| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| #ifdef WITH_JIT |
| |
| /* |
| * Target independent portion of Android's Jit |
| */ |
| |
| #include "Dalvik.h" |
| #include "Jit.h" |
| |
| |
| #include "dexdump/OpCodeNames.h" |
| #include <unistd.h> |
| #include <pthread.h> |
| #include <sys/time.h> |
| #include <signal.h> |
| #include "compiler/Compiler.h" |
| #include "compiler/CompilerUtility.h" |
| #include "compiler/CompilerIR.h" |
| #include <errno.h> |
| |
| #if defined(WITH_SELF_VERIFICATION) |
| /* Allocate space for per-thread ShadowSpace data structures */ |
| void* dvmSelfVerificationShadowSpaceAlloc(Thread* self) |
| { |
| self->shadowSpace = (ShadowSpace*) calloc(1, sizeof(ShadowSpace)); |
| if (self->shadowSpace == NULL) |
| return NULL; |
| |
| self->shadowSpace->registerSpaceSize = REG_SPACE; |
| self->shadowSpace->registerSpace = |
| (int*) calloc(self->shadowSpace->registerSpaceSize, sizeof(int)); |
| |
| return self->shadowSpace->registerSpace; |
| } |
| |
| /* Free per-thread ShadowSpace data structures */ |
| void dvmSelfVerificationShadowSpaceFree(Thread* self) |
| { |
| free(self->shadowSpace->registerSpace); |
| free(self->shadowSpace); |
| } |
| |
| /* |
| * Save out PC, FP, InterpState, and registers to shadow space. |
| * Return a pointer to the shadow space for JIT to use. |
| */ |
| void* dvmSelfVerificationSaveState(const u2* pc, const void* fp, |
| InterpState* interpState, int targetTrace) |
| { |
| Thread *self = dvmThreadSelf(); |
| ShadowSpace *shadowSpace = self->shadowSpace; |
| unsigned preBytes = interpState->method->outsSize*4 + sizeof(StackSaveArea); |
| unsigned postBytes = interpState->method->registersSize*4; |
| |
| //LOGD("### selfVerificationSaveState(%d) pc: 0x%x fp: 0x%x", |
| // self->threadId, (int)pc, (int)fp); |
| |
| if (shadowSpace->selfVerificationState != kSVSIdle) { |
| LOGD("~~~ Save: INCORRECT PREVIOUS STATE(%d): %d", |
| self->threadId, shadowSpace->selfVerificationState); |
| LOGD("********** SHADOW STATE DUMP **********"); |
| LOGD("PC: 0x%x FP: 0x%x", (int)pc, (int)fp); |
| } |
| shadowSpace->selfVerificationState = kSVSStart; |
| |
| if (interpState->entryPoint == kInterpEntryResume) { |
| interpState->entryPoint = kInterpEntryInstr; |
| #if 0 |
| /* Tracking the success rate of resume after single-stepping */ |
| if (interpState->jitResumeDPC == pc) { |
| LOGD("SV single step resumed at %p", pc); |
| } |
| else { |
| LOGD("real %p DPC %p NPC %p", pc, interpState->jitResumeDPC, |
| interpState->jitResumeNPC); |
| } |
| #endif |
| } |
| |
| // Dynamically grow shadow register space if necessary |
| if (preBytes + postBytes > shadowSpace->registerSpaceSize * sizeof(u4)) { |
| free(shadowSpace->registerSpace); |
| shadowSpace->registerSpaceSize = (preBytes + postBytes) / sizeof(u4); |
| shadowSpace->registerSpace = |
| (int*) calloc(shadowSpace->registerSpaceSize, sizeof(u4)); |
| } |
| |
| // Remember original state |
| shadowSpace->startPC = pc; |
| shadowSpace->fp = fp; |
| shadowSpace->glue = interpState; |
| /* |
| * Store the original method here in case the trace ends with a |
| * return/invoke, the last method. |
| */ |
| shadowSpace->method = interpState->method; |
| shadowSpace->shadowFP = shadowSpace->registerSpace + |
| shadowSpace->registerSpaceSize - postBytes/4; |
| |
| // Create a copy of the InterpState |
| memcpy(&(shadowSpace->interpState), interpState, sizeof(InterpState)); |
| shadowSpace->interpState.fp = shadowSpace->shadowFP; |
| shadowSpace->interpState.interpStackEnd = (u1*)shadowSpace->registerSpace; |
| |
| // Create a copy of the stack |
| memcpy(((char*)shadowSpace->shadowFP)-preBytes, ((char*)fp)-preBytes, |
| preBytes+postBytes); |
| |
| // Setup the shadowed heap space |
| shadowSpace->heapSpaceTail = shadowSpace->heapSpace; |
| |
| // Reset trace length |
| shadowSpace->traceLength = 0; |
| |
| return shadowSpace; |
| } |
| |
| /* |
| * Save ending PC, FP and compiled code exit point to shadow space. |
| * Return a pointer to the shadow space for JIT to restore state. |
| */ |
| void* dvmSelfVerificationRestoreState(const u2* pc, const void* fp, |
| SelfVerificationState exitPoint) |
| { |
| Thread *self = dvmThreadSelf(); |
| ShadowSpace *shadowSpace = self->shadowSpace; |
| // Official InterpState structure |
| InterpState *realGlue = shadowSpace->glue; |
| shadowSpace->endPC = pc; |
| shadowSpace->endShadowFP = fp; |
| |
| //LOGD("### selfVerificationRestoreState(%d) pc: 0x%x fp: 0x%x endPC: 0x%x", |
| // self->threadId, (int)shadowSpace->startPC, (int)shadowSpace->fp, |
| // (int)pc); |
| |
| if (shadowSpace->selfVerificationState != kSVSStart) { |
| LOGD("~~~ Restore: INCORRECT PREVIOUS STATE(%d): %d", |
| self->threadId, shadowSpace->selfVerificationState); |
| LOGD("********** SHADOW STATE DUMP **********"); |
