blob: 3e724f41e00c634fe977d3db3eef3189de694194 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Declaration of the fundamental Object type and refinements thereof, plus
* some functions for manipulating them.
*/
#ifndef _DALVIK_OO_OBJECT
#define _DALVIK_OO_OBJECT
#include <stddef.h>
/* fwd decl */
struct DataObject;
struct InitiatingLoaderList;
struct ClassObject;
struct StringObject;
struct ArrayObject;
struct Method;
struct ExceptionEntry;
struct LineNumEntry;
struct StaticField;
struct InstField;
struct Field;
struct RegisterMap;
typedef struct DataObject DataObject;
typedef struct InitiatingLoaderList InitiatingLoaderList;
typedef struct ClassObject ClassObject;
typedef struct StringObject StringObject;
typedef struct ArrayObject ArrayObject;
typedef struct Method Method;
typedef struct ExceptionEntry ExceptionEntry;
typedef struct LineNumEntry LineNumEntry;
typedef struct StaticField StaticField;
typedef struct InstField InstField;
typedef struct Field Field;
typedef struct RegisterMap RegisterMap;
/*
* Native function pointer type.
*
* "args[0]" holds the "this" pointer for virtual methods.
*
* The "Bridge" form is a super-set of the "Native" form; in many places
* they are used interchangeably. Currently, all functions have all
* arguments passed in, but some functions only care about the first two.
* Passing extra arguments to a C function is (mostly) harmless.
*/
typedef void (*DalvikBridgeFunc)(const u4* args, JValue* pResult,
const Method* method, struct Thread* self);
typedef void (*DalvikNativeFunc)(const u4* args, JValue* pResult);
/* vm-internal access flags and related definitions */
typedef enum AccessFlags {
ACC_MIRANDA = 0x8000, // method (internal to VM)
JAVA_FLAGS_MASK = 0xffff, // bits set from Java sources (low 16)
} AccessFlags;
/* Use the top 16 bits of the access flags field for
* other class flags. Code should use the *CLASS_FLAG*()
* macros to set/get these flags.
*/
typedef enum ClassFlags {
CLASS_ISFINALIZABLE = (1<<31), // class/ancestor overrides finalize()
CLASS_ISARRAY = (1<<30), // class is a "[*"
CLASS_ISOBJECTARRAY = (1<<29), // class is a "[L*" or "[[*"
CLASS_ISREFERENCE = (1<<28), // class is a soft/weak/phantom ref
// only ISREFERENCE is set --> soft
CLASS_ISWEAKREFERENCE = (1<<27), // class is a weak reference
CLASS_ISPHANTOMREFERENCE = (1<<26), // class is a phantom reference
CLASS_MULTIPLE_DEFS = (1<<25), // DEX verifier: defs in multiple DEXs
/* unlike the others, these can be present in the optimized DEX file */
CLASS_ISOPTIMIZED = (1<<17), // class may contain opt instrs
CLASS_ISPREVERIFIED = (1<<16), // class has been pre-verified
} ClassFlags;
/* bits we can reasonably expect to see set in a DEX access flags field */
#define EXPECTED_FILE_FLAGS \
(ACC_CLASS_MASK | CLASS_ISPREVERIFIED | CLASS_ISOPTIMIZED)
/*
* Get/set class flags.
*/
#define SET_CLASS_FLAG(clazz, flag) \
do { (clazz)->accessFlags |= (flag); } while (0)
#define CLEAR_CLASS_FLAG(clazz, flag) \
do { (clazz)->accessFlags &= ~(flag); } while (0)
#define IS_CLASS_FLAG_SET(clazz, flag) \
(((clazz)->accessFlags & (flag)) != 0)
#define GET_CLASS_FLAG_GROUP(clazz, flags) \
((u4)((clazz)->accessFlags & (flags)))
/*
* Use the top 16 bits of the access flags field for other method flags.
