blob: f0220dfdbd5006071e2acc051761ca19f3babf3f [file] [log] [blame]
Clemenz Portmann812236f2016-07-19 17:51:44 -07001# Copyright 2016 The Android Open Source Project
2#
3# Licensed under the Apache License, Version 2.0 (the 'License');
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an 'AS IS' BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14
15import os
16import its.caps
17import its.device
18import its.image
19import its.objects
20import numpy as np
21
22NUM_TRYS = 2
23NUM_STEPS = 6
24SHARPNESS_TOL = 10 # percentage
25POSITION_TOL = 10 # percentage
26FRAME_TIME_TOL = 10 # ms
27VGA_WIDTH = 640
28VGA_HEIGHT = 480
29NAME = os.path.basename(__file__).split('.')[0]
Clemenz Portmann1475df32016-10-06 07:59:11 -070030CHART_FILE = os.path.join(os.environ['CAMERA_ITS_TOP'], 'pymodules', 'its',
31 'test_images', 'ISO12233.png')
32CHART_HEIGHT = 13.5 # cm
33CHART_DISTANCE = 30.0 # cm
34CHART_SCALE_START = 0.65
35CHART_SCALE_STOP = 1.35
36CHART_SCALE_STEP = 0.025
Clemenz Portmann812236f2016-07-19 17:51:44 -070037
38
39def test_lens_position(cam, props, fmt, sensitivity, exp, af_fd):
40 """Return fd, sharpness, lens state of the output images.
41
42 Args:
43 cam: An open device session.
44 props: Properties of cam
45 fmt: dict; capture format
46 sensitivity: Sensitivity for the 3A request as defined in
47 android.sensor.sensitivity
48 exp: Exposure time for the 3A request as defined in
49 android.sensor.exposureTime
50 af_fd: Focus distance for the 3A request as defined in
51 android.lens.focusDistance
52
53 Returns:
54 Dictionary of results for different focal distance captures
55 with static lens positions and moving lens positions
56 d_static, d_moving
57 """
58
Clemenz Portmann1475df32016-10-06 07:59:11 -070059 # initialize chart class
60 chart = its.image.Chart(CHART_FILE, CHART_HEIGHT, CHART_DISTANCE,
61 CHART_SCALE_START, CHART_SCALE_STOP,
62 CHART_SCALE_STEP)
63
64 # find chart location
65 xnorm, ynorm, wnorm, hnorm = chart.locate(cam, props, fmt, sensitivity,
66 exp, af_fd)
67
68 # initialize variables and take data sets
Clemenz Portmann812236f2016-07-19 17:51:44 -070069 data_static = {}
70 data_moving = {}
71 white_level = int(props['android.sensor.info.whiteLevel'])
72 min_fd = props['android.lens.info.minimumFocusDistance']
73 hyperfocal = props['android.lens.info.hyperfocalDistance']
74 fds_f = np.arange(hyperfocal, min_fd, (min_fd-hyperfocal)/(NUM_STEPS-1))
75 fds_f = np.append(fds_f, min_fd)
76 fds_f = fds_f.tolist()
77 fds_b = list(reversed(fds_f))
78 fds_fb = list(fds_f)
79 fds_fb.extend(fds_b) # forward and back
80 # take static data set
81 for i, fd in enumerate(fds_fb):
82 req = its.objects.manual_capture_request(sensitivity, exp)
83 req['android.lens.focusDistance'] = fd
84 cap = its.image.stationary_lens_cap(cam, req, fmt)
85 data = {'fd': fds_fb[i]}
86 data['loc'] = cap['metadata']['android.lens.focusDistance']
87 print ' focus distance (diopters): %.3f' % data['fd']
88 print ' current lens location (diopters): %.3f' % data['loc']
89 y, _, _ = its.image.convert_capture_to_planes(cap, props)
90 chart = its.image.normalize_img(its.image.get_image_patch(y,
91 xnorm, ynorm,
92 wnorm, hnorm))
93 its.image.write_image(chart, '%s_stat_i=%d_chart.jpg' % (NAME, i))
94 data['sharpness'] = white_level*its.image.compute_image_sharpness(chart)
95 print 'Chart sharpness: %.1f\n' % data['sharpness']
96 data_static[i] = data
97 # take moving data set
98 reqs = []
99 for i, fd in enumerate(fds_f):
100 reqs.append(its.objects.manual_capture_request(sensitivity, exp))
101 reqs[i]['android.lens.focusDistance'] = fd
102 cap = cam.do_capture(reqs, fmt)
103 for i, _ in enumerate(reqs):
104 data = {'fd': fds_f[i]}
105 data['loc'] = cap[i]['metadata']['android.lens.focusDistance']
106 data['lens_moving'] = (cap[i]['metadata']['android.lens.state']
107 == 1)
108 timestamp = cap[i]['metadata']['android.sensor.timestamp'] * 1E-6
109 if i == 0:
110 timestamp_init = timestamp
111 timestamp -= timestamp_init
112 data['timestamp'] = timestamp
113 print ' focus distance (diopters): %.3f' % data['fd']
114 print ' current lens location (diopters): %.3f' % data['loc']
115 y, _, _ = its.image.convert_capture_to_planes(cap[i], props)
116 chart = its.image.normalize_img(its.image.get_image_patch(y,
117 xnorm, ynorm,
118 wnorm, hnorm))
119 its.image.write_image(chart, '%s_move_i=%d_chart.jpg' % (NAME, i))
120 data['sharpness'] = white_level*its.image.compute_image_sharpness(chart)
121 print 'Chart sharpness: %.1f\n' % data['sharpness']
122 data_moving[i] = data
123 return data_static, data_moving
124
125
126def main():
127 """Test if focus position is properly reported for moving lenses."""