| LOGD("Dalvik PC: 0x%x endPC: 0x%x", (int)shadowSpace->startPC, |
| (int)shadowSpace->endPC); |
| LOGD("Interp FP: 0x%x", (int)shadowSpace->fp); |
| LOGD("Shadow FP: 0x%x endFP: 0x%x", (int)shadowSpace->shadowFP, |
| (int)shadowSpace->endShadowFP); |
| } |
| |
| // Move the resume [ND]PC from the shadow space to the real space so that |
| // the debug interpreter can return to the translation |
| if (exitPoint == kSVSSingleStep) { |
| realGlue->jitResumeNPC = shadowSpace->interpState.jitResumeNPC; |
| realGlue->jitResumeDPC = shadowSpace->interpState.jitResumeDPC; |
| } else { |
| realGlue->jitResumeNPC = NULL; |
| realGlue->jitResumeDPC = NULL; |
| } |
| |
| // Special case when punting after a single instruction |
| if (exitPoint == kSVSPunt && pc == shadowSpace->startPC) { |
| shadowSpace->selfVerificationState = kSVSIdle; |
| } else { |
| shadowSpace->selfVerificationState = exitPoint; |
| } |
| |
| return shadowSpace; |
| } |
| |
| /* Print contents of virtual registers */ |
| static void selfVerificationPrintRegisters(int* addr, int* addrRef, |
| int numWords) |
| { |
| int i; |
| for (i = 0; i < numWords; i++) { |
| LOGD("(v%d) 0x%8x%s", i, addr[i], addr[i] != addrRef[i] ? " X" : ""); |
| } |
| } |
| |
| /* Print values maintained in shadowSpace */ |
| static void selfVerificationDumpState(const u2* pc, Thread* self) |
| { |
| ShadowSpace* shadowSpace = self->shadowSpace; |
| StackSaveArea* stackSave = SAVEAREA_FROM_FP(self->curFrame); |
| int frameBytes = (int) shadowSpace->registerSpace + |
| shadowSpace->registerSpaceSize*4 - |
| (int) shadowSpace->shadowFP; |
| int localRegs = 0; |
| int frameBytes2 = 0; |
| if (self->curFrame < shadowSpace->fp) { |
| localRegs = (stackSave->method->registersSize - |
| stackSave->method->insSize)*4; |
| frameBytes2 = (int) shadowSpace->fp - (int) self->curFrame - localRegs; |
| } |
| LOGD("********** SHADOW STATE DUMP **********"); |
| LOGD("CurrentPC: 0x%x, Offset: 0x%04x", (int)pc, |
| (int)(pc - stackSave->method->insns)); |
| LOGD("Class: %s", shadowSpace->method->clazz->descriptor); |
| LOGD("Method: %s", shadowSpace->method->name); |
| LOGD("Dalvik PC: 0x%x endPC: 0x%x", (int)shadowSpace->startPC, |
| (int)shadowSpace->endPC); |
| LOGD("Interp FP: 0x%x endFP: 0x%x", (int)shadowSpace->fp, |
| (int)self->curFrame); |
| LOGD("Shadow FP: 0x%x endFP: 0x%x", (int)shadowSpace->shadowFP, |
| (int)shadowSpace->endShadowFP); |
| LOGD("Frame1 Bytes: %d Frame2 Local: %d Bytes: %d", frameBytes, |
| localRegs, frameBytes2); |
| LOGD("Trace length: %d State: %d", shadowSpace->traceLength, |
| shadowSpace->selfVerificationState); |
| } |
| |
| /* Print decoded instructions in the current trace */ |
| static void selfVerificationDumpTrace(const u2* pc, Thread* self) |
| { |
| ShadowSpace* shadowSpace = self->shadowSpace; |
| StackSaveArea* stackSave = SAVEAREA_FROM_FP(self->curFrame); |
| int i, addr, offset; |
| DecodedInstruction *decInsn; |
| |
| LOGD("********** SHADOW TRACE DUMP **********"); |
| for (i = 0; i < shadowSpace->traceLength; i++) { |
| addr = shadowSpace->trace[i].addr; |
| offset = (int)((u2*)addr - stackSave->method->insns); |
| decInsn = &(shadowSpace->trace[i].decInsn); |
| /* Not properly decoding instruction, some registers may be garbage */ |
| LOGD("0x%x: (0x%04x) %s", addr, offset, getOpcodeName(decInsn->opCode)); |
| } |
| } |
| |
| /* Code is forced into this spin loop when a divergence is detected */ |
| static void selfVerificationSpinLoop(ShadowSpace *shadowSpace) |
| { |
| const u2 *startPC = shadowSpace->startPC; |
| JitTraceDescription* desc = dvmCopyTraceDescriptor(startPC, NULL); |
| if (desc) { |
| dvmCompilerWorkEnqueue(startPC, kWorkOrderTraceDebug, desc); |
| /* |
| * This function effectively terminates the VM right here, so not |
| * freeing the desc pointer when the enqueuing fails is acceptable. |
| */ |
| } |
| gDvmJit.selfVerificationSpin = true; |
| while(gDvmJit.selfVerificationSpin) sleep(10); |
| } |
| |
| /* Manage self verification while in the debug interpreter */ |
| static bool selfVerificationDebugInterp(const u2* pc, Thread* self, |
| InterpState *interpState) |
| { |
| ShadowSpace *shadowSpace = self->shadowSpace; |
| SelfVerificationState state = shadowSpace->selfVerificationState; |
| |
| DecodedInstruction decInsn; |
| dexDecodeInstruction(gDvm.instrFormat, pc, &decInsn); |
| |
| //LOGD("### DbgIntp(%d): PC: 0x%x endPC: 0x%x state: %d len: %d %s", |
| // self->threadId, (int)pc, (int)shadowSpace->endPC, state, |
| // shadowSpace->traceLength, getOpcodeName(decInsn.opCode)); |
| |
| if (state == kSVSIdle || state == kSVSStart) { |
| LOGD("~~~ DbgIntrp: INCORRECT PREVIOUS STATE(%d): %d", |
| self->threadId, state); |
| selfVerificationDumpState(pc, self); |
| selfVerificationDumpTrace(pc, self); |
| } |
| |
| /* |
| * Skip endPC once when trace has a backward branch. If the SV state is |
