blob: ae1f315c3e41792404a59eb0d3d003ba1c50ecc5 [file] [log] [blame]
# Copyright 2016 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test lens shading and color uniformity with diffuser over camera."""
import logging
import math
import os.path
from mobly import test_runner
import numpy
import cv2
import its_base_test
import camera_properties_utils
import capture_request_utils
import image_processing_utils
import its_session_utils
_NAME = os.path.basename(__file__).split('.')[0]
_NSEC_TO_MSEC = 1E-6
# List to create NUM-1 blocks around the center block for sampling grid in image
_NUM_RADIUS = 8
_BLOCK_R = 1/2/(_NUM_RADIUS*2-1) # 'radius' of block (x/2 & y/2 in rel values)
_BLOCK_POSITION_LIST = numpy.arange(_BLOCK_R, 1/2, _BLOCK_R*2)
# Thresholds for PASS/FAIL
_THRESH_SHADING_CT = 0.9 # len shading allowance for center
_THRESH_SHADING_CN = 0.6 # len shading allowance for corner
_THRESH_SHADING_HIGH = 0.2 # max allowed % for patch to be brighter than center
_THRESH_UNIFORMITY = 0.2 # uniformity allowance
# cv2 drawing colors
_CV2_RED = (1, 0, 0) # blocks failed the test
_CV2_GREEN = (0, 0.7, 0.3) # blocks passed the test
def _calc_block_lens_shading_thresh_l(
block_center_x, block_center_y, center_luma, img_w, img_h, dist_max):
dist_to_img_center = math.sqrt(pow(abs(block_center_x-0.5)*img_w, 2) +
pow(abs(block_center_y-0.5)*img_h, 2))
return ((_THRESH_SHADING_CT - _THRESH_SHADING_CN) *
(1 - dist_to_img_center/dist_max) + _THRESH_SHADING_CN) * center_luma
def _calc_color_plane_ratios(img_rgb):
"""Calculate R/G and B/G ratios."""
img_g_plus_delta = img_rgb[:, :, 1] + 0.001 # in case G channel has 0 value.
img_r_g = img_rgb[:, :, 0] / img_g_plus_delta
img_b_g = img_rgb[:, :, 2] / img_g_plus_delta
return img_r_g, img_b_g
def _create_block_center_vals(block_center):
"""Create lists of x and y values for sub-block centers."""
num_sample = int(((1-block_center*2)/_BLOCK_R/2 + 1).item())
center_xs = numpy.concatenate(
(numpy.arange(block_center, 1-block_center+_BLOCK_R, _BLOCK_R*2),
block_center*numpy.ones((num_sample-1)),
(1-block_center)*numpy.ones((num_sample-1)),
numpy.arange(block_center, 1-block_center+_BLOCK_R, _BLOCK_R*2)))
center_ys = numpy.concatenate(
(block_center*numpy.ones(num_sample+1),
numpy.arange(block_center+_BLOCK_R*2, 1-block_center, _BLOCK_R*2),
numpy.arange(block_center+_BLOCK_R*2, 1-block_center, _BLOCK_R*2),
(1-block_center)*numpy.ones(num_sample+1)))
return zip(center_xs, center_ys)
def _assert_results(ls_test_failed, cu_test_failed, center_luma, ls_thresh_h):
"""Check the lens shading and color uniformity results."""
if ls_test_failed:
logging.error('Lens shading test summary')
logging.error('Center block average Y value: %.3f', center_luma)
logging.error('Blocks failed in the lens shading test:')
for block in ls_test_failed:
top, bottom, left, right = block['position']
logging.error('Block[top: %d, bottom: %d, left: %d, right: %d]; '
'avg Y value: %.3f; valid range: %.3f ~ %.3f', top, bottom,
left, right, block['val'], block['thresh_l'], ls_thresh_h)
if cu_test_failed:
logging.error('Color uniformity test summary')
logging.error('Valid color uniformity range: 0 ~ %.2f', _THRESH_UNIFORMITY)
logging.error('Areas that failed the color uniformity test:')
for rd in cu_test_failed:
logging.error('Radius position: %.3f; R/G uniformity: %.3f; B/G '
'uniformity: %.3f', rd['position'], rd['uniformity_r_g'],
rd['uniformity_b_g'])
if ls_test_failed:
raise AssertionError('Lens shading test failed.')
if cu_test_failed:
raise AssertionError('Color uniformity test failed.')
def _draw_legend(img, texts, text_org, font_scale, text_offset, color,
line_width):
"""Draw legend on an image.