* Code should use the *METHOD_FLAG*() macros to set/get these flags.
*/
typedef enum MethodFlags {
METHOD_ISWRITABLE = (1<<31), // the method's code is writable
} MethodFlags;
/*
* Get/set method flags.
*/
#define SET_METHOD_FLAG(method, flag) \
do { (method)->accessFlags |= (flag); } while (0)
#define CLEAR_METHOD_FLAG(method, flag) \
do { (method)->accessFlags &= ~(flag); } while (0)
#define IS_METHOD_FLAG_SET(method, flag) \
(((method)->accessFlags & (flag)) != 0)
#define GET_METHOD_FLAG_GROUP(method, flags) \
((u4)((method)->accessFlags & (flags)))
/* current state of the class, increasing as we progress */
typedef enum ClassStatus {
CLASS_ERROR = -1,
CLASS_NOTREADY = 0,
CLASS_LOADED = 1,
CLASS_PREPARED = 2, /* part of linking */
CLASS_RESOLVED = 3, /* part of linking */
CLASS_VERIFYING = 4, /* in the process of being verified */
CLASS_VERIFIED = 5, /* logically part of linking; done pre-init */
CLASS_INITIALIZING = 6, /* class init in progress */
CLASS_INITIALIZED = 7, /* ready to go */
} ClassStatus;
/*
* Primitive type identifiers. We use these values as indexes into an
* array of synthesized classes, so these start at zero and count up.
* The order is arbitrary (mimics table in doc for newarray opcode),
* but can't be changed without shuffling some reflection tables.
*
* PRIM_VOID can't be used as an array type, but we include it here for
* other uses (e.g. Void.TYPE).
*/
typedef enum PrimitiveType {
PRIM_NOT = -1, /* value is not a primitive type */
PRIM_BOOLEAN = 0,
PRIM_CHAR = 1,
PRIM_FLOAT = 2,
PRIM_DOUBLE = 3,
PRIM_BYTE = 4,
PRIM_SHORT = 5,
PRIM_INT = 6,
PRIM_LONG = 7,
PRIM_VOID = 8,
PRIM_MAX
} PrimitiveType;
#define PRIM_TYPE_TO_LETTER "ZCFDBSIJV" /* must match order in enum */
/*
* Definitions for packing refOffsets in ClassObject.
*/
/*
* A magic value for refOffsets. Ignore the bits and walk the super
* chain when this is the value.
* [This is an unlikely "natural" value, since it would be 30 non-ref instance
* fields followed by 2 ref instance fields.]
*/
#define CLASS_WALK_SUPER ((unsigned int)(3))
#define CLASS_SMALLEST_OFFSET (sizeof(struct Object))
#define CLASS_BITS_PER_WORD (sizeof(unsigned long int) * 8)
#define CLASS_OFFSET_ALIGNMENT 4
#define CLASS_HIGH_BIT ((unsigned int)1 << (CLASS_BITS_PER_WORD - 1))
/*
* Return a single bit, or zero if the encoding can't encode the offset.
*/
#define CLASS_BIT_FROM_OFFSET(byteOffset) \
(CLASS_HIGH_BIT >> \
(((unsigned int)(byteOffset) - CLASS_SMALLEST_OFFSET) / \
CLASS_OFFSET_ALIGNMENT))
/*
* Return an offset, given a bit number as returned from CLZ.
*/
#define CLASS_OFFSET_FROM_CLZ(rshift) \
(((int)(rshift) * CLASS_OFFSET_ALIGNMENT) + CLASS_SMALLEST_OFFSET)
/*
* Used for iftable in ClassObject.
*/
typedef struct InterfaceEntry {
/* pointer to interface class */
ClassObject* clazz;
/*
* Index into array of vtable offsets. This points into the ifviPool,
* which holds the vtables for all interfaces declared by this class.