| * single step, keep it that way. |
| */ |
| if ((state == kSVSBackwardBranch && pc == shadowSpace->endPC) || |
| (state != kSVSBackwardBranch && state != kSVSSingleStep)) { |
| shadowSpace->selfVerificationState = kSVSDebugInterp; |
| } |
| |
| /* Check that the current pc is the end of the trace */ |
| if ((state == kSVSDebugInterp || state == kSVSSingleStep) && |
| pc == shadowSpace->endPC) { |
| |
| shadowSpace->selfVerificationState = kSVSIdle; |
| |
| /* Check register space */ |
| int frameBytes = (int) shadowSpace->registerSpace + |
| shadowSpace->registerSpaceSize*4 - |
| (int) shadowSpace->shadowFP; |
| if (memcmp(shadowSpace->fp, shadowSpace->shadowFP, frameBytes)) { |
| LOGD("~~~ DbgIntp(%d): REGISTERS DIVERGENCE!", self->threadId); |
| selfVerificationDumpState(pc, self); |
| selfVerificationDumpTrace(pc, self); |
| LOGD("*** Interp Registers: addr: 0x%x bytes: %d", |
| (int)shadowSpace->fp, frameBytes); |
| selfVerificationPrintRegisters((int*)shadowSpace->fp, |
| (int*)shadowSpace->shadowFP, |
| frameBytes/4); |
| LOGD("*** Shadow Registers: addr: 0x%x bytes: %d", |
| (int)shadowSpace->shadowFP, frameBytes); |
| selfVerificationPrintRegisters((int*)shadowSpace->shadowFP, |
| (int*)shadowSpace->fp, |
| frameBytes/4); |
| selfVerificationSpinLoop(shadowSpace); |
| } |
| /* Check new frame if it exists (invokes only) */ |
| if (self->curFrame < shadowSpace->fp) { |
| StackSaveArea* stackSave = SAVEAREA_FROM_FP(self->curFrame); |
| int localRegs = (stackSave->method->registersSize - |
| stackSave->method->insSize)*4; |
| int frameBytes2 = (int) shadowSpace->fp - |
| (int) self->curFrame - localRegs; |
| if (memcmp(((char*)self->curFrame)+localRegs, |
| ((char*)shadowSpace->endShadowFP)+localRegs, frameBytes2)) { |
| LOGD("~~~ DbgIntp(%d): REGISTERS (FRAME2) DIVERGENCE!", |
| self->threadId); |
| selfVerificationDumpState(pc, self); |
| selfVerificationDumpTrace(pc, self); |
| LOGD("*** Interp Registers: addr: 0x%x l: %d bytes: %d", |
| (int)self->curFrame, localRegs, frameBytes2); |
| selfVerificationPrintRegisters((int*)self->curFrame, |
| (int*)shadowSpace->endShadowFP, |
| (frameBytes2+localRegs)/4); |
| LOGD("*** Shadow Registers: addr: 0x%x l: %d bytes: %d", |
| (int)shadowSpace->endShadowFP, localRegs, frameBytes2); |
| selfVerificationPrintRegisters((int*)shadowSpace->endShadowFP, |
| (int*)self->curFrame, |
| (frameBytes2+localRegs)/4); |
| selfVerificationSpinLoop(shadowSpace); |
| } |
| } |
| |
| /* Check memory space */ |
| bool memDiff = false; |
| ShadowHeap* heapSpacePtr; |
| for (heapSpacePtr = shadowSpace->heapSpace; |
| heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { |
| int memData = *((unsigned int*) heapSpacePtr->addr); |
| if (heapSpacePtr->data != memData) { |
| LOGD("~~~ DbgIntp(%d): MEMORY DIVERGENCE!", self->threadId); |
| LOGD("Addr: 0x%x Intrp Data: 0x%x Jit Data: 0x%x", |
| heapSpacePtr->addr, memData, heapSpacePtr->data); |
| selfVerificationDumpState(pc, self); |
| selfVerificationDumpTrace(pc, self); |
| memDiff = true; |
| } |
| } |
| if (memDiff) selfVerificationSpinLoop(shadowSpace); |
| |
| /* |
| * Switch to JIT single step mode to stay in the debug interpreter for |
| * one more instruction |
| */ |
| if (state == kSVSSingleStep) { |
| interpState->jitState = kJitSingleStepEnd; |
| } |
| return true; |
| |
| /* If end not been reached, make sure max length not exceeded */ |
| } else if (shadowSpace->traceLength >= JIT_MAX_TRACE_LEN) { |
| LOGD("~~~ DbgIntp(%d): CONTROL DIVERGENCE!", self->threadId); |
| LOGD("startPC: 0x%x endPC: 0x%x currPC: 0x%x", |
| (int)shadowSpace->startPC, (int)shadowSpace->endPC, (int)pc); |
| selfVerificationDumpState(pc, self); |
| selfVerificationDumpTrace(pc, self); |
| selfVerificationSpinLoop(shadowSpace); |
| |
| return true; |
| } |
| /* Log the instruction address and decoded instruction for debug */ |
| shadowSpace->trace[shadowSpace->traceLength].addr = (int)pc; |
| shadowSpace->trace[shadowSpace->traceLength].decInsn = decInsn; |
| shadowSpace->traceLength++; |
| |
| return false; |
| } |
| #endif |
| |
| /* |
| * If one of our fixed tables or the translation buffer fills up, |
| * call this routine to avoid wasting cycles on future translation requests. |
| */ |
| void dvmJitStopTranslationRequests() |
| { |
| /* |
| * Note 1: This won't necessarily stop all translation requests, and |
| * operates on a delayed mechanism. Running threads look to the copy |
| * of this value in their private InterpState structures and won't see |
| * this change until it is refreshed (which happens on interpreter |
| * entry). |
| * Note 2: This is a one-shot memory leak on this table. Because this is a |
| * permanent off switch for Jit profiling, it is a one-time leak of 1K |
| * bytes, and no further attempt will be made to re-allocate it. Can't |