128
129 print '\nStarting test_lens_position.py'
130 with its.device.ItsSession() as cam:
131 props = cam.get_camera_properties()
132 its.caps.skip_unless(not its.caps.fixed_focus(props))
133 its.caps.skip_unless(its.caps.lens_calibrated(props))
134 fmt = {'format': 'yuv', 'width': VGA_WIDTH, 'height': VGA_HEIGHT}
135
136 # Get proper sensitivity, exposure time, and focus distance with 3A.
137 s, e, _, _, fd = cam.do_3a(get_results=True)
138
139 # Get sharpness for each focal distance
140 d_stat, d_move = test_lens_position(cam, props, fmt, s, e, fd)
141 print 'Lens stationary'
142 for k in sorted(d_stat):
143 print ('i: %d\tfd: %.3f\tlens location (diopters): %.3f \t'
144 'sharpness: %.1f' % (k, d_stat[k]['fd'],
145 d_stat[k]['loc'],
146 d_stat[k]['sharpness']))
147 print 'Lens moving'
148 for k in sorted(d_move):
149 print ('i: %d\tfd: %.3f\tlens location (diopters): %.3f \t'
150 'sharpness: %.1f \tlens_moving: %r \t'
151 'timestamp: %.1fms' % (k, d_move[k]['fd'],
152 d_move[k]['loc'],
153 d_move[k]['sharpness'],
154 d_move[k]['lens_moving'],
155 d_move[k]['timestamp']))
156
157 # assert static reported location/sharpness is close
158 print 'Asserting static lens locations/sharpness are similar'
159 for i in range(len(d_stat)/2):
160 j = 2 * NUM_STEPS - 1 - i
161 print (' lens position: %.3f'
162 % d_stat[i]['fd'])
163 assert np.isclose(d_stat[i]['loc'], d_stat[i]['fd'],
164 rtol=POSITION_TOL/100.0)
165 assert np.isclose(d_stat[i]['loc'], d_stat[j]['loc'],
166 rtol=POSITION_TOL/100.0)
167 assert np.isclose(d_stat[i]['sharpness'], d_stat[j]['sharpness'],
168 rtol=SHARPNESS_TOL/100.0)
169 # assert moving frames approximately consecutive with even distribution
170 print 'Asserting moving frames are consecutive'
171 times = [v['timestamp'] for v in d_move.itervalues()]
172 diffs = np.gradient(times)
173 assert np.isclose(np.amin(diffs), np.amax(diffs), atol=FRAME_TIME_TOL)
174 # assert reported location/sharpness is correct in moving frames
175 print 'Asserting moving lens locations/sharpness are similar'
176 for i in range(len(d_move)):
177 print ' lens position: %.3f' % d_stat[i]['fd']
178 assert np.isclose(d_stat[i]['loc'], d_move[i]['loc'],
179 rtol=POSITION_TOL)
180 if d_move[i]['lens_moving'] and i > 0:
181 if d_stat[i]['sharpness'] > d_stat[i-1]['sharpness']:
182 assert (d_stat[i]['sharpness']*(1.0+SHARPNESS_TOL) >
183 d_move[i]['sharpness'] >
184 d_stat[i-1]['sharpness']*(1.0-SHARPNESS_TOL))
185 else:
186 assert (d_stat[i-1]['sharpness']*(1.0+SHARPNESS_TOL) >
187 d_move[i]['sharpness'] >
188 d_stat[i]['sharpness']*(1.0-SHARPNESS_TOL))
189 elif not d_move[i]['lens_moving']:
190 assert np.isclose(d_stat[i]['sharpness'],
191 d_move[i]['sharpness'], rtol=SHARPNESS_TOL)
192 else:
193 raise its.error.Error('Lens is moving at frame 0!')
194
195if __name__ == '__main__':
196 main()
197