*/
int* methodIndexArray;
} InterfaceEntry;
/*
* There are three types of objects:
* Class objects - an instance of java.lang.Class
* Array objects - an object created with a "new array" instruction
* Data objects - an object that is neither of the above
*
* We also define String objects. At present they're equivalent to
* DataObject, but that may change. (Either way, they make some of the
* code more obvious.)
*
* All objects have an Object header followed by type-specific data.
*/
typedef struct Object {
/* ptr to class object */
ClassObject* clazz;
/* thin lock or "fat" monitor */
Lock lock;
} Object;
/*
* Properly initialize an Object.
* void DVM_OBJECT_INIT(Object *obj, ClassObject *clazz_)
*/
#define DVM_OBJECT_INIT(obj, clazz_) \
do { (obj)->clazz = (clazz_); DVM_LOCK_INIT(&(obj)->lock); } while (0)
/*
* Data objects have an Object header followed by their instance data.
*/
struct DataObject {
Object obj; /* MUST be first item */
/* variable #of u4 slots; u8 uses 2 slots */
u4 instanceData[1];
};
/*
* Strings are used frequently enough that we may want to give them their
* own unique type.
*
* Using a dedicated type object to access the instance data provides a
* performance advantage but makes the java/lang/String.java implementation
* fragile.
*
* Currently this is just equal to DataObject, and we pull the fields out
* like we do for any other object.
*/
struct StringObject {
Object obj; /* MUST be first item */
/* variable #of u4 slots; u8 uses 2 slots */
u4 instanceData[1];
};
/*
* Array objects have these additional fields.
*
* We don't currently store the size of each element. Usually it's implied
* by the instruction. If necessary, the width can be derived from
* the first char of obj->clazz->name.
*/
struct ArrayObject {
Object obj; /* MUST be first item */
/* number of elements; immutable after init */
u4 length;
/*
* Array contents; actual size is (length * sizeof(type)). This is
* declared as u8 so that the compiler inserts any necessary padding
* (e.g. for EABI); the actual allocation may be smaller than 8 bytes.
*/
u8 contents[1];
};
/*
* For classes created early and thus probably in the zygote, the
* InitiatingLoaderList is kept in gDvm. Later classes use the structure in
* Object Class. This helps keep zygote pages shared.
*/
struct InitiatingLoaderList {
/* a list of initiating loader Objects; grown and initialized on demand */
Object** initiatingLoaders;
/* count of loaders in the above list */
int initiatingLoaderCount;
};
/*
* This defines the amount of space we leave for field slots in the
* java.lang.Class definition. If we alter the class to have more than
* this many fields, the VM will abort at startup.
*/
#define CLASS_FIELD_SLOTS 4
/*
* Class objects have many additional fields. This is used for both
* classes and interfaces, including synthesized classes (arrays and
* primitive types).
*
* Class objects are unusual in that they have some fields allocated with
* the system malloc (or LinearAlloc), rather than on the GC heap. This is
* handy during initialization, but does require special handling when
* discarding java.lang.Class objects.
*
* The separation of methods (direct vs. virtual) and fields (class vs.
* instance) used in Dalvik works out pretty well. The only time it's
* annoying is when enumerating or searching for things with reflection.
*/
struct ClassObject {
Object obj; /* MUST be first item */
/* leave space for instance data; we could access fields directly if we
freeze the definition of java/lang/Class */
u4 instanceData[CLASS_FIELD_SLOTS];
/* UTF-8 descriptor for the class; from constant pool, or on heap
if generated ("[C") */
const char* descriptor;
char* descriptorAlloc;
/* access flags; low 16 bits are defined by VM spec */
u4 accessFlags;
/* VM-unique class serial number, nonzero, set very early */
u4 serialNumber;
/* DexFile from which we came; needed to resolve constant pool entries */
/* (will be NULL for VM-generated, e.g. arrays and primitive classes) */
DvmDex* pDvmDex;
/* state of class initialization */
ClassStatus status;
/* if class verify fails, we must return same error on subsequent tries */
ClassObject* verifyErrorClass;
/* threadId, used to check for recursive <clinit> invocation */
u4 initThreadId;
/*
* Total object size; used when allocating storage on gc heap. (For
* interfaces and abstract classes this will be zero.)