| * free it because some thread may be holding a reference. |
| */ |
| gDvmJit.pProfTable = NULL; |
| } |
| |
| #if defined(JIT_STATS) |
| /* Convenience function to increment counter from assembly code */ |
| void dvmBumpNoChain(int from) |
| { |
| gDvmJit.noChainExit[from]++; |
| } |
| |
| /* Convenience function to increment counter from assembly code */ |
| void dvmBumpNormal() |
| { |
| gDvmJit.normalExit++; |
| } |
| |
| /* Convenience function to increment counter from assembly code */ |
| void dvmBumpPunt(int from) |
| { |
| gDvmJit.puntExit++; |
| } |
| #endif |
| |
| /* Dumps debugging & tuning stats to the log */ |
| void dvmJitStats() |
| { |
| int i; |
| int hit; |
| int not_hit; |
| int chains; |
| int stubs; |
| if (gDvmJit.pJitEntryTable) { |
| for (i=0, stubs=chains=hit=not_hit=0; |
| i < (int) gDvmJit.jitTableSize; |
| i++) { |
| if (gDvmJit.pJitEntryTable[i].dPC != 0) { |
| hit++; |
| if (gDvmJit.pJitEntryTable[i].codeAddress == |
| gDvmJit.interpretTemplate) |
| stubs++; |
| } else |
| not_hit++; |
| if (gDvmJit.pJitEntryTable[i].u.info.chain != gDvmJit.jitTableSize) |
| chains++; |
| } |
| LOGD("JIT: table size is %d, entries used is %d", |
| gDvmJit.jitTableSize, gDvmJit.jitTableEntriesUsed); |
| LOGD("JIT: %d traces, %d slots, %d chains, %d thresh, %s", |
| hit, not_hit + hit, chains, gDvmJit.threshold, |
| gDvmJit.blockingMode ? "Blocking" : "Non-blocking"); |
| |
| #if defined(JIT_STATS) |
| LOGD("JIT: Lookups: %d hits, %d misses; %d normal, %d punt", |
| gDvmJit.addrLookupsFound, gDvmJit.addrLookupsNotFound, |
| gDvmJit.normalExit, gDvmJit.puntExit); |
| |
| LOGD("JIT: noChainExit: %d IC miss, %d interp callsite, " |
| "%d switch overflow", |
| gDvmJit.noChainExit[kInlineCacheMiss], |
| gDvmJit.noChainExit[kCallsiteInterpreted], |
| gDvmJit.noChainExit[kSwitchOverflow]); |
| |
| LOGD("JIT: ICPatch: %d fast, %d queued; %d dropped", |
| gDvmJit.icPatchFast, gDvmJit.icPatchQueued, |
| gDvmJit.icPatchDropped); |
| |
| LOGD("JIT: Invoke: %d mono, %d poly, %d native, %d return", |
| gDvmJit.invokeMonomorphic, gDvmJit.invokePolymorphic, |
| gDvmJit.invokeNative, gDvmJit.returnOp); |
| LOGD("JIT: Total compilation time: %llu ms", gDvmJit.jitTime / 1000); |
| LOGD("JIT: Avg unit compilation time: %llu us", |
| gDvmJit.jitTime / gDvmJit.numCompilations); |
| #endif |
| |
| LOGD("JIT: %d Translation chains, %d interp stubs", |
| gDvmJit.translationChains, stubs); |
| if (gDvmJit.profile) { |
| dvmCompilerSortAndPrintTraceProfiles(); |
| } |
| } |
| } |
| |
| |
| void setTraceConstruction(JitEntry *slot, bool value) |
| { |
| |
| JitEntryInfoUnion oldValue; |
| JitEntryInfoUnion newValue; |
| do { |
| oldValue = slot->u; |
| newValue = oldValue; |
| newValue.info.traceConstruction = value; |
| } while (!ATOMIC_CMP_SWAP( &slot->u.infoWord, |
| oldValue.infoWord, newValue.infoWord)); |
| } |
| |
| void resetTracehead(InterpState* interpState, JitEntry *slot) |
| { |
| slot->codeAddress = gDvmJit.interpretTemplate; |
| setTraceConstruction(slot, false); |
| } |
| |
| /* Clean up any pending trace builds */ |
| void dvmJitAbortTraceSelect(InterpState* interpState) |
| { |
| if (interpState->jitState == kJitTSelect) |
| interpState->jitState = kJitDone; |
| } |
| |
| /* |
| * Find an entry in the JitTable, creating if necessary. |
| * Returns null if table is full. |
| */ |
| static JitEntry *lookupAndAdd(const u2* dPC, bool callerLocked) |
| { |
| u4 chainEndMarker = gDvmJit.jitTableSize; |
| u4 idx = dvmJitHash(dPC); |
| |
| /* Walk the bucket chain to find an exact match for our PC */ |
| while ((gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) && |
| (gDvmJit.pJitEntryTable[idx].dPC != dPC)) { |
| idx = gDvmJit.pJitEntryTable[idx].u.info.chain; |
| } |
| |
| if (gDvmJit.pJitEntryTable[idx].dPC != dPC) { |
| /* |
| * No match. Aquire jitTableLock and find the last |
| * slot in the chain. Possibly continue the chain walk in case |
| * some other thread allocated the slot we were looking |
| * at previuosly (perhaps even the dPC we're trying to enter). |
| */ |
| if (!callerLocked) |
| dvmLockMutex(&gDvmJit.tableLock); |
| /* |
| * At this point, if .dPC is NULL, then the slot we're |
| * looking at is the target slot from the primary hash |
| * (the simple, and common case). Otherwise we're going |
| * to have to find a free slot and chain it. |
| */ |
| MEM_BARRIER(); /* Make sure we reload [].dPC after lock */ |
| if (gDvmJit.pJitEntryTable[idx].dPC != NULL) { |
| u4 prev; |
| while (gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) { |
| if (gDvmJit.pJitEntryTable[idx].dPC == dPC) { |
| /* Another thread got there first for this dPC */ |
| if (!callerLocked) |
| dvmUnlockMutex(&gDvmJit.tableLock); |
| return &gDvmJit.pJitEntryTable[idx]; |
| } |
| idx = gDvmJit.pJitEntryTable[idx].u.info.chain; |
| } |
| /* Here, idx should be pointing to the last cell of an |
