| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* |
| * Inlined native functions. These definitions replace interpreted or |
| * native implementations at runtime; "intrinsic" might be a better word. |
| */ |
| #include "Dalvik.h" |
| |
| #include <math.h> |
| |
| #ifdef HAVE__MEMCMP16 |
| /* hand-coded assembly implementation, available on some platforms */ |
| //#warning "trying memcmp16" |
| //#define CHECK_MEMCMP16 |
| /* "count" is in 16-bit units */ |
| extern u4 __memcmp16(const u2* s0, const u2* s1, size_t count); |
| #endif |
| |
| /* |
| * Some notes on "inline" functions. |
| * |
| * These are NOT simply native implementations. A full method definition |
| * must still be provided. Depending on the flags passed into the VM |
| * at runtime, the original or inline version may be selected by the |
| * DEX optimizer. |
| * |
| * PLEASE DO NOT use this as the default location for native methods. |
| * The difference between this and an "internal native" static method |
| * call on a 200MHz ARM 9 is roughly 370ns vs. 700ns. The code here |
| * "secretly replaces" the other method, so you can't avoid having two |
| * implementations. Since the DEX optimizer mode can't be known ahead |
| * of time, both implementations must be correct and complete. |
| * |
| * The only stuff that really needs to be here are methods that |
| * are high-volume or must be low-overhead, e.g. certain String/Math |
| * methods and some java.util.concurrent.atomic operations. |
| * |
| * Normally, a class is loaded and initialized the first time a static |
| * method is invoked. This property is NOT preserved here. If you need |
| * to access a static field in a class, you must ensure initialization |
| * yourself (cheap/easy way is to check the resolved-methods table, and |
| * resolve the method if it hasn't been). |
| * |
| * DO NOT replace "synchronized" methods. We do not support method |
| * synchronization here. |
| * |
| * Remember that these functions are executing while the thread is in |
| * the "RUNNING" state, not the "NATIVE" state. If you perform a blocking |
| * operation you can stall the entire VM if the GC or debugger wants to |
| * suspend the thread. Since these are arguably native implementations |
| * rather than VM internals, prefer NATIVE to VMWAIT if you want to change |
| * the thread state. |
| * |
| * Always write results to 32-bit or 64-bit fields in "pResult", e.g. do |
| * not write boolean results to pResult->z. The interpreter expects |
| * 32 or 64 bits to be set. |
| * |
| * Inline op methods return "false" if an exception was thrown, "true" if |
| * everything went well. |
| * |
| * DO NOT provide implementations of methods that can be overridden by a |
| * subclass, as polymorphism does not work correctly. For safety you should |
| * only provide inline functions for classes/methods declared "final". |
| * |
| * It's best to avoid inlining the overridden version of a method. For |
| * example, String.hashCode() is inherited from Object.hashCode(). Code |
| * calling String.hashCode() through an Object reference will run the |
| * "slow" version, while calling it through a String reference gets |
| * the inlined version. It's best to have just one version unless there |
| * are clear performance gains. |
| * |
| * Because the actual method is not called, debugger breakpoints on these |
| * methods will not happen. (TODO: have the code here find the original |
| * method and call it when the debugger is active.) Additional steps have |