*/
size_t objectSize;
/* arrays only: class object for base element, for instanceof/checkcast
(for String[][][], this will be String) */
ClassObject* elementClass;
/* class object representing an array of this class; set on first use */
ClassObject* arrayClass;
/* arrays only: number of dimensions, e.g. int[][] is 2 */
int arrayDim;
/* primitive type index, or PRIM_NOT (-1); set for generated prim classes */
PrimitiveType primitiveType;
/* superclass, or NULL if this is java.lang.Object */
ClassObject* super;
/* defining class loader, or NULL for the "bootstrap" system loader */
Object* classLoader;
/* initiating class loader list */
/* NOTE: for classes with low serialNumber, these are unused, and the
values are kept in a table in gDvm. */
InitiatingLoaderList initiatingLoaderList;
/* array of interfaces this class implements directly */
int interfaceCount;
ClassObject** interfaces;
/* static, private, and <init> methods */
int directMethodCount;
Method* directMethods;
/* virtual methods defined in this class; invoked through vtable */
int virtualMethodCount;
Method* virtualMethods;
/*
* Virtual method table (vtable), for use by "invoke-virtual". The
* vtable from the superclass is copied in, and virtual methods from
* our class either replace those from the super or are appended.
*/
int vtableCount;
Method** vtable;
/*
* Interface table (iftable), one entry per interface supported by
* this class. That means one entry for each interface we support
* directly, indirectly via superclass, or indirectly via
* superinterface. This will be null if neither we nor our superclass
* implement any interfaces.
*
* Why we need this: given "class Foo implements Face", declare
* "Face faceObj = new Foo()". Invoke faceObj.blah(), where "blah" is
* part of the Face interface. We can't easily use a single vtable.
*
* For every interface a concrete class implements, we create a list of
* virtualMethod indices for the methods in the interface.
*/
int iftableCount;
InterfaceEntry* iftable;
/*
* The interface vtable indices for iftable get stored here. By placing
* them all in a single pool for each class that implements interfaces,
* we decrease the number of allocations.
*/
int ifviPoolCount;
int* ifviPool;
/* static fields */
int sfieldCount;
StaticField* sfields;
/* instance fields
*
* These describe the layout of the contents of a DataObject-compatible
* Object. Note that only the fields directly defined by this class
* are listed in ifields; fields defined by a superclass are listed
* in the superclass's ClassObject.ifields.
*
* All instance fields that refer to objects are guaranteed to be
* at the beginning of the field list. ifieldRefCount specifies
* the number of reference fields.
*/
int ifieldCount;
int ifieldRefCount; // number of fields that are object refs
InstField* ifields;
/* bitmap of offsets of ifields */
u4 refOffsets;
/* source file name, if known */
const char* sourceFile;
};
/*
* A method. We create one of these for every method in every class
* we load, so try to keep the size to a minimum.
*
* Much of this comes from and could be accessed in the data held in shared
* memory. We hold it all together here for speed. Everything but the
* pointers could be held in a shared table generated by the optimizer;
* if we're willing to convert them to offsets and take the performance
* hit (e.g. "meth->insns" becomes "baseAddr + meth->insnsOffset") we
* could move everything but "nativeFunc".
*/
struct Method {
/* the class we are a part of */
ClassObject* clazz;
/* access flags; low 16 bits are defined by spec (could be u2?) */
u4 accessFlags;
/*
* For concrete virtual methods, this is the offset of the method
* in "vtable".
*
* For abstract methods in an interface class, this is the offset
* of the method in "iftable[n]->methodIndexArray".
*/
u2 methodIndex;
/*
* Method bounds; not needed for an abstract method.