Args:
img: Numpy float image array in RGB, with pixel values in [0,1].
texts: List of legends. Each element in the list is a line of legend.
text_org: Tuple of the bottom left corner of the text position in
pixels, horizontal and vertical.
font_scale: Float number. Font scale of the basic font size.
text_offset: Text line width in pixels.
color: Text color in rgb value.
line_width: Text line width in pixels.
"""
for text in texts:
cv2.putText(img, text, (text_org[0], text_org[1]),
cv2.FONT_HERSHEY_SIMPLEX, font_scale, color, line_width)
text_org[1] += text_offset
class LensShadingAndColorUniformityTest(its_base_test.ItsBaseTest):
"""Test lens shading correction and uniform scene is evenly distributed.
Test runs with a diffuser (manually) placed in front of the camera.
Performs this test on a YUV frame with auto 3A. Lens shading is evaluated
based on the Y channel. Measure the average Y value for each sample block
specified, and then determine PASS/FAIL by comparing with the center Y value.
Evaluates the color uniformity in R/G and B/G color space. At specified
radius of the image, the variance of R/G and B/G values need to be less than
a threshold in order to pass the test.
"""
def test_lens_shading_and_color_uniformity(self):
with its_session_utils.ItsSession(
device_id=self.dut.serial,
camera_id=self.camera_id,
hidden_physical_id=self.hidden_physical_id) as cam:
props = cam.get_camera_properties()
props = cam.override_with_hidden_physical_camera_props(props)
log_path = self.log_path
# Check SKIP conditions.
camera_properties_utils.skip_unless(
camera_properties_utils.ae_lock(props) and
camera_properties_utils.awb_lock(props))
if camera_properties_utils.read_3a(props):
# Converge 3A and get the estimates.
sens, exp, awb_gains, awb_xform, _ = cam.do_3a(
get_results=True, do_af=False, lock_ae=True, lock_awb=True)
logging.debug('AE sensitivity: %d, exp: %dms', sens, exp*_NSEC_TO_MSEC)
logging.debug('AWB gains: %s', str(awb_gains))
logging.debug('AWB transform: %s', str(awb_xform))
req = capture_request_utils.auto_capture_request()
w, h = capture_request_utils.get_available_output_sizes('yuv', props)[0]
out_surface = {'format': 'yuv', 'width': w, 'height': h}
cap = cam.do_capture(req, out_surface)
logging.debug('Captured YUV %dx%d', w, h)
# Get Y channel
img_y = image_processing_utils.convert_capture_to_planes(cap)[0]
image_processing_utils.write_image(img_y, '%s_y_plane.png' %
(os.path.join(log_path, _NAME)), True)
# Convert RGB image & calculate R/G, R/B ratioed images
img_rgb = image_processing_utils.convert_capture_to_rgb_image(cap)
img_r_g, img_b_g = _calc_color_plane_ratios(img_rgb)
# Make copies for images with legends and set legend parameters.
img_lens_shading = numpy.copy(img_rgb)
img_uniformity = numpy.copy(img_rgb)
line_width = max(2, int(max(h, w)/500)) # line width of legend
font_scale = line_width / 7.0 # font scale of the basic font size
font_line_width = int(line_width/2)
text_height = cv2.getTextSize('gf', cv2.FONT_HERSHEY_SIMPLEX,
font_scale, line_width)[0][1]
text_offset = int(text_height*1.5)
