_COLOR_OUTPUT;
AHardwareBuffer* hwbuffer = nullptr;
int error = AHardwareBuffer_allocate(&desc, &hwbuffer);
ASSERT_EQ(error, NO_ERROR);
// Populate the pixels.
uint32_t* pixels = nullptr;
error = AHardwareBuffer_lock(hwbuffer, AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN, -1, nullptr,
reinterpret_cast<void**>(&pixels));
ASSERT_EQ(error, NO_ERROR);
ASSERT_TRUE(pixels);
memcpy(pixels, kTextureData, sizeof(kTextureData));
error = AHardwareBuffer_unlock(hwbuffer, nullptr);
ASSERT_EQ(error, NO_ERROR);
// Create EGLClientBuffer from the AHardwareBuffer.
EGLClientBuffer native_buffer = eglGetNativeClientBufferANDROID(hwbuffer);
ASSERT_TRUE(native_buffer);
// Create EGLImage from EGLClientBuffer.
EGLint attrs[4];
configureEglColorspace(attrs, flags);
EGLImageKHR image = eglCreateImageKHR(eglGetCurrentDisplay(), EGL_NO_CONTEXT,
EGL_NATIVE_BUFFER_ANDROID, native_buffer, attrs);
ASSERT_TRUE(image);
// Allocate the OpenGL texture using the EGLImage.
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, image);
} else {
GLenum internal_format = use_srgb_format ? GL_SRGB8_ALPHA8_EXT : GL_RGBA8_OES;
GLenum format = use_srgb_format ? GL_SRGB_ALPHA_EXT : GL_RGBA;
glTexImage2D(GL_TEXTURE_2D, 0, internal_format, kTextureWidth, 1, 0, format,
GL_UNSIGNED_BYTE, kTextureData);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
ASSERT_EQ(glGetError(), GL_NO_ERROR);
// Clear to an interesting constant color to make it easier to spot bugs.
glClearColor(1.0, 0.0, 0.5, 0.25);
glClear(GL_COLOR_BUFFER_BIT);
// Draw the texture.
const float kTriangleCoords[] = {-1, -1, -1, 1, 1, -1, 1, 1};
glBindTexture(GL_TEXTURE_2D, srgbtex);
const int kPositionSlot = 0;
glVertexAttribPointer(kPositionSlot, 2, GL_FLOAT, false, 0, kTriangleCoords);
glEnableVertexAttribArray(kPositionSlot);
glViewport(0, 0, kFramebufferWidth, 1);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
// Read back the framebuffer.
glReadPixels(kFramebufferWidth / 2, 0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, middle_pixel);
std::ostringstream flag_string;
printSrgbFlags(flag_string, flags);
LOGV("Filtered Result: %8.8X Flags =%s", *middle_pixel, flag_string.str().c_str());
ASSERT_EQ(glGetError(), GL_NO_ERROR);
}
// Blends a color into an (optionally) sRGB-encoded framebuffer and extracts the final color.
// Returns void to allow ASSERT to work.
static void testFramebufferBlending(JNIEnv* env, uint32_t flags, uint32_t* final_color) {
const bool use_hwbuffer = flags & SrgbFlag::kHardwareBuffer;
const bool use_srgb_format = flags & SrgbFlag::kSrgbFormat;
const bool override_egl_colorspace = use_hwbuffer && (flags & SrgbFlag::kEglColorspaceSrgb);
GLuint tex;
glGenTextures(1, &tex);
glBindTexture(GL_TEXTURE_2D, tex);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
// Create a 1x1 half-blue, half-opaque texture.
const uint32_t kTextureData[] = {
kBlendSourceColor,
};
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1, 0, GL_RGBA,
GL_UNSIGNED_BYTE, kTextureData);
// Create 1x1 framebuffer object.
GLuint fbo;
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
GLuint fbotex;
glGenTextures(1, &fbotex);
glBindTexture(GL_TEXTURE_2D, fbotex);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
if (use_hwbuffer) {
AHardwareBuffer_Desc desc = {};
desc.width = 1;
desc.height = 1;
desc.layers = 1;
desc.format = AHARDWAREBUFFER_FORMAT_R8G8B8A8_UNORM;
desc.usage =
AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE | AHARDWAREBUFFER_USAGE_GPU_COLOR_OUTPUT;
AHardwareBuffer* hwbuffer = nullptr;
int error = AHardwareBuffer_allocate(&desc, &hwbuffer);
ASSERT_EQ(error, NO_ERROR);
// Create EGLClientBuffer from the AHardwareBuffer.