| * been taken to allow method profiling to produce correct results. |
| */ |
| |
| |
| /* |
| * =========================================================================== |
| * org.apache.harmony.dalvik.NativeTestTarget |
| * =========================================================================== |
| */ |
| |
| /* |
| * public static void emptyInlineMethod |
| * |
| * This exists only for benchmarks. |
| */ |
| static bool org_apache_harmony_dalvik_NativeTestTarget_emptyInlineMethod( |
| u4 arg0, u4 arg1, u4 arg2, u4 arg3, JValue* pResult) |
| { |
| // do nothing |
| return true; |
| } |
| |
| |
| /* |
| * =========================================================================== |
| * java.lang.String |
| * =========================================================================== |
| */ |
| |
| /* |
| * public char charAt(int index) |
| */ |
| static bool javaLangString_charAt(u4 arg0, u4 arg1, u4 arg2, u4 arg3, |
| JValue* pResult) |
| { |
| int count, offset; |
| ArrayObject* chars; |
| |
| /* null reference check on "this" */ |
| if (!dvmValidateObject((Object*) arg0)) |
| return false; |
| |
| //LOGI("String.charAt this=0x%08x index=%d\n", arg0, arg1); |
| count = dvmGetFieldInt((Object*) arg0, gDvm.offJavaLangString_count); |
| if ((s4) arg1 < 0 || (s4) arg1 >= count) { |
| dvmThrowException("Ljava/lang/StringIndexOutOfBoundsException;", NULL); |
| return false; |
| } else { |
| offset = dvmGetFieldInt((Object*) arg0, gDvm.offJavaLangString_offset); |
| chars = (ArrayObject*) |
| dvmGetFieldObject((Object*) arg0, gDvm.offJavaLangString_value); |
| |
| pResult->i = ((const u2*) chars->contents)[arg1 + offset]; |
| return true; |
| } |
| } |
| |
| #ifdef CHECK_MEMCMP16 |
| /* |
| * Utility function when we're evaluating alternative implementations. |
| */ |
| static void badMatch(StringObject* thisStrObj, StringObject* compStrObj, |
| int expectResult, int newResult, const char* compareType) |
| { |
| ArrayObject* thisArray; |
| ArrayObject* compArray; |
| const char* thisStr; |
| const char* compStr; |
| int thisOffset, compOffset, thisCount, compCount; |
| |
| thisCount = |
| dvmGetFieldInt((Object*) thisStrObj, gDvm.offJavaLangString_count); |
| compCount = |
| dvmGetFieldInt((Object*) compStrObj, gDvm.offJavaLangString_count); |
| thisOffset = |
| dvmGetFieldInt((Object*) thisStrObj, gDvm.offJavaLangString_offset); |
| compOffset = |
| dvmGetFieldInt((Object*) compStrObj, gDvm.offJavaLangString_offset); |
| thisArray = (ArrayObject*) |
| dvmGetFieldObject((Object*) thisStrObj, gDvm.offJavaLangString_value); |
| compArray = (ArrayObject*) |
| dvmGetFieldObject((Object*) compStrObj, gDvm.offJavaLangString_value); |
| |
| thisStr = dvmCreateCstrFromString(thisStrObj); |
| compStr = dvmCreateCstrFromString(compStrObj); |
| |
| LOGE("%s expected %d got %d\n", compareType, expectResult, newResult); |
| LOGE(" this (o=%d l=%d) '%s'\n", thisOffset, thisCount, thisStr); |
| LOGE(" comp (o=%d l=%d) '%s'\n", compOffset, compCount, compStr); |
| dvmPrintHexDumpEx(ANDROID_LOG_INFO, LOG_TAG, |
| ((const u2*) thisArray->contents) + thisOffset, thisCount*2, |
| kHexDumpLocal); |
| dvmPrintHexDumpEx(ANDROID_LOG_INFO, LOG_TAG, |
| ((const u2*) compArray->contents) + compOffset, compCount*2, |
| kHexDumpLocal); |
| dvmAbort(); |
| } |
| #endif |
| |
| /* |
| * public int compareTo(String s) |
| */ |
| static bool javaLangString_compareTo(u4 arg0, u4 arg1, u4 arg2, u4 arg3, |
| JValue* pResult) |
| { |
| /* |
| * Null reference check on "this". Normally this is performed during |