# Calculate center block average Y, R/G, and B/G values.
top = int((0.5-_BLOCK_R)*h)
bottom = int((0.5+_BLOCK_R)*h)
left = int((0.5-_BLOCK_R)*w)
right = int((0.5+_BLOCK_R)*w)
center_luma = numpy.mean(img_y[top:bottom, left:right])
center_r_g = numpy.mean(img_r_g[top:bottom, left:right])
center_b_g = numpy.mean(img_b_g[top:bottom, left:right])
# Add center patch legend to lens shading and color uniformity images
cv2.rectangle(img_lens_shading, (left, top), (right, bottom), _CV2_GREEN,
line_width)
_draw_legend(img_lens_shading, [f'Y: {center_luma}:.2f'],
[left+text_offset, bottom-text_offset],
font_scale, text_offset, _CV2_GREEN, font_line_width)
cv2.rectangle(img_uniformity, (left, top), (right, bottom), _CV2_GREEN,
line_width)
_draw_legend(img_uniformity,
[f'R/G: {center_r_g}:.2f', f'B/G: {center_b_g}:.2f'],
[left+text_offset, bottom-text_offset*2],
font_scale, text_offset, _CV2_GREEN, font_line_width)
# Evaluate Y, R/G, and B/G for each block
ls_test_failed = []
cu_test_failed = []
ls_thresh_h = center_luma * (1 + _THRESH_SHADING_HIGH)
dist_max = math.sqrt(pow(w, 2)+pow(h, 2))/2
for position in _BLOCK_POSITION_LIST:
# Create sample block centers' positions in all directions around center
block_centers = _create_block_center_vals(position)
blocks_info = []
max_r_g = 0
min_r_g = float('inf')
max_b_g = 0
min_b_g = float('inf')
for block_center_x, block_center_y in block_centers:
top = int((block_center_y-_BLOCK_R)*h)
bottom = int((block_center_y+_BLOCK_R)*h)
left = int((block_center_x-_BLOCK_R)*w)
right = int((block_center_x+_BLOCK_R)*w)
# Compute block average values and running mins and maxes
block_y = numpy.mean(img_y[top:bottom, left:right])
block_r_g = numpy.mean(img_r_g[top:bottom, left:right])
block_b_g = numpy.mean(img_b_g[top:bottom, left:right])
max_r_g = max(max_r_g, block_r_g)
min_r_g = min(min_r_g, block_r_g)
max_b_g = max(max_b_g, block_b_g)
min_b_g = min(min_b_g, block_b_g)
blocks_info.append({'position': [top, bottom, left, right],
'block_r_g': block_r_g,
'block_b_g': block_b_g})
# Check lens shading
ls_thresh_l = _calc_block_lens_shading_thresh_l(
block_center_x, block_center_y, center_luma, w, h, dist_max)
if not ls_thresh_h > block_y > ls_thresh_l:
ls_test_failed.append({'position': [top, bottom, left, right],
'val': block_y,
'thresh_l': ls_thresh_l})
legend_color = _CV2_RED
else:
legend_color = _CV2_GREEN
# Overlay legend rectangle on lens shading image.
text_bottom = bottom - text_offset
cv2.rectangle(img_lens_shading, (left, top), (right, bottom),
legend_color, line_width)
_draw_legend(img_lens_shading, ['Y: %.2f' % block_y],
[left+text_offset, text_bottom], font_scale,
text_offset, legend_color, int(line_width/2))
# Check color uniformity
uniformity_r_g = (max_r_g-min_r_g) / center_r_g
uniformity_b_g = (max_b_g-min_b_g) / center_b_g
if (uniformity_r_g > _THRESH_UNIFORMITY or
uniformity_b_g > _THRESH_UNIFORMITY):
cu_test_failed.append({'position': position,
'uniformity_r_g': uniformity_r_g,
'uniformity_b_g': uniformity_b_g})
legend_color = _CV2_RED
else:
legend_color = _CV2_GREEN
# Overlay legend blocks on uniformity image based on PASS/FAIL above.
for block in blocks_info:
top, bottom, left, right = block['position']
cv2.rectangle(img_uniformity, (left, top), (right, bottom),
legend_color, line_width)
texts = ['R/G: %.2f' % block['block_r_g'],
'B/G: %.2f' % block['block_b_g']]
text_bottom = bottom - text_offset * 2
_draw_legend(img_uniformity, texts,
[left+text_offset, text_bottom], font_scale,
text_offset, legend_color, font_line_width)
# Save images
image_processing_utils.write_image(
img_uniformity, '%s_color_uniformity_result.png' %
(os.path.join(log_path, _NAME)), True)
image_processing_utils.write_image(
img_lens_shading, '%s_lens_shading_result.png' %
(os.path.join(log_path, _NAME)), True)
# Assert results
_assert_results(ls_test_failed, cu_test_failed, center_luma, ls_thresh_h)
if __name__ == '__main__':
test_runner.main()