EGLClientBuffer native_buffer = eglGetNativeClientBufferANDROID(hwbuffer);
ASSERT_TRUE(native_buffer);
// Create EGLImage from EGLClientBuffer.
EGLint attrs[4];
configureEglColorspace(attrs, flags);
EGLImageKHR image = eglCreateImageKHR(eglGetCurrentDisplay(), EGL_NO_CONTEXT,
EGL_NATIVE_BUFFER_ANDROID, native_buffer, attrs);
ASSERT_TRUE(image);
// Allocate the OpenGL texture using the EGLImage.
glEGLImageTargetTexture2DOES(GL_TEXTURE_2D, image);
} else {
GLenum internal_format = use_srgb_format ? GL_SRGB8_ALPHA8_EXT : GL_RGBA8_OES;
GLenum format = use_srgb_format ? GL_SRGB_ALPHA_EXT : GL_RGBA;
glTexImage2D(GL_TEXTURE_2D, 0, internal_format, 1, 1, 0, format,
GL_UNSIGNED_BYTE, nullptr);
}
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, fbotex, 0);
ASSERT_EQ(glCheckFramebufferStatus(GL_FRAMEBUFFER), GL_FRAMEBUFFER_COMPLETE);
ASSERT_EQ(glGetError(), GL_NO_ERROR);
// Clear to half-red.
if (use_srgb_format || override_egl_colorspace) {
glClearColor(SrgbChannelToLinear(0.5), 0.0, 0.0, 1.0);
} else {
glClearColor(0.5, 0.0, 0.0, 1.0);
}
glClear(GL_COLOR_BUFFER_BIT);
// Sanity check the cleared color.
uint32_t cleared_color = 0;
glReadPixels(0, 0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, &cleared_color);
LOGV(" Cleared Color: %8.8X", cleared_color);
ASSERT_EQ(cleared_color, kBlendDestColor);
// Draw the texture.
glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
const float kTriangleCoords[] = {-1, -1, -1, 1, 1, -1, 1, 1};
glBindTexture(GL_TEXTURE_2D, tex);
const int kPositionSlot = 0;
glVertexAttribPointer(kPositionSlot, 2, GL_FLOAT, false, 0, kTriangleCoords);
glEnableVertexAttribArray(kPositionSlot);
glViewport(0, 0, 1, 1);
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
// Read back the framebuffer.
glReadPixels(0, 0, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, final_color);
std::ostringstream flag_string;
printSrgbFlags(flag_string, flags);
LOGV("Blending Result: %8.8X Flags =%s", *final_color, flag_string.str().c_str());
ASSERT_EQ(glGetError(), GL_NO_ERROR);
}
extern "C" JNIEXPORT void JNICALL
Java_android_vr_cts_VrExtensionBehaviorTest_nativeTestSrgbBuffer(
JNIEnv* env, jclass /* unused */) {
// First, check the published extension strings against expectations.
const char *egl_exts =
eglQueryString(eglGetCurrentDisplay(), EGL_EXTENSIONS);
LOGV("EGL Extensions: %s", egl_exts);
ASSERT_TRUE(egl_exts);
bool egl_colorspace_supported = strstr(egl_exts, "EGL_EXT_image_gl_colorspace");
auto gl_exts = reinterpret_cast<const char*>(glGetString(GL_EXTENSIONS));
LOGV("OpenGL Extensions: %s", gl_exts);
ASSERT_TRUE(gl_exts);
// Load ancillary entry points provided by extensions.
LOAD_PROC(eglGetNativeClientBufferANDROID,
PFNEGLGETNATIVECLIENTBUFFERANDROID);
ASSERT_NE(eglGetNativeClientBufferANDROID, nullptr);
LOAD_PROC(eglCreateImageKHR, PFNEGLCREATEIMAGEKHRPROC);
ASSERT_NE(eglCreateImageKHR, nullptr);
LOAD_PROC(glEGLImageTargetTexture2DOES,
PFNGLEGLIMAGETARGETTEXTURE2DOESPROC);
ASSERT_NE(glEGLImageTargetTexture2DOES, nullptr);
// Create a plain old one-dimensional FBO to render to.