*
* For a native method, we compute the size of the argument list, and
* set "insSize" and "registerSize" equal to it.
*/
u2 registersSize; /* ins + locals */
u2 outsSize;
u2 insSize;
/* method name, e.g. "<init>" or "eatLunch" */
const char* name;
/*
* Method prototype descriptor string (return and argument types).
*
* TODO: This currently must specify the DexFile as well as the proto_ids
* index, because generated Proxy classes don't have a DexFile. We can
* remove the DexFile* and reduce the size of this struct if we generate
* a DEX for proxies.
*/
DexProto prototype;
/* short-form method descriptor string */
const char* shorty;
/*
* The remaining items are not used for abstract or native methods.
* (JNI is currently hijacking "insns" as a function pointer, set
* after the first call. For internal-native this stays null.)
*/
/* the actual code */
const u2* insns; /* instructions, in memory-mapped .dex */
/* cached JNI argument and return-type hints */
int jniArgInfo;
/*
* Native method ptr; could be actual function or a JNI bridge. We
* don't currently discriminate between DalvikBridgeFunc and
* DalvikNativeFunc; the former takes an argument superset (i.e. two
* extra args) which will be ignored. If necessary we can use
* insns==NULL to detect JNI bridge vs. internal native.
*/
DalvikBridgeFunc nativeFunc;
/*
* Register map data, if available. This will point into the DEX file
* if the data was computed during pre-verification, or into the
* linear alloc area if not.
*/
const RegisterMap* registerMap;
#ifdef WITH_PROFILER
bool inProfile;
#endif
#ifdef WITH_DEBUGGER
short debugBreakpointCount;
#endif
};
/*
* Generic field header. We pass this around when we want a generic Field
* pointer (e.g. for reflection stuff). Testing the accessFlags for
* ACC_STATIC allows a proper up-cast.
*/
struct Field {
ClassObject* clazz; /* class in which the field is declared */
const char* name;
const char* signature; /* e.g. "I", "[C", "Landroid/os/Debug;" */
u4 accessFlags;
#ifdef PROFILE_FIELD_ACCESS
u4 gets;
u4 puts;
#endif
};
/*
* Static field.
*/
struct StaticField {
Field field; /* MUST be first item */
JValue value; /* initially set from DEX for primitives */
};
/*
* Instance field.
*/
struct InstField {
Field field; /* MUST be first item */
/*
* This field indicates the byte offset from the beginning of the
* (Object *) to the actual instance data; e.g., byteOffset==0 is
* the same as the object pointer (bug!), and byteOffset==4 is 4
* bytes farther.
*/
int byteOffset;
};
/*
* Find a method within a class. The superclass is not searched.
*/
Method* dvmFindDirectMethodByDescriptor(const ClassObject* clazz,
const char* methodName, const char* signature);
Method* dvmFindVirtualMethodByDescriptor(const ClassObject* clazz,
const char* methodName, const char* signature);
Method* dvmFindVirtualMethodByName(const ClassObject* clazz,
const char* methodName);
Method* dvmFindDirectMethod(const ClassObject* clazz, const char* methodName,
const DexProto* proto);
Method* dvmFindVirtualMethod(const ClassObject* clazz, const char* methodName,
const DexProto* proto);
/*
* Find a method within a class hierarchy.
*/
Method* dvmFindDirectMethodHierByDescriptor(const ClassObject* clazz,
const char* methodName, const char* descriptor);
Method* dvmFindVirtualMethodHierByDescriptor(const ClassObject* clazz,
const char* methodName, const char* signature);
Method* dvmFindDirectMethodHier(const ClassObject* clazz,
const char* methodName, const DexProto* proto);
Method* dvmFindVirtualMethodHier(const ClassObject* clazz,
const char* methodName, const DexProto* proto);
Method* dvmFindMethodHier(const ClassObject* clazz, const char* methodName,
const DexProto* proto);
/*
* Find the implementation of "meth" in "clazz".
