blob: e51f4fabecc84fe52995c0f08c10230bf18221c8 [file] [log] [blame]
# Copyright 2014 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Verifies EV compensation is applied."""
import logging
import os.path
import matplotlib
from matplotlib import pylab
from mobly import test_runner
import numpy as np
import its_base_test
import camera_properties_utils
import capture_request_utils
import image_processing_utils
import its_session_utils
LINEAR_TONEMAP_CURVE = [0.0, 0.0, 1.0, 1.0]
LOCKED = 3
LUMA_DELTA_THRESH = 0.05
LUMA_LOCKED_TOL = 0.05
NAME = os.path.splitext(os.path.basename(__file__))[0]
PATCH_H = 0.1 # center 10%
PATCH_W = 0.1
PATCH_X = 0.5 - PATCH_W/2
PATCH_Y = 0.5 - PATCH_H/2
THRESH_CONVERGE_FOR_EV = 8 # AE must converge within this num auto reqs for EV
YUV_FULL_SCALE = 255.0
YUV_SAT_MIN = 250.0
YUV_SAT_TOL = 3.0
def create_request_with_ev(ev):
req = capture_request_utils.auto_capture_request()
req['android.control.aeExposureCompensation'] = ev
req['android.control.aeLock'] = True
# Use linear tonemap to avoid brightness being impacted by tone curves.
req['android.tonemap.mode'] = 0
req['android.tonemap.curve'] = {'red': LINEAR_TONEMAP_CURVE,
'green': LINEAR_TONEMAP_CURVE,
'blue': LINEAR_TONEMAP_CURVE}
return req
def extract_luma_from_capture(cap):
"""Extract luma from capture."""
y = image_processing_utils.convert_capture_to_planes(cap)[0]
patch = image_processing_utils.get_image_patch(
y, PATCH_X, PATCH_Y, PATCH_W, PATCH_H)
luma = image_processing_utils.compute_image_means(patch)[0]
return luma
def create_ev_comp_changes(props):
"""Create the ev compensation steps and shifts from control params."""
ev_compensation_range = props['android.control.aeCompensationRange']
range_min = ev_compensation_range[0]
range_max = ev_compensation_range[1]
ev_per_step = capture_request_utils.rational_to_float(
props['android.control.aeCompensationStep'])
logging.debug('ev_step_size_in_stops: %d', ev_per_step)
steps_per_ev = int(round(1.0 / ev_per_step))
ev_steps = range(range_min, range_max + 1, steps_per_ev)
ev_shifts = [pow(2, step * ev_per_step) for step in ev_steps]
return ev_steps, ev_shifts
class EvCompensationAdvancedTest(its_base_test.ItsBaseTest):
"""Tests that EV compensation is applied."""
def test_ev_compensation_advanced(self):
logging.debug('Starting %s', NAME)
with its_session_utils.ItsSession(
device_id=self.dut.serial,
camera_id=self.camera_id,
hidden_physical_id=self.hidden_physical_id) as cam:
props = cam.get_camera_properties()
props = cam.override_with_hidden_physical_camera_props(props)
log_path = self.log_path
# check SKIP conditions
camera_properties_utils.skip_unless(
camera_properties_utils.ev_compensation(props) and
camera_properties_utils.manual_sensor(props) and
camera_properties_utils.manual_post_proc(props) and
camera_properties_utils.per_frame_control(props))
# Load chart for scene
its_session_utils.load_scene(
cam, props, self.scene, self.tablet, self.chart_distance)
# Create ev compensation changes
ev_steps, ev_shifts = create_ev_comp_changes(props)
# Converge 3A, and lock AE once converged. skip AF trigger as
# dark/bright scene could make AF convergence fail and this test
# doesn't care the image sharpness.
mono_camera = camera_properties_utils.mono_camera(props)
cam.do_3a(ev_comp=0, lock_ae=True, do_af=False, mono_camera=mono_camera)
# Create requests and capture
largest_yuv = capture_request_utils.get_largest_yuv_format(props)
match_ar = (largest_yuv['width'], largest_yuv['height'])
fmt = capture_request_utils.get_smallest_yuv_format(
props, match_ar=match_ar)
lumas = []
for ev in ev_steps:
# Capture a single shot with the same EV comp and locked AE.
req = create_request_with_ev(ev)
caps = cam.do_capture([req]*THRESH_CONVERGE_FOR_EV, fmt)
for cap in caps:
if cap['metadata']['android.control.aeState'] == LOCKED:
lumas.append(extract_luma_from_capture(cap))
break
assert cap['metadata']['android.control.aeState'] == LOCKED
logging.debug('lumas in AE locked captures: %s', str(lumas))
i_mid = len(ev_steps) // 2
luma_normal = lumas[i_mid] / ev_shifts[i_mid]
expected_lumas = [min(1.0, luma_normal*shift) for shift in ev_shifts]
# Create plot
pylab.figure(NAME)
pylab.plot(ev_steps, lumas, '-ro', label='measured', alpha=0.7)
pylab.plot(ev_steps, expected_lumas, '-bo', label='expected', alpha=0.7)
pylab.title(NAME)
pylab.xlabel('EV Compensation')
pylab.ylabel('Mean Luma (Normalized)')
pylab.legend(loc='lower right', numpoints=1, fancybox=True)
matplotlib.pyplot.savefig(
'%s_plot_means.png' % os.path.join(log_path, NAME))
luma_diffs = [expected_lumas[i]-lumas[i] for i in range(len(ev_steps))]
max_diff = max(abs(i) for i in luma_diffs)
avg_diff = abs(np.array(luma_diffs)).mean()
logging.debug(
'Max delta between modeled and measured lumas: %.4f', max_diff)
logging.debug(
'Avg delta between modeled and measured lumas: %.4f', avg_diff)
assert max_diff < LUMA_DELTA_THRESH, 'diff: %.3f, THRESH: %.2f' % (
max_diff, LUMA_DELTA_THRESH)
if __name__ == '__main__':
test_runner.main()