| * active chain whose last member contains a valid dPC */ |
| assert(gDvmJit.pJitEntryTable[idx].dPC != NULL); |
| /* Linear walk to find a free cell and add it to the end */ |
| prev = idx; |
| while (true) { |
| idx++; |
| if (idx == chainEndMarker) |
| idx = 0; /* Wraparound */ |
| if ((gDvmJit.pJitEntryTable[idx].dPC == NULL) || |
| (idx == prev)) |
| break; |
| } |
| if (idx != prev) { |
| JitEntryInfoUnion oldValue; |
| JitEntryInfoUnion newValue; |
| /* |
| * Although we hold the lock so that noone else will |
| * be trying to update a chain field, the other fields |
| * packed into the word may be in use by other threads. |
| */ |
| do { |
| oldValue = gDvmJit.pJitEntryTable[prev].u; |
| newValue = oldValue; |
| newValue.info.chain = idx; |
| } while (!ATOMIC_CMP_SWAP( |
| &gDvmJit.pJitEntryTable[prev].u.infoWord, |
| oldValue.infoWord, newValue.infoWord)); |
| } |
| } |
| if (gDvmJit.pJitEntryTable[idx].dPC == NULL) { |
| /* |
| * Initialize codeAddress and allocate the slot. Must |
| * happen in this order (since dPC is set, the entry is live. |
| */ |
| gDvmJit.pJitEntryTable[idx].dPC = dPC; |
| gDvmJit.jitTableEntriesUsed++; |
| } else { |
| /* Table is full */ |
| idx = chainEndMarker; |
| } |
| if (!callerLocked) |
| dvmUnlockMutex(&gDvmJit.tableLock); |
| } |
| return (idx == chainEndMarker) ? NULL : &gDvmJit.pJitEntryTable[idx]; |
| } |
| |
| /* |
| * Adds to the current trace request one instruction at a time, just |
| * before that instruction is interpreted. This is the primary trace |
| * selection function. NOTE: return instruction are handled a little |
| * differently. In general, instructions are "proposed" to be added |
| * to the current trace prior to interpretation. If the interpreter |
| * then successfully completes the instruction, is will be considered |
| * part of the request. This allows us to examine machine state prior |
| * to interpretation, and also abort the trace request if the instruction |
| * throws or does something unexpected. However, return instructions |
| * will cause an immediate end to the translation request - which will |
| * be passed to the compiler before the return completes. This is done |
| * in response to special handling of returns by the interpreter (and |
| * because returns cannot throw in a way that causes problems for the |
| * translated code. |
| */ |
| int dvmCheckJit(const u2* pc, Thread* self, InterpState* interpState) |
| { |
| int flags,i,len; |
| int switchInterp = false; |
| bool debugOrProfile = dvmDebuggerOrProfilerActive(); |
| |
| /* Prepare to handle last PC and stage the current PC */ |
| const u2 *lastPC = interpState->lastPC; |
| interpState->lastPC = pc; |
| |
| switch (interpState->jitState) { |
| char* nopStr; |
| int target; |
| int offset; |
| DecodedInstruction decInsn; |
| case kJitTSelect: |
| /* First instruction - just remember the PC and exit */ |
| if (lastPC == NULL) break; |
| /* Grow the trace around the last PC if jitState is kJitTSelect */ |
| dexDecodeInstruction(gDvm.instrFormat, lastPC, &decInsn); |
| |
| /* |
| * Treat {PACKED,SPARSE}_SWITCH as trace-ending instructions due |
| * to the amount of space it takes to generate the chaining |
| * cells. |
| */ |
| if (interpState->totalTraceLen != 0 && |
| (decInsn.opCode == OP_PACKED_SWITCH || |
| decInsn.opCode == OP_SPARSE_SWITCH)) { |
| interpState->jitState = kJitTSelectEnd; |
| break; |
| } |
| |
| |
| #if defined(SHOW_TRACE) |
| LOGD("TraceGen: adding %s",getOpcodeName(decInsn.opCode)); |
| #endif |
| flags = dexGetInstrFlags(gDvm.instrFlags, decInsn.opCode); |
| len = dexGetInstrOrTableWidthAbs(gDvm.instrWidth, lastPC); |
| offset = lastPC - interpState->method->insns; |
| assert((unsigned) offset < |
| dvmGetMethodInsnsSize(interpState->method)); |
| if (lastPC != interpState->currRunHead + interpState->currRunLen) { |
| int currTraceRun; |
| /* We need to start a new trace run */ |
| currTraceRun = ++interpState->currTraceRun; |
| interpState->currRunLen = 0; |
| interpState->currRunHead = (u2*)lastPC; |
| interpState->trace[currTraceRun].frag.startOffset = offset; |
| interpState->trace[currTraceRun].frag.numInsts = 0; |
| interpState->trace[currTraceRun].frag.runEnd = false; |
| interpState->trace[currTraceRun].frag.hint = kJitHintNone; |
| } |
| interpState->trace[interpState->currTraceRun].frag.numInsts++; |
| interpState->totalTraceLen++; |
| interpState->currRunLen += len; |
| |
| /* Will probably never hit this with the current trace buildier */ |
| if (interpState->currTraceRun == (MAX_JIT_RUN_LEN - 1)) { |
| interpState->jitState = kJitTSelectEnd; |
| } |
| |
| if ( ((flags & kInstrUnconditional) == 0) && |
| /* don't end trace on INVOKE_DIRECT_EMPTY */ |
| (decInsn.opCode != OP_INVOKE_DIRECT_EMPTY) && |
| ((flags & (kInstrCanBranch | |
| kInstrCanSwitch | |
| kInstrCanReturn | |