*
* Returns NULL and throws an exception if not found.
*/
const Method* dvmGetVirtualizedMethod(const ClassObject* clazz,
const Method* meth);
/*
* Get the source file associated with a method.
*/
const char* dvmGetMethodSourceFile(const Method* meth);
/*
* Find a field within a class. The superclass is not searched.
*/
InstField* dvmFindInstanceField(const ClassObject* clazz,
const char* fieldName, const char* signature);
StaticField* dvmFindStaticField(const ClassObject* clazz,
const char* fieldName, const char* signature);
/*
* Find a field in a class/interface hierarchy.
*/
InstField* dvmFindInstanceFieldHier(const ClassObject* clazz,
const char* fieldName, const char* signature);
StaticField* dvmFindStaticFieldHier(const ClassObject* clazz,
const char* fieldName, const char* signature);
Field* dvmFindFieldHier(const ClassObject* clazz, const char* fieldName,
const char* signature);
/*
* Find a field and return the byte offset from the object pointer. Only
* searches the specified class, not the superclass.
*
* Returns -1 on failure.
*/
INLINE int dvmFindFieldOffset(const ClassObject* clazz,
const char* fieldName, const char* signature)
{
InstField* pField = dvmFindInstanceField(clazz, fieldName, signature);
if (pField == NULL)
return -1;
else
return pField->byteOffset;
}
/*
* Field access functions. Pass in the word offset from Field->byteOffset.
*
* We guarantee that long/double field data is 64-bit aligned, so it's safe
* to access them with ldrd/strd on ARM.
*
* The VM treats all fields as 32 or 64 bits, so the field set functions
* write 32 bits even if the underlying type is smaller.
*/
#define BYTE_OFFSET(_ptr, _offset) ((void*) (((u1*)(_ptr)) + (_offset)))
INLINE JValue* dvmFieldPtr(const Object* obj, int offset) {
return ((JValue*)BYTE_OFFSET(obj, offset));
}
INLINE bool dvmGetFieldBoolean(const Object* obj, int offset) {
return ((JValue*)BYTE_OFFSET(obj, offset))->z;
}
INLINE s1 dvmGetFieldByte(const Object* obj, int offset) {
return ((JValue*)BYTE_OFFSET(obj, offset))->b;
}
INLINE s2 dvmGetFieldShort(const Object* obj, int offset) {
return ((JValue*)BYTE_OFFSET(obj, offset))->s;
}
INLINE u2 dvmGetFieldChar(const Object* obj, int offset) {
return ((JValue*)BYTE_OFFSET(obj, offset))->c;
}
INLINE s4 dvmGetFieldInt(const Object* obj, int offset) {
return ((JValue*)BYTE_OFFSET(obj, offset))->i;
}
INLINE s8 dvmGetFieldLong(const Object* obj, int offset) {
return ((JValue*)BYTE_OFFSET(obj, offset))->j;
}
INLINE float dvmGetFieldFloat(const Object* obj, int offset) {
return ((JValue*)BYTE_OFFSET(obj, offset))->f;
}
INLINE double dvmGetFieldDouble(const Object* obj, int offset) {
return ((JValue*)BYTE_OFFSET(obj, offset))->d;
}
INLINE Object* dvmGetFieldObject(const Object* obj, int offset) {
return ((JValue*)BYTE_OFFSET(obj, offset))->l;
}
INLINE void dvmSetFieldBoolean(Object* obj, int offset, bool val) {
((JValue*)BYTE_OFFSET(obj, offset))->i = val;
}
INLINE void dvmSetFieldByte(Object* obj, int offset, s1 val) {
((JValue*)BYTE_OFFSET(obj, offset))->i = val;
}
INLINE void dvmSetFieldShort(Object* obj, int offset, s2 val) {
((JValue*)BYTE_OFFSET(obj, offset))->i = val;
}
INLINE void dvmSetFieldChar(Object* obj, int offset, u2 val) {
((JValue*)BYTE_OFFSET(obj, offset))->i = val;
}
INLINE void dvmSetFieldInt(Object* obj, int offset, s4 val) {
((JValue*)BYTE_OFFSET(obj, offset))->i = val;
}
INLINE void dvmSetFieldLong(Object* obj, int offset, s8 val) {
((JValue*)BYTE_OFFSET(obj, offset))->j = val;
}
INLINE void dvmSetFieldFloat(Object* obj, int offset, float val) {
((JValue*)BYTE_OFFSET(obj, offset))->f = val;
}
INLINE void dvmSetFieldDouble(Object* obj, int offset, double val) {
((JValue*)BYTE_OFFSET(obj, offset))->d = val;
}
INLINE void dvmSetFieldObject(Object* obj, int offset, Object* val) {
((JValue*)BYTE_OFFSET(obj, offset))->l = val;
}
/*
* Static field access functions.
