| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* |
| * Read-only access to Zip archives, with minimal heap allocation. |
| */ |
| #include "ZipArchive.h" |
| |
| #include <zlib.h> |
| |
| #include <stdlib.h> |
| #include <unistd.h> |
| #include <string.h> |
| #include <fcntl.h> |
| #include <errno.h> |
| |
| #include <JNIHelp.h> // TEMP_FAILURE_RETRY may or may not be in unistd |
| |
| |
| /* |
| * Zip file constants. |
| */ |
| #define kEOCDSignature 0x06054b50 |
| #define kEOCDLen 22 |
| #define kEOCDNumEntries 8 // offset to #of entries in file |
| #define kEOCDSize 12 // size of the central directory |
| #define kEOCDFileOffset 16 // offset to central directory |
| |
| #define kMaxCommentLen 65535 // longest possible in ushort |
| #define kMaxEOCDSearch (kMaxCommentLen + kEOCDLen) |
| |
| #define kLFHSignature 0x04034b50 |
| #define kLFHLen 30 // excluding variable-len fields |
| #define kLFHNameLen 26 // offset to filename length |
| #define kLFHExtraLen 28 // offset to extra length |
| |
| #define kCDESignature 0x02014b50 |
| #define kCDELen 46 // excluding variable-len fields |
| #define kCDEMethod 10 // offset to compression method |
| #define kCDEModWhen 12 // offset to modification timestamp |
| #define kCDECRC 16 // offset to entry CRC |
| #define kCDECompLen 20 // offset to compressed length |
| #define kCDEUncompLen 24 // offset to uncompressed length |
| #define kCDENameLen 28 // offset to filename length |
| #define kCDEExtraLen 30 // offset to extra length |
| #define kCDECommentLen 32 // offset to comment length |
| #define kCDELocalOffset 42 // offset to local hdr |
| |
| /* |
| * The values we return for ZipEntry use 0 as an invalid value, so we |
| * want to adjust the hash table index by a fixed amount. Using a large |
| * value helps insure that people don't mix & match arguments, e.g. with |
| * entry indices. |
| */ |
| #define kZipEntryAdj 10000 |
| |
| /* |
| * Convert a ZipEntry to a hash table index, verifying that it's in a |
| * valid range. |
| */ |
| static int entryToIndex(const ZipArchive* pArchive, const ZipEntry entry) |
| { |
| long ent = ((long) entry) - kZipEntryAdj; |
| if (ent < 0 || ent >= pArchive->mHashTableSize || |
| pArchive->mHashTable[ent].name == NULL) |
| { |
| LOGW("Zip: invalid ZipEntry %p (%ld)\n", entry, ent); |
| return -1; |
| } |
| return ent; |
| } |
| |
| /* |
| * Simple string hash function for non-null-terminated strings. |
| */ |
| static unsigned int computeHash(const char* str, int len) |
| { |
| unsigned int hash = 0; |
| |
| while (len--) |
| hash = hash * 31 + *str++; |
| |
| return hash; |
| } |
| |
| /* |
| * Add a new entry to the hash table. |
| */ |
| static void addToHash(ZipArchive* pArchive, const char* str, int strLen, |
| unsigned int hash) |
| { |
| const int hashTableSize = pArchive->mHashTableSize; |
| int ent = hash & (hashTableSize - 1); |
| |
| /* |
| * We over-allocated the table, so we're guaranteed to find an empty slot. |
| */ |
| while (pArchive->mHashTable[ent].name != NULL) |
| ent = (ent + 1) & (hashTableSize-1); |
| |
| pArchive->mHashTable[ent].name = str; |
| pArchive->mHashTable[ent].nameLen = strLen; |
| } |
| |
| /* |
| * Get 2 little-endian bytes. |
| */ |
| static u2 get2LE(unsigned char const* pSrc) |
| { |
| return pSrc[0] | (pSrc[1] << 8); |
| } |
| |
| /* |
| * Get 4 little-endian bytes. |
| */ |
| static u4 get4LE(unsigned char const* pSrc) |
| { |
| u4 result; |
| |
| result = pSrc[0]; |
| result |= pSrc[1] << 8; |