| * the setup of the virtual method call. We need to do it before |
| * anything else. While we're at it, check out the other string, |
| * which must also be non-null. |
| */ |
| if (!dvmValidateObject((Object*) arg0) || |
| !dvmValidateObject((Object*) arg1)) |
| { |
| return false; |
| } |
| |
| /* quick test for comparison with itself */ |
| if (arg0 == arg1) { |
| pResult->i = 0; |
| return true; |
| } |
| |
| /* |
| * This would be simpler and faster if we promoted StringObject to |
| * a full representation, lining up the C structure fields with the |
| * actual object fields. |
| */ |
| int thisCount, thisOffset, compCount, compOffset; |
| ArrayObject* thisArray; |
| ArrayObject* compArray; |
| const u2* thisChars; |
| const u2* compChars; |
| int i, minCount, countDiff; |
| |
| thisCount = dvmGetFieldInt((Object*) arg0, gDvm.offJavaLangString_count); |
| compCount = dvmGetFieldInt((Object*) arg1, gDvm.offJavaLangString_count); |
| countDiff = thisCount - compCount; |
| minCount = (countDiff < 0) ? thisCount : compCount; |
| thisOffset = dvmGetFieldInt((Object*) arg0, gDvm.offJavaLangString_offset); |
| compOffset = dvmGetFieldInt((Object*) arg1, gDvm.offJavaLangString_offset); |
| thisArray = (ArrayObject*) |
| dvmGetFieldObject((Object*) arg0, gDvm.offJavaLangString_value); |
| compArray = (ArrayObject*) |
| dvmGetFieldObject((Object*) arg1, gDvm.offJavaLangString_value); |
| thisChars = ((const u2*) thisArray->contents) + thisOffset; |
| compChars = ((const u2*) compArray->contents) + compOffset; |
| |
| #ifdef HAVE__MEMCMP16 |
| /* |
| * Use assembly version, which returns the difference between the |
| * characters. The annoying part here is that 0x00e9 - 0xffff != 0x00ea, |
| * because the interpreter converts the characters to 32-bit integers |
| * *without* sign extension before it subtracts them (which makes some |
| * sense since "char" is unsigned). So what we get is the result of |
| * 0x000000e9 - 0x0000ffff, which is 0xffff00ea. |
| */ |
| int otherRes = __memcmp16(thisChars, compChars, minCount); |
| # ifdef CHECK_MEMCMP16 |
| for (i = 0; i < minCount; i++) { |
| if (thisChars[i] != compChars[i]) { |
| pResult->i = (s4) thisChars[i] - (s4) compChars[i]; |
| if (pResult->i != otherRes) { |
| badMatch((StringObject*) arg0, (StringObject*) arg1, |
| pResult->i, otherRes, "compareTo"); |
| } |
| return true; |
| } |
| } |
| # endif |
| if (otherRes != 0) { |
| pResult->i = otherRes; |
| return true; |
| } |
| |
| #else |
| /* |
| * Straightforward implementation, examining 16 bits at a time. Compare |
| * the characters that overlap, and if they're all the same then return |
| * the difference in lengths. |
| */ |
| for (i = 0; i < minCount; i++) { |
| if (thisChars[i] != compChars[i]) { |
| pResult->i = (s4) thisChars[i] - (s4) compChars[i]; |
| return true; |
| } |
| } |
| #endif |
| |
| pResult->i = countDiff; |
| return true; |
| } |
| |
| /* |
| * public boolean equals(Object anObject) |
| */ |
| static bool javaLangString_equals(u4 arg0, u4 arg1, u4 arg2, u4 arg3, |
| JValue* pResult) |
| { |
| /* |
| * Null reference check on "this". |
| */ |
| if (!dvmValidateObject((Object*) arg0)) |
| return false; |
| |
| /* quick test for comparison with itself */ |
| if (arg0 == arg1) { |
| pResult->i = true; |
| return true; |
| } |
| |
| /* |
| * See if the other object is also a String. |
| * |
| * str.equals(null) is expected to return false, presumably based on |
| * the results of the instanceof test. |
| */ |
| if (arg1 == 0 || ((Object*) arg0)->clazz != ((Object*) arg1)->clazz) { |