*/
INLINE JValue* dvmStaticFieldPtr(const StaticField* sfield) {
return (JValue*)&sfield->value;
}
INLINE bool dvmGetStaticFieldBoolean(const StaticField* sfield) {
return sfield->value.z;
}
INLINE s1 dvmGetStaticFieldByte(const StaticField* sfield) {
return sfield->value.b;
}
INLINE s2 dvmGetStaticFieldShort(const StaticField* sfield) {
return sfield->value.s;
}
INLINE u2 dvmGetStaticFieldChar(const StaticField* sfield) {
return sfield->value.c;
}
INLINE s4 dvmGetStaticFieldInt(const StaticField* sfield) {
return sfield->value.i;
}
INLINE s8 dvmGetStaticFieldLong(const StaticField* sfield) {
return sfield->value.j;
}
INLINE float dvmGetStaticFieldFloat(const StaticField* sfield) {
return sfield->value.f;
}
INLINE double dvmGetStaticFieldDouble(const StaticField* sfield) {
return sfield->value.d;
}
INLINE Object* dvmGetStaticFieldObject(const StaticField* sfield) {
return sfield->value.l;
}
INLINE void dvmSetStaticFieldBoolean(StaticField* sfield, bool val) {
sfield->value.i = val;
}
INLINE void dvmSetStaticFieldByte(StaticField* sfield, s1 val) {
sfield->value.i = val;
}
INLINE void dvmSetStaticFieldShort(StaticField* sfield, s2 val) {
sfield->value.i = val;
}
INLINE void dvmSetStaticFieldChar(StaticField* sfield, u2 val) {
sfield->value.i = val;
}
INLINE void dvmSetStaticFieldInt(StaticField* sfield, s4 val) {
sfield->value.i = val;
}
INLINE void dvmSetStaticFieldLong(StaticField* sfield, s8 val) {
sfield->value.j = val;
}
INLINE void dvmSetStaticFieldFloat(StaticField* sfield, float val) {
sfield->value.f = val;
}
INLINE void dvmSetStaticFieldDouble(StaticField* sfield, double val) {
sfield->value.d = val;
}
INLINE void dvmSetStaticFieldObject(StaticField* sfield, Object* val) {
sfield->value.l = val;
}
/*
* Helpers.