GLuint fbo;
glGenFramebuffers(1, &fbo);
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
GLuint fbotex;
glGenTextures(1, &fbotex);
glBindTexture(GL_TEXTURE_2D, fbotex);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, kFramebufferWidth, 1, 0, GL_RGBA,
GL_UNSIGNED_BYTE, nullptr);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D, fbotex, 0);
ASSERT_EQ(glCheckFramebufferStatus(GL_FRAMEBUFFER), GL_FRAMEBUFFER_COMPLETE);
ASSERT_EQ(glGetError(), GL_NO_ERROR);
// Compile and link shaders.
int program = glCreateProgram();
int vshader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vshader, 1, &kSrgbVertexCode, nullptr);
glCompileShader(vshader);
glAttachShader(program, vshader);
int fshader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fshader, 1, &kSrgbFragmentCode, nullptr);
glCompileShader(fshader);
glAttachShader(program, fshader);
glLinkProgram(program);
int status;
glGetProgramiv(program, GL_LINK_STATUS, &status);
ASSERT_EQ(status, GL_TRUE);
glUseProgram(program);
ASSERT_EQ(glGetError(), GL_NO_ERROR);
// Filtering test.
LOGV("Expected value for NoSrgb = %8.8X", kExpectedMiddlePixel_NoSrgb);
LOGV("Expected value for Srgb = %8.8X", kExpectedMiddlePixel_LinearizeBeforeFiltering);
uint32_t middle_pixel;
// First do a sanity check with plain old pre-linearized textures.
testLinearMagnification(env, 0, &middle_pixel);
ASSERT_NEAR(middle_pixel, kExpectedMiddlePixel_NoSrgb, 1);
testLinearMagnification(env, SrgbFlag::kHardwareBuffer, &middle_pixel);
ASSERT_NEAR(middle_pixel, kExpectedMiddlePixel_NoSrgb, 1);
// Try a "normally allocated" OpenGL texture with an sRGB source format.
testLinearMagnification(env, SrgbFlag::kSrgbFormat, &middle_pixel);
ASSERT_NEAR(middle_pixel, kExpectedMiddlePixel_LinearizeBeforeFiltering, 1);
// Try EGL_EXT_image_gl_colorspace.
if (egl_colorspace_supported) {
testLinearMagnification(env, SrgbFlag::kHardwareBuffer | SrgbFlag::kEglColorspaceDefault, &middle_pixel);
ASSERT_NEAR(middle_pixel, kExpectedMiddlePixel_NoSrgb, 1);
testLinearMagnification(env, SrgbFlag::kHardwareBuffer | SrgbFlag::kEglColorspaceLinear, &middle_pixel);
ASSERT_NEAR(middle_pixel, kExpectedMiddlePixel_NoSrgb, 1);
testLinearMagnification(env, SrgbFlag::kHardwareBuffer | SrgbFlag::kEglColorspaceSrgb, &middle_pixel);
ASSERT_NEAR(middle_pixel, kExpectedMiddlePixel_LinearizeBeforeFiltering, 1);
}
// Blending test.
LOGV("Expected value for NoSrgb = %8.8X", kExpectedBlendedPixel_NoSrgb);
LOGV("Expected value for Srgb = %8.8X", kExpectedBlendedPixel_Srgb);
uint32_t final_color;
// First do a sanity check with plain old pre-linearized textures.
testFramebufferBlending(env, 0, &final_color);
ASSERT_NEAR(final_color, kExpectedBlendedPixel_NoSrgb, 1);
testFramebufferBlending(env, SrgbFlag::kHardwareBuffer, &final_color);
ASSERT_NEAR(final_color, kExpectedBlendedPixel_NoSrgb, 1);
// Try a "normally allocated" OpenGL texture with an sRGB source format.
testFramebufferBlending(env, SrgbFlag::kSrgbFormat, &final_color);
ASSERT_NEAR(final_color, kExpectedBlendedPixel_Srgb, 1);
// Try EGL_EXT_image_gl_colorspace.
if (egl_colorspace_supported) {
testFramebufferBlending(env, SrgbFlag::kHardwareBuffer | SrgbFlag::kEglColorspaceDefault, &final_color);
ASSERT_NEAR(final_color, kExpectedBlendedPixel_NoSrgb, 1);
testFramebufferBlending(env, SrgbFlag::kHardwareBuffer | SrgbFlag::kEglColorspaceLinear, &final_color);
ASSERT_NEAR(final_color, kExpectedBlendedPixel_NoSrgb, 1);
testFramebufferBlending(env, SrgbFlag::kHardwareBuffer | SrgbFlag::kEglColorspaceSrgb, &final_color);
ASSERT_NEAR(final_color, kExpectedBlendedPixel_Srgb, 1);
}
}