| pResult->i = false; |
| return true; |
| } |
| |
| /* |
| * This would be simpler and faster if we promoted StringObject to |
| * a full representation, lining up the C structure fields with the |
| * actual object fields. |
| */ |
| int thisCount, thisOffset, compCount, compOffset; |
| ArrayObject* thisArray; |
| ArrayObject* compArray; |
| const u2* thisChars; |
| const u2* compChars; |
| int i; |
| |
| /* quick length check */ |
| thisCount = dvmGetFieldInt((Object*) arg0, gDvm.offJavaLangString_count); |
| compCount = dvmGetFieldInt((Object*) arg1, gDvm.offJavaLangString_count); |
| if (thisCount != compCount) { |
| pResult->i = false; |
| return true; |
| } |
| |
| thisOffset = dvmGetFieldInt((Object*) arg0, gDvm.offJavaLangString_offset); |
| compOffset = dvmGetFieldInt((Object*) arg1, gDvm.offJavaLangString_offset); |
| thisArray = (ArrayObject*) |
| dvmGetFieldObject((Object*) arg0, gDvm.offJavaLangString_value); |
| compArray = (ArrayObject*) |
| dvmGetFieldObject((Object*) arg1, gDvm.offJavaLangString_value); |
| thisChars = ((const u2*) thisArray->contents) + thisOffset; |
| compChars = ((const u2*) compArray->contents) + compOffset; |
| |
| #ifdef HAVE__MEMCMP16 |
| pResult->i = (__memcmp16(thisChars, compChars, thisCount) == 0); |
| # ifdef CHECK_MEMCMP16 |
| int otherRes = (memcmp(thisChars, compChars, thisCount * 2) == 0); |
| if (pResult->i != otherRes) { |
| badMatch((StringObject*) arg0, (StringObject*) arg1, |
| otherRes, pResult->i, "equals-1"); |
| } |
| # endif |
| #else |
| /* |
| * Straightforward implementation, examining 16 bits at a time. The |
| * direction of the loop doesn't matter, and starting at the end may |
| * give us an advantage when comparing certain types of strings (e.g. |
| * class names). |
| * |
| * We want to go forward for benchmarks against __memcmp16 so we get a |
| * meaningful comparison when the strings don't match (could also test |
| * with palindromes). |
| */ |
| //for (i = 0; i < thisCount; i++) |
| for (i = thisCount-1; i >= 0; --i) |
| { |
| if (thisChars[i] != compChars[i]) { |
| pResult->i = false; |
| return true; |
| } |
| } |
| pResult->i = true; |
| #endif |
| |
| return true; |
| } |
| |
| /* |
| * public int length() |
| */ |
| static bool javaLangString_length(u4 arg0, u4 arg1, u4 arg2, u4 arg3, |
| JValue* pResult) |
| { |
| //LOGI("String.length this=0x%08x pResult=%p\n", arg0, pResult); |
| |
| /* null reference check on "this" */ |
| if (!dvmValidateObject((Object*) arg0)) |
| return false; |
| |
| pResult->i = dvmGetFieldInt((Object*) arg0, gDvm.offJavaLangString_count); |
| return true; |
| } |
| |
| |
| /* |
| * =========================================================================== |
| * java.lang.Math |
| * =========================================================================== |
| */ |
| |
| /* |
| * public static int abs(int) |
| */ |
| static bool javaLangMath_abs_int(u4 arg0, u4 arg1, u4 arg2, u4 arg3, |
| JValue* pResult) |
| { |
| s4 val = (s4) arg0; |
| pResult->i = (val >= 0) ? val : -val; |
| return true; |
| } |
| |
| /* |
| * public static long abs(long) |
| */ |
| static bool javaLangMath_abs_long(u4 arg0, u4 arg1, u4 arg2, u4 arg3, |
| JValue* pResult) |
| { |
| union { |
| u4 arg[2]; |
| s8 ll; |
| } convert; |
| |
| convert.arg[0] = arg0; |
| convert.arg[1] = arg1; |
| s8 val = convert.ll; |
| pResult->j = (val >= 0) ? val : -val; |
| return true; |
| } |
| |
| /* |
| * public static float abs(float) |
| */ |
| static bool javaLangMath_abs_float(u4 arg0, u4 arg1, u4 arg2, u4 arg3, |