| kInstrInvoke)) != 0)) { |
| interpState->jitState = kJitTSelectEnd; |
| #if defined(SHOW_TRACE) |
| LOGD("TraceGen: ending on %s, basic block end", |
| getOpcodeName(decInsn.opCode)); |
| #endif |
| } |
| /* Break on throw or self-loop */ |
| if ((decInsn.opCode == OP_THROW) || (lastPC == pc)){ |
| interpState->jitState = kJitTSelectEnd; |
| } |
| if (interpState->totalTraceLen >= JIT_MAX_TRACE_LEN) { |
| interpState->jitState = kJitTSelectEnd; |
| } |
| /* Abandon the trace request if debugger/profiler is attached */ |
| if (debugOrProfile) { |
| interpState->jitState = kJitDone; |
| break; |
| } |
| if ((flags & kInstrCanReturn) != kInstrCanReturn) { |
| break; |
| } |
| /* NOTE: intentional fallthrough for returns */ |
| case kJitTSelectEnd: |
| { |
| /* Bad trace */ |
| if (interpState->totalTraceLen == 0) { |
| /* Bad trace - mark as untranslatable */ |
| interpState->jitState = kJitDone; |
| switchInterp = true; |
| break; |
| } |
| JitTraceDescription* desc = |
| (JitTraceDescription*)malloc(sizeof(JitTraceDescription) + |
| sizeof(JitTraceRun) * (interpState->currTraceRun+1)); |
| if (desc == NULL) { |
| LOGE("Out of memory in trace selection"); |
| dvmJitStopTranslationRequests(); |
| interpState->jitState = kJitDone; |
| switchInterp = true; |
| break; |
| } |
| interpState->trace[interpState->currTraceRun].frag.runEnd = |
| true; |
| desc->method = interpState->method; |
| memcpy((char*)&(desc->trace[0]), |
| (char*)&(interpState->trace[0]), |
| sizeof(JitTraceRun) * (interpState->currTraceRun+1)); |
| #if defined(SHOW_TRACE) |
| LOGD("TraceGen: trace done, adding to queue"); |
| #endif |
| if (dvmCompilerWorkEnqueue( |
| interpState->currTraceHead,kWorkOrderTrace,desc)) { |
| /* Work order successfully enqueued */ |
| if (gDvmJit.blockingMode) { |
| dvmCompilerDrainQueue(); |
| } |
| } else { |
| /* |
| * Make sure the descriptor for the abandoned work order is |
| * freed. |
| */ |
| free(desc); |
| } |
| /* |
| * Reset "trace in progress" flag whether or not we |
| * successfully entered a work order. |
| */ |
| JitEntry *jitEntry = |
| lookupAndAdd(interpState->currTraceHead, false); |
| if (jitEntry) { |
| setTraceConstruction(jitEntry, false); |
| } |
| interpState->jitState = kJitDone; |
| switchInterp = true; |
| } |
| break; |
| case kJitSingleStep: |
| interpState->jitState = kJitSingleStepEnd; |
| break; |
| case kJitSingleStepEnd: |
| interpState->entryPoint = kInterpEntryResume; |
| interpState->jitState = kJitDone; |
| switchInterp = true; |
| break; |
| case kJitDone: |
| switchInterp = true; |
| break; |
| #if defined(WITH_SELF_VERIFICATION) |
| case kJitSelfVerification: |
| if (selfVerificationDebugInterp(pc, self, interpState)) { |
| /* |
| * If the next state is not single-step end, we can switch |
| * interpreter now. |
| */ |
| if (interpState->jitState != kJitSingleStepEnd) { |
| interpState->jitState = kJitDone; |
| switchInterp = true; |
| } |
| } |
| break; |
| #endif |
| /* |
| * If the debug interpreter was entered for non-JIT reasons, check if |
| * the original reason still holds. If not, we have to force the |
| * interpreter switch here and use dvmDebuggerOrProfilerActive instead |
| * of dvmJitDebuggerOrProfilerActive since the latter will alwasy |
| * return true when the debugger/profiler is already detached and the |
| * JIT profiling table is restored. |
| */ |
| case kJitNot: |
| switchInterp = !dvmDebuggerOrProfilerActive(); |
| break; |
| default: |
| LOGE("Unexpected JIT state: %d entry point: %d", |
| interpState->jitState, interpState->entryPoint); |
| dvmAbort(); |
| break; |
| } |
| /* |
| * Final check to see if we can really switch the interpreter. Make sure |
| * the jitState is kJitDone or kJitNot when switchInterp is set to true. |
| */ |
| assert(switchInterp == false || interpState->jitState == kJitDone || |
| interpState->jitState == kJitNot); |
| return switchInterp && !debugOrProfile; |
| } |
| |
| JitEntry *dvmFindJitEntry(const u2* pc) |
| { |
| int idx = dvmJitHash(pc); |
| |
| /* Expect a high hit rate on 1st shot */ |
| if (gDvmJit.pJitEntryTable[idx].dPC == pc) |
| return &gDvmJit.pJitEntryTable[idx]; |
| else { |
| int chainEndMarker = gDvmJit.jitTableSize; |
| while (gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) { |
| idx = gDvmJit.pJitEntryTable[idx].u.info.chain; |
| if (gDvmJit.pJitEntryTable[idx].dPC == pc) |
| return &gDvmJit.pJitEntryTable[idx]; |
| } |
| } |
| return NULL; |
| } |
| |
| /* |
| * If a translated code address exists for the davik byte code |
| * pointer return it. This routine needs to be fast. |
| */ |
| void* dvmJitGetCodeAddr(const u2* dPC) |
| { |
| int idx = dvmJitHash(dPC); |
| const u2* npc = gDvmJit.pJitEntryTable[idx].dPC; |
| if (npc != NULL) { |
| bool hideTranslation = (gDvm.sumThreadSuspendCount != 0) || |
| (gDvmJit.codeCacheFull == true) || |