| result |= pSrc[2] << 16; |
| result |= pSrc[3] << 24; |
| |
| return result; |
| } |
| |
| /* |
| * Find the zip Central Directory and memory-map it. |
| * |
| * On success, returns 0 after populating fields from the EOCD area: |
| * mDirectoryOffset |
| * mDirectoryMap |
| * mNumEntries |
| */ |
| static int mapCentralDirectory(int fd, const char* debugFileName, |
| ZipArchive* pArchive) |
| { |
| u1* scanBuf = NULL; |
| int result = -1; |
| |
| /* |
| * Get and test file length. |
| */ |
| off_t fileLength = lseek(fd, 0, SEEK_END); |
| if (fileLength < kEOCDLen) { |
| LOGV("Zip: length %ld is too small to be zip\n", (long) fileLength); |
| goto bail; |
| } |
| |
| /* |
| * Perform the traditional EOCD snipe hunt. |
| * |
| * We're searching for the End of Central Directory magic number, |
| * which appears at the start of the EOCD block. It's followed by |
| * 18 bytes of EOCD stuff and up to 64KB of archive comment. We |
| * need to read the last part of the file into a buffer, dig through |
| * it to find the magic number, parse some values out, and use those |
| * to determine the extent of the CD. |
| * |
| * We start by pulling in the last part of the file. |
| */ |
| size_t readAmount = kMaxEOCDSearch; |
| if (readAmount > (size_t) fileLength) |
| readAmount = fileLength; |
| off_t searchStart = fileLength - readAmount; |
| |
| scanBuf = (u1*) malloc(readAmount); |
| if (lseek(fd, searchStart, SEEK_SET) != searchStart) { |
| LOGW("Zip: seek %ld failed: %s\n", (long) searchStart, strerror(errno)); |
| goto bail; |
| } |
| ssize_t actual = TEMP_FAILURE_RETRY(read(fd, scanBuf, readAmount)); |
| if (actual != (ssize_t) readAmount) { |
| LOGW("Zip: read %zd failed: %s\n", readAmount, strerror(errno)); |
| goto bail; |
| } |
| |
| /* |
| * Scan backward for the EOCD magic. In an archive without a trailing |
| * comment, we'll find it on the first try. (We may want to consider |
| * doing an initial minimal read; if we don't find it, retry with a |
| * second read as above.) |
| */ |
| int i; |
| for (i = readAmount - kEOCDLen; i >= 0; i--) { |
| if (scanBuf[i] == 0x50 && get4LE(&scanBuf[i]) == kEOCDSignature) { |
| LOGV("+++ Found EOCD at buf+%d\n", i); |
| break; |
| } |
| } |
| if (i < 0) { |
| LOGD("Zip: EOCD not found, %s is not zip\n", debugFileName); |
| goto bail; |
| } |
| |
| off_t eocdOffset = searchStart + i; |
| const u1* eocdPtr = scanBuf + i; |
| |
| assert(eocdOffset < fileLength); |
| |
| /* |
| * Grab the CD offset and size, and the number of entries in the |
| * archive. Verify that they look reasonable. |
| */ |
| u4 numEntries = get2LE(eocdPtr + kEOCDNumEntries); |
| u4 dirSize = get4LE(eocdPtr + kEOCDSize); |
| u4 dirOffset = get4LE(eocdPtr + kEOCDFileOffset); |
| |
| if ((long long) dirOffset + (long long) dirSize > (long long) eocdOffset) { |
| LOGW("Zip: bad offsets (dir %ld, size %u, eocd %ld)\n", |
| (long) dirOffset, dirSize, (long) eocdOffset); |
| goto bail; |
| } |
| if (numEntries == 0) { |
| LOGW("Zip: empty archive?\n"); |
| goto bail; |
| } |
| |
| LOGV("+++ numEntries=%d dirSize=%d dirOffset=%d\n", |
| numEntries, dirSize, dirOffset); |
| |
| /* |
| * It all looks good. Create a mapping for the CD, and set the fields |
| * in pArchive. |
| */ |
| if (sysMapFileSegmentInShmem(fd, dirOffset, dirSize, |
| &pArchive->mDirectoryMap) != 0) |
| { |
| LOGW("Zip: cd map failed\n"); |
| goto bail; |
| } |
| |
| pArchive->mNumEntries = numEntries; |
| pArchive->mDirectoryOffset = dirOffset; |