| JValue* pResult) |
| { |
| union { |
| u4 arg; |
| float ff; |
| } convert; |
| |
| /* clear the sign bit; assumes a fairly common fp representation */ |
| convert.arg = arg0 & 0x7fffffff; |
| pResult->f = convert.ff; |
| return true; |
| } |
| |
| /* |
| * public static float abs(float) |
| */ |
| static bool javaLangMath_abs_double(u4 arg0, u4 arg1, u4 arg2, u4 arg3, |
| JValue* pResult) |
| { |
| union { |
| u4 arg[2]; |
| s8 ll; |
| double dd; |
| } convert; |
| |
| /* clear the sign bit in the (endian-dependent) high word */ |
| convert.arg[0] = arg0; |
| convert.arg[1] = arg1; |
| convert.ll &= 0x7fffffffffffffffULL; |
| pResult->d = convert.dd; |
| return true; |
| } |
| |
| /* |
| * public static int min(int) |
| */ |
| static bool javaLangMath_min_int(u4 arg0, u4 arg1, u4 arg2, u4 arg3, |
| JValue* pResult) |
| { |
| pResult->i = ((s4) arg0 < (s4) arg1) ? arg0 : arg1; |
| return true; |
| } |
| |
| /* |
| * public static int max(int) |
| */ |
| static bool javaLangMath_max_int(u4 arg0, u4 arg1, u4 arg2, u4 arg3, |
| JValue* pResult) |
| { |
| pResult->i = ((s4) arg0 > (s4) arg1) ? arg0 : arg1; |
| return true; |
| } |
| |
| /* |
| * public static double sqrt(double) |
| * |
| * With ARM VFP enabled, gcc turns this into an fsqrtd instruction, followed |
| * by an fcmpd of the result against itself. If it doesn't match (i.e. |
| * it's NaN), the libm sqrt() is invoked. |
| */ |
| static bool javaLangMath_sqrt(u4 arg0, u4 arg1, u4 arg2, u4 arg3, |
| JValue* pResult) |
| { |
| union { |
| u4 arg[2]; |
| double dd; |
| } convert; |
| |
| convert.arg[0] = arg0; |
| convert.arg[1] = arg1; |
| pResult->d = sqrt(convert.dd); |
| return true; |
| } |
| |
| /* |
| * public static double cos(double) |
| */ |
| static bool javaLangMath_cos(u4 arg0, u4 arg1, u4 arg2, u4 arg3, |
| JValue* pResult) |
| { |
| union { |
| u4 arg[2]; |
| double dd; |
| } convert; |
| |
| convert.arg[0] = arg0; |
| convert.arg[1] = arg1; |
| pResult->d = cos(convert.dd); |
| return true; |
| } |
| |
| /* |
| * public static double sin(double) |
| */ |
| static bool javaLangMath_sin(u4 arg0, u4 arg1, u4 arg2, u4 arg3, |
| JValue* pResult) |
| { |
| union { |
| u4 arg[2]; |
| double dd; |
| } convert; |
| |
| convert.arg[0] = arg0; |
| convert.arg[1] = arg1; |
| pResult->d = sin(convert.dd); |
| return true; |
| } |
| |
| |
| /* |
| * =========================================================================== |
| * Infrastructure |
| * =========================================================================== |
| */ |
| |
| /* |
| * Table of methods. |
| * |
| * The DEX optimizer uses the class/method/signature string fields to decide |
| * which calls it can trample. The interpreter just uses the function |
| * pointer field. |
| * |
| * IMPORTANT: you must update DALVIK_VM_BUILD in DalvikVersion.h if you make |
| * changes to this table. |
| */ |
| const InlineOperation gDvmInlineOpsTable[] = { |
| { org_apache_harmony_dalvik_NativeTestTarget_emptyInlineMethod, |
| "Lorg/apache/harmony/dalvik/NativeTestTarget;", |
| "emptyInlineMethod", "()V" }, |
| |
| { javaLangString_charAt, |
| "Ljava/lang/String;", "charAt", "(I)C" }, |
| { javaLangString_compareTo, |
| "Ljava/lang/String;", "compareTo", "(Ljava/lang/String;)I" }, |
| { javaLangString_equals, |
| "Ljava/lang/String;", "equals", "(Ljava/lang/Object;)Z" }, |
| { javaLangString_length, |
| "Ljava/lang/String;", "length", "()I" }, |
| |
| { javaLangMath_abs_int, |
| "Ljava/lang/Math;", "abs", "(I)I" }, |