*/
INLINE bool dvmIsPublicMethod(const Method* method) {
return (method->accessFlags & ACC_PUBLIC) != 0;
}
INLINE bool dvmIsPrivateMethod(const Method* method) {
return (method->accessFlags & ACC_PRIVATE) != 0;
}
INLINE bool dvmIsStaticMethod(const Method* method) {
return (method->accessFlags & ACC_STATIC) != 0;
}
INLINE bool dvmIsSynchronizedMethod(const Method* method) {
return (method->accessFlags & ACC_SYNCHRONIZED) != 0;
}
INLINE bool dvmIsDeclaredSynchronizedMethod(const Method* method) {
return (method->accessFlags & ACC_DECLARED_SYNCHRONIZED) != 0;
}
INLINE bool dvmIsFinalMethod(const Method* method) {
return (method->accessFlags & ACC_FINAL) != 0;
}
INLINE bool dvmIsNativeMethod(const Method* method) {
return (method->accessFlags & ACC_NATIVE) != 0;
}
INLINE bool dvmIsAbstractMethod(const Method* method) {
return (method->accessFlags & ACC_ABSTRACT) != 0;
}
INLINE bool dvmIsMirandaMethod(const Method* method) {
return (method->accessFlags & ACC_MIRANDA) != 0;
}
INLINE bool dvmIsConstructorMethod(const Method* method) {
return *method->name == '<';
}
/* Dalvik puts private, static, and constructors into non-virtual table */
INLINE bool dvmIsDirectMethod(const Method* method) {
return dvmIsPrivateMethod(method) ||
dvmIsStaticMethod(method) ||
dvmIsConstructorMethod(method);
}
/* Get whether the given method has associated bytecode. This is the
* case for methods which are neither native nor abstract. */
INLINE bool dvmIsBytecodeMethod(const Method* method) {
return (method->accessFlags & (ACC_NATIVE | ACC_ABSTRACT)) == 0;
}
INLINE bool dvmIsProtectedField(const Field* field) {
return (field->accessFlags & ACC_PROTECTED) != 0;
}
INLINE bool dvmIsStaticField(const Field* field) {
return (field->accessFlags & ACC_STATIC) != 0;
}
INLINE bool dvmIsFinalField(const Field* field) {
return (field->accessFlags & ACC_FINAL) != 0;
}
INLINE bool dvmIsInterfaceClass(const ClassObject* clazz) {
return (clazz->accessFlags & ACC_INTERFACE) != 0;
}
INLINE bool dvmIsPublicClass(const ClassObject* clazz) {
return (clazz->accessFlags & ACC_PUBLIC) != 0;
}
INLINE bool dvmIsFinalClass(const ClassObject* clazz) {
return (clazz->accessFlags & ACC_FINAL) != 0;
}
INLINE bool dvmIsAbstractClass(const ClassObject* clazz) {
return (clazz->accessFlags & ACC_ABSTRACT) != 0;
}
INLINE bool dvmIsAnnotationClass(const ClassObject* clazz) {
return (clazz->accessFlags & ACC_ANNOTATION) != 0;
}
INLINE bool dvmIsPrimitiveClass(const ClassObject* clazz) {
return clazz->primitiveType != PRIM_NOT;
}
/* linked, here meaning prepared and resolved */
INLINE bool dvmIsClassLinked(const ClassObject* clazz) {
return clazz->status >= CLASS_RESOLVED;
}
/* has class been verified? */
INLINE bool dvmIsClassVerified(const ClassObject* clazz) {
return clazz->status >= CLASS_VERIFIED;
}
/*
* Get the associated code struct for a method. This returns NULL
* for non-bytecode methods.
*/
INLINE const DexCode* dvmGetMethodCode(const Method* meth) {
if (dvmIsBytecodeMethod(meth)) {
/*
* The insns field for a bytecode method actually points at
* &(DexCode.insns), so we can subtract back to get at the
* DexCode in front.
*/
return (const DexCode*)
(((const u1*) meth->insns) - offsetof(DexCode, insns));
} else {
return NULL;
}
}
/*
* Get the size of the insns associated with a method. This returns 0
* for non-bytecode methods.
*/
INLINE u4 dvmGetMethodInsnsSize(const Method* meth) {
const DexCode* pCode = dvmGetMethodCode(meth);
return (pCode == NULL) ? 0 : pCode->insnsSize;
}
/* debugging */
void dvmDumpObject(const Object* obj);
#endif /*_DALVIK_OO_OBJECT*/