| (gDvmJit.pProfTable == NULL); |
| |
| if (npc == dPC) { |
| #if defined(JIT_STATS) |
| gDvmJit.addrLookupsFound++; |
| #endif |
| return hideTranslation ? |
| NULL : gDvmJit.pJitEntryTable[idx].codeAddress; |
| } else { |
| int chainEndMarker = gDvmJit.jitTableSize; |
| while (gDvmJit.pJitEntryTable[idx].u.info.chain != chainEndMarker) { |
| idx = gDvmJit.pJitEntryTable[idx].u.info.chain; |
| if (gDvmJit.pJitEntryTable[idx].dPC == dPC) { |
| #if defined(JIT_STATS) |
| gDvmJit.addrLookupsFound++; |
| #endif |
| return hideTranslation ? |
| NULL : gDvmJit.pJitEntryTable[idx].codeAddress; |
| } |
| } |
| } |
| } |
| #if defined(JIT_STATS) |
| gDvmJit.addrLookupsNotFound++; |
| #endif |
| return NULL; |
| } |
| |
| /* |
| * Register the translated code pointer into the JitTable. |
| * NOTE: Once a codeAddress field transitions from initial state to |
| * JIT'd code, it must not be altered without first halting all |
| * threads. This routine should only be called by the compiler |
| * thread. |
| */ |
| void dvmJitSetCodeAddr(const u2* dPC, void *nPC, JitInstructionSetType set) { |
| JitEntryInfoUnion oldValue; |
| JitEntryInfoUnion newValue; |
| JitEntry *jitEntry = lookupAndAdd(dPC, false); |
| assert(jitEntry); |
| /* Note: order of update is important */ |
| do { |
| oldValue = jitEntry->u; |
| newValue = oldValue; |
| newValue.info.instructionSet = set; |
| } while (!ATOMIC_CMP_SWAP( |
| &jitEntry->u.infoWord, |
| oldValue.infoWord, newValue.infoWord)); |
| jitEntry->codeAddress = nPC; |
| } |
| |
| /* |
| * Determine if valid trace-bulding request is active. Return true |
| * if we need to abort and switch back to the fast interpreter, false |
| * otherwise. |
| */ |
| bool dvmJitCheckTraceRequest(Thread* self, InterpState* interpState) |
| { |
| bool switchInterp = false; /* Assume success */ |
| int i; |
| intptr_t filterKey = ((intptr_t) interpState->pc) >> |
| JIT_TRACE_THRESH_FILTER_GRAN_LOG2; |
| bool debugOrProfile = dvmDebuggerOrProfilerActive(); |
| |
| /* Check if the JIT request can be handled now */ |
| if (gDvmJit.pJitEntryTable != NULL && debugOrProfile == false) { |
| /* Bypass the filter for hot trace requests or during stress mode */ |
| if (interpState->jitState == kJitTSelectRequest && |
| gDvmJit.threshold > 6) { |
| /* Two-level filtering scheme */ |
| for (i=0; i< JIT_TRACE_THRESH_FILTER_SIZE; i++) { |
| if (filterKey == interpState->threshFilter[i]) { |
| break; |
| } |
| } |
| if (i == JIT_TRACE_THRESH_FILTER_SIZE) { |
| /* |
| * Use random replacement policy - otherwise we could miss a |
| * large loop that contains more traces than the size of our |
| * filter array. |
| */ |
| i = rand() % JIT_TRACE_THRESH_FILTER_SIZE; |
| interpState->threshFilter[i] = filterKey; |
| interpState->jitState = kJitDone; |
| } |
| } |
| |
| /* If the compiler is backlogged, cancel any JIT actions */ |
| if (gDvmJit.compilerQueueLength >= gDvmJit.compilerHighWater) { |
| interpState->jitState = kJitDone; |
| } |
| |
| /* |
| * Check for additional reasons that might force the trace select |
| * request to be dropped |
| */ |
| if (interpState->jitState == kJitTSelectRequest || |
| interpState->jitState == kJitTSelectRequestHot) { |
| JitEntry *slot = lookupAndAdd(interpState->pc, false); |
| if (slot == NULL) { |
| /* |
| * Table is full. This should have been |
| * detected by the compiler thread and the table |
| * resized before we run into it here. Assume bad things |
| * are afoot and disable profiling. |
| */ |
| interpState->jitState = kJitDone; |
| LOGD("JIT: JitTable full, disabling profiling"); |
| dvmJitStopTranslationRequests(); |
| } else if (slot->u.info.traceConstruction) { |
| /* |
| * Trace request already in progress, but most likely it |
| * aborted without cleaning up. Assume the worst and |
| * mark trace head as untranslatable. If we're wrong, |
| * the compiler thread will correct the entry when the |
| * translation is completed. The downside here is that |
| * some existing translation may chain to the interpret-only |
| * template instead of the real translation during this |
| * window. Performance, but not correctness, issue. |
| */ |
| interpState->jitState = kJitDone; |
| resetTracehead(interpState, slot); |
| } else if (slot->codeAddress) { |
| /* Nothing to do here - just return */ |
| interpState->jitState = kJitDone; |
| } else { |
| /* |
| * Mark request. Note, we are not guaranteed exclusivity |
| * here. A window exists for another thread to be |
| * attempting to build this same trace. Rather than |
| * bear the cost of locking, we'll just allow that to |
| * happen. The compiler thread, if it chooses, can |
| * discard redundant requests. |
| */ |
| setTraceConstruction(slot, true); |
| } |
| } |
| |
| switch (interpState->jitState) { |
| case kJitTSelectRequest: |
| case kJitTSelectRequestHot: |