| { javaLangMath_abs_long, |
| "Ljava/lang/Math;", "abs", "(J)J" }, |
| { javaLangMath_abs_float, |
| "Ljava/lang/Math;", "abs", "(F)F" }, |
| { javaLangMath_abs_double, |
| "Ljava/lang/Math;", "abs", "(D)D" }, |
| { javaLangMath_min_int, |
| "Ljava/lang/Math;", "min", "(II)I" }, |
| { javaLangMath_max_int, |
| "Ljava/lang/Math;", "max", "(II)I" }, |
| { javaLangMath_sqrt, |
| "Ljava/lang/Math;", "sqrt", "(D)D" }, |
| { javaLangMath_cos, |
| "Ljava/lang/Math;", "cos", "(D)D" }, |
| { javaLangMath_sin, |
| "Ljava/lang/Math;", "sin", "(D)D" }, |
| }; |
| |
| |
| /* |
| * Allocate some tables. |
| */ |
| bool dvmInlineNativeStartup(void) |
| { |
| #ifdef WITH_PROFILER |
| gDvm.inlinedMethods = |
| (Method**) calloc(NELEM(gDvmInlineOpsTable), sizeof(Method*)); |
| if (gDvm.inlinedMethods == NULL) |
| return false; |
| #endif |
| |
| return true; |
| } |
| |
| /* |
| * Free generated tables. |
| */ |
| void dvmInlineNativeShutdown(void) |
| { |
| #ifdef WITH_PROFILER |
| free(gDvm.inlinedMethods); |
| #endif |
| } |
| |
| |
| /* |
| * Get a pointer to the inlineops table. |
| */ |
| const InlineOperation* dvmGetInlineOpsTable(void) |
| { |
| return gDvmInlineOpsTable; |
| } |
| |
| /* |
| * Get the number of entries in the inlineops table. |
| */ |
| int dvmGetInlineOpsTableLength(void) |
| { |
| return NELEM(gDvmInlineOpsTable); |
| } |
| |
| /* |
| * Make an inline call for the "debug" interpreter, used when the debugger |
| * or profiler is active. |
| */ |
| bool dvmPerformInlineOp4Dbg(u4 arg0, u4 arg1, u4 arg2, u4 arg3, |
| JValue* pResult, int opIndex) |
| { |
| Thread* self = dvmThreadSelf(); |
| bool result; |
| |
| assert(opIndex >= 0 && opIndex < NELEM(gDvmInlineOpsTable)); |
| |
| #ifdef WITH_PROFILER |
| /* |
| * Populate the methods table on first use. It's possible the class |
| * hasn't been resolved yet, so we need to do the full "calling the |
| * method for the first time" routine. (It's probably okay to skip |
| * the access checks.) |
| * |
| * Currently assuming that we're only inlining stuff loaded by the |
| * bootstrap class loader. This is a safe assumption for many reasons. |
| */ |
| Method* method = gDvm.inlinedMethods[opIndex]; |
| if (method == NULL) { |
| ClassObject* clazz; |
| |
| clazz = dvmFindClassNoInit( |
| gDvmInlineOpsTable[opIndex].classDescriptor, NULL); |
| if (clazz == NULL) { |
| LOGW("Warning: can't find class '%s'\n", clazz->descriptor); |
| goto skip_prof; |
| } |
| method = dvmFindDirectMethodByDescriptor(clazz, |
| gDvmInlineOpsTable[opIndex].methodName, |
| gDvmInlineOpsTable[opIndex].methodSignature); |
| if (method == NULL) |
| method = dvmFindVirtualMethodByDescriptor(clazz, |
| gDvmInlineOpsTable[opIndex].methodName, |
| gDvmInlineOpsTable[opIndex].methodSignature); |
| if (method == NULL) { |
| LOGW("Warning: can't find method %s.%s %s\n", |
| clazz->descriptor, |
| gDvmInlineOpsTable[opIndex].methodName, |
| gDvmInlineOpsTable[opIndex].methodSignature); |
| goto skip_prof; |
| } |
| |
| gDvm.inlinedMethods[opIndex] = method; |
| IF_LOGV() { |
| char* desc = dexProtoCopyMethodDescriptor(&method->prototype); |
| LOGV("Registered for profile: %s.%s %s\n", |
| method->clazz->descriptor, method->name, desc); |
| free(desc); |
| } |
| } |
| |
| TRACE_METHOD_ENTER(self, method); |
| result = (*gDvmInlineOpsTable[opIndex].func)(arg0, arg1, arg2, arg3, |
| pResult); |
| TRACE_METHOD_EXIT(self, method); |
| return result; |
| |
| skip_prof: |
| #endif |
| return (*gDvmInlineOpsTable[opIndex].func)(arg0, arg1, arg2, arg3, pResult); |
| } |
| |