| |
| result = 0; |
| |
| bail: |
| free(scanBuf); |
| return result; |
| } |
| |
| /* |
| * Parses the Zip archive's Central Directory. Allocates and populates the |
| * hash table. |
| * |
| * Returns 0 on success. |
| */ |
| static int parseZipArchive(ZipArchive* pArchive) |
| { |
| int result = -1; |
| const u1* cdPtr = (const u1*)pArchive->mDirectoryMap.addr; |
| size_t cdLength = pArchive->mDirectoryMap.length; |
| int numEntries = pArchive->mNumEntries; |
| |
| /* |
| * Create hash table. We have a minimum 75% load factor, possibly as |
| * low as 50% after we round off to a power of 2. There must be at |
| * least one unused entry to avoid an infinite loop during creation. |
| */ |
| pArchive->mHashTableSize = dexRoundUpPower2(1 + (numEntries * 4) / 3); |
| pArchive->mHashTable = (ZipHashEntry*) |
| calloc(pArchive->mHashTableSize, sizeof(ZipHashEntry)); |
| |
| /* |
| * Walk through the central directory, adding entries to the hash |
| * table and verifying values. |
| */ |
| const u1* ptr = cdPtr; |
| int i; |
| for (i = 0; i < numEntries; i++) { |
| if (get4LE(ptr) != kCDESignature) { |
| LOGW("Zip: missed a central dir sig (at %d)\n", i); |
| goto bail; |
| } |
| if (ptr + kCDELen > cdPtr + cdLength) { |
| LOGW("Zip: ran off the end (at %d)\n", i); |
| goto bail; |
| } |
| |
| long localHdrOffset = (long) get4LE(ptr + kCDELocalOffset); |
| if (localHdrOffset >= pArchive->mDirectoryOffset) { |
| LOGW("Zip: bad LFH offset %ld at entry %d\n", localHdrOffset, i); |
| goto bail; |
| } |
| |
| unsigned int fileNameLen, extraLen, commentLen, hash; |
| fileNameLen = get2LE(ptr + kCDENameLen); |
| extraLen = get2LE(ptr + kCDEExtraLen); |
| commentLen = get2LE(ptr + kCDECommentLen); |
| |
| /* add the CDE filename to the hash table */ |
| hash = computeHash((const char*)ptr + kCDELen, fileNameLen); |
| addToHash(pArchive, (const char*)ptr + kCDELen, fileNameLen, hash); |
| |
| ptr += kCDELen + fileNameLen + extraLen + commentLen; |
| if ((size_t)(ptr - cdPtr) > cdLength) { |
| LOGW("Zip: bad CD advance (%d vs %zd) at entry %d\n", |
| (int) (ptr - cdPtr), cdLength, i); |
| goto bail; |
| } |
| } |
| LOGV("+++ zip good scan %d entries\n", numEntries); |
| |
| result = 0; |
| |
| bail: |
| return result; |
| } |
| |
| /* |
| * Open the specified file read-only. We examine the contents and verify |
| * that it appears to be a valid zip file. |
| * |
| * This will be called on non-Zip files, especially during VM startup, so |
| * we don't want to be too noisy about certain types of failure. (Do |
| * we want a "quiet" flag?) |
| * |
| * On success, we fill out the contents of "pArchive" and return 0. On |
| * failure we return the errno value. |
| */ |
| int dexZipOpenArchive(const char* fileName, ZipArchive* pArchive) |
| { |
| int fd, err; |
| |
| LOGV("Opening as zip '%s' %p\n", fileName, pArchive); |
| |
| memset(pArchive, 0, sizeof(ZipArchive)); |
| |
| fd = open(fileName, O_RDONLY, 0); |
| if (fd < 0) { |
| err = errno ? errno : -1; |
| LOGV("Unable to open '%s': %s\n", fileName, strerror(err)); |
| return err; |
| } |
| |
| return dexZipPrepArchive(fd, fileName, pArchive); |
| } |
| |
| /* |
| * Prepare to access a ZipArchive through an open file descriptor. |
| * |
| * On success, we fill out the contents of "pArchive" and return 0. |
| */ |
| int dexZipPrepArchive(int fd, const char* debugFileName, ZipArchive* pArchive) |
| { |
| int result = -1; |
| |
| memset(pArchive, 0, sizeof(*pArchive)); |
| pArchive->mFd = fd; |
