blob: a5ed85dd18595062c76be9db763b73f27627e86f [file] [log] [blame]
Ruben Brunk370e2432014-10-14 18:33:23 -07001# Copyright 2013 The Android Open Source Project
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7# http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14
15import its.image
16import its.caps
17import its.device
18import its.objects
19import its.target
20import numpy
21import math
Yin-Chia Yeh29700122016-10-10 10:54:07 -070022from matplotlib import pylab
Ruben Brunk370e2432014-10-14 18:33:23 -070023import os.path
24import matplotlib
25import matplotlib.pyplot
26
Clemenz Portmann231c2962016-12-15 13:55:33 -080027NAME = os.path.basename(__file__).split('.')[0]
28RESIDUAL_THRESHOLD = 0.0003 # approximately each sample is off by 2/255
29# The HAL3.2 spec requires that curves up to 64 control points in length
30# must be supported.
31L = 64
32LM1 = float(L-1)
33
34
Ruben Brunk370e2432014-10-14 18:33:23 -070035def main():
36 """Test that device processing can be inverted to linear pixels.
37
38 Captures a sequence of shots with the device pointed at a uniform
39 target. Attempts to invert all the ISP processing to get back to
40 linear R,G,B pixel data.
41 """
Ruben Brunk370e2432014-10-14 18:33:23 -070042 gamma_lut = numpy.array(
Clemenz Portmann231c2962016-12-15 13:55:33 -080043 sum([[i/LM1, math.pow(i/LM1, 1/2.2)] for i in xrange(L)], []))
Ruben Brunk370e2432014-10-14 18:33:23 -070044 inv_gamma_lut = numpy.array(
Clemenz Portmann231c2962016-12-15 13:55:33 -080045 sum([[i/LM1, math.pow(i/LM1, 2.2)] for i in xrange(L)], []))
Ruben Brunk370e2432014-10-14 18:33:23 -070046
47 with its.device.ItsSession() as cam:
48 props = cam.get_camera_properties()
Chien-Yu Chen34fa85d2014-10-22 16:58:08 -070049 its.caps.skip_unless(its.caps.compute_target_exposure(props) and
50 its.caps.per_frame_control(props))
Ruben Brunk370e2432014-10-14 18:33:23 -070051
Clemenz Portmann231c2962016-12-15 13:55:33 -080052 e, s = its.target.get_target_exposure_combos(cam)['midSensitivity']
Ruben Brunk370e2432014-10-14 18:33:23 -070053 s /= 2
54 sens_range = props['android.sensor.info.sensitivityRange']
55 sensitivities = [s*1.0/3.0, s*2.0/3.0, s, s*4.0/3.0, s*5.0/3.0]
56 sensitivities = [s for s in sensitivities
Clemenz Portmann231c2962016-12-15 13:55:33 -080057 if s > sens_range[0] and s < sens_range[1]]
Ruben Brunk370e2432014-10-14 18:33:23 -070058
59 req = its.objects.manual_capture_request(0, e)
Clemenz Portmann231c2962016-12-15 13:55:33 -080060 req['android.blackLevel.lock'] = True
61 req['android.tonemap.mode'] = 0
62 req['android.tonemap.curveRed'] = gamma_lut.tolist()
63 req['android.tonemap.curveGreen'] = gamma_lut.tolist()
64 req['android.tonemap.curveBlue'] = gamma_lut.tolist()
Ruben Brunk370e2432014-10-14 18:33:23 -070065
66 r_means = []
67 g_means = []
68 b_means = []
69
70 for sens in sensitivities:
Clemenz Portmann231c2962016-12-15 13:55:33 -080071 req['android.sensor.sensitivity'] = sens
Ruben Brunk370e2432014-10-14 18:33:23 -070072 cap = cam.do_capture(req)
73 img = its.image.convert_capture_to_rgb_image(cap)
74 its.image.write_image(
Clemenz Portmann231c2962016-12-15 13:55:33 -080075 img, '%s_sens=%04d.jpg' % (NAME, sens))
Ruben Brunk370e2432014-10-14 18:33:23 -070076 img = its.image.apply_lut_to_image(img, inv_gamma_lut[1::2] * LM1)
77 tile = its.image.get_image_patch(img, 0.45, 0.45, 0.1, 0.1)
78 rgb_means = its.image.compute_image_means(tile)
79 r_means.append(rgb_means[0])
80 g_means.append(rgb_means[1])
81 b_means.append(rgb_means[2])
82
Clemenz Portmann231c2962016-12-15 13:55:33 -080083 pylab.title(NAME)
84 pylab.plot(sensitivities, r_means, '-ro')
85 pylab.plot(sensitivities, g_means, '-go')
86 pylab.plot(sensitivities, b_means, '-bo')
87 pylab.xlim([sens_range[0], sens_range[1]/2])
88 pylab.ylim([0, 1])
89 pylab.xlabel('sensitivity(ISO)')
90 pylab.ylabel('RGB avg [0, 1]')
91 matplotlib.pyplot.savefig('%s_plot_means.png' % (NAME))
Ruben Brunk370e2432014-10-14 18:33:23 -070092
93 # Check that each plot is actually linear.
94 for means in [r_means, g_means, b_means]:
Clemenz Portmann231c2962016-12-15 13:55:33 -080095 line, residuals, _, _, _ = numpy.polyfit(range(len(sensitivities)),
96 means, 1, full=True)
97 print 'Line: m=%f, b=%f, resid=%f'%(line[0], line[1], residuals[0])
98 assert residuals[0] < RESIDUAL_THRESHOLD
Ruben Brunk370e2432014-10-14 18:33:23 -070099
100if __name__ == '__main__':
101 main()
102