| interpState->jitState = kJitTSelect; |
| interpState->currTraceHead = interpState->pc; |
| interpState->currTraceRun = 0; |
| interpState->totalTraceLen = 0; |
| interpState->currRunHead = interpState->pc; |
| interpState->currRunLen = 0; |
| interpState->trace[0].frag.startOffset = |
| interpState->pc - interpState->method->insns; |
| interpState->trace[0].frag.numInsts = 0; |
| interpState->trace[0].frag.runEnd = false; |
| interpState->trace[0].frag.hint = kJitHintNone; |
| interpState->lastPC = 0; |
| break; |
| /* |
| * For JIT's perspective there is no need to stay in the debug |
| * interpreter unless debugger/profiler is attached. |
| */ |
| case kJitDone: |
| switchInterp = true; |
| break; |
| default: |
| LOGE("Unexpected JIT state: %d entry point: %d", |
| interpState->jitState, interpState->entryPoint); |
| dvmAbort(); |
| } |
| } else { |
| /* |
| * Cannot build trace this time - ready to leave the dbg interpreter |
| */ |
| interpState->jitState = kJitDone; |
| switchInterp = true; |
| } |
| |
| /* |
| * Final check to see if we can really switch the interpreter. Make sure |
| * the jitState is kJitDone when switchInterp is set to true. |
| */ |
| assert(switchInterp == false || interpState->jitState == kJitDone); |
| return switchInterp && !debugOrProfile; |
| } |
| |
| /* |
| * Resizes the JitTable. Must be a power of 2, and returns true on failure. |
| * Stops all threads, and thus is a heavyweight operation. May only be called |
| * by the compiler thread. |
| */ |
| bool dvmJitResizeJitTable( unsigned int size ) |
| { |
| JitEntry *pNewTable; |
| JitEntry *pOldTable; |
| JitEntry tempEntry; |
| u4 newMask; |
| unsigned int oldSize; |
| unsigned int i; |
| |
| assert(gDvmJit.pJitEntryTable != NULL); |
| assert(size && !(size & (size - 1))); /* Is power of 2? */ |
| |
| LOGI("Jit: resizing JitTable from %d to %d", gDvmJit.jitTableSize, size); |
| |
| newMask = size - 1; |
| |
| if (size <= gDvmJit.jitTableSize) { |
| return true; |
| } |
| |
| /* Make sure requested size is compatible with chain field width */ |
| tempEntry.u.info.chain = size; |
| if (tempEntry.u.info.chain != size) { |
| LOGD("Jit: JitTable request of %d too big", size); |
| return true; |
| } |
| |
| pNewTable = (JitEntry*)calloc(size, sizeof(*pNewTable)); |
| if (pNewTable == NULL) { |
| return true; |
| } |
| for (i=0; i< size; i++) { |
| pNewTable[i].u.info.chain = size; /* Initialize chain termination */ |
| } |
| |
| /* Stop all other interpreting/jit'ng threads */ |
| dvmSuspendAllThreads(SUSPEND_FOR_TBL_RESIZE); |
| |
| pOldTable = gDvmJit.pJitEntryTable; |
| oldSize = gDvmJit.jitTableSize; |
| |
| dvmLockMutex(&gDvmJit.tableLock); |
| gDvmJit.pJitEntryTable = pNewTable; |
| gDvmJit.jitTableSize = size; |
| gDvmJit.jitTableMask = size - 1; |
| gDvmJit.jitTableEntriesUsed = 0; |
| |
| for (i=0; i < oldSize; i++) { |
| if (pOldTable[i].dPC) { |
| JitEntry *p; |
| u2 chain; |
| p = lookupAndAdd(pOldTable[i].dPC, true /* holds tableLock*/ ); |
| p->codeAddress = pOldTable[i].codeAddress; |
| /* We need to preserve the new chain field, but copy the rest */ |
| chain = p->u.info.chain; |
| p->u = pOldTable[i].u; |
| p->u.info.chain = chain; |
| } |
| } |
| dvmUnlockMutex(&gDvmJit.tableLock); |
| |
| free(pOldTable); |
| |
| /* Restart the world */ |
| dvmResumeAllThreads(SUSPEND_FOR_TBL_RESIZE); |
| |
| return false; |
| } |
| |
| /* |
| * Reset the JitTable to the initial clean state. |
| */ |
| void dvmJitResetTable(void) |
| { |
| JitEntry *jitEntry = gDvmJit.pJitEntryTable; |
| unsigned int size = gDvmJit.jitTableSize; |
| unsigned int i; |
| |
| dvmLockMutex(&gDvmJit.tableLock); |
| memset((void *) jitEntry, 0, sizeof(JitEntry) * size); |
| for (i=0; i< size; i++) { |
| jitEntry[i].u.info.chain = size; /* Initialize chain termination */ |
| } |
| gDvmJit.jitTableEntriesUsed = 0; |
| dvmUnlockMutex(&gDvmJit.tableLock); |
| } |
| |
| /* |
| * Float/double conversion requires clamping to min and max of integer form. If |
| * target doesn't support this normally, use these. |
| */ |
| s8 dvmJitd2l(double d) |
| { |
| static const double kMaxLong = (double)(s8)0x7fffffffffffffffULL; |
| static const double kMinLong = (double)(s8)0x8000000000000000ULL; |
| if (d >= kMaxLong) |
| return (s8)0x7fffffffffffffffULL; |
| else if (d <= kMinLong) |
| return (s8)0x8000000000000000ULL; |
| else if (d != d) // NaN case |
| return 0; |
| else |
| return (s8)d; |
| } |
| |
| s8 dvmJitf2l(float f) |
| { |
| static const float kMaxLong = (float)(s8)0x7fffffffffffffffULL; |
| static const float kMinLong = (float)(s8)0x8000000000000000ULL; |
| if (f >= kMaxLong) |
| return (s8)0x7fffffffffffffffULL; |
| else if (f <= kMinLong) |
| return (s8)0x8000000000000000ULL; |
| else if (f != f) // NaN case |
| return 0; |
| else |
| return (s8)f; |
| } |
| |
| #endif /* WITH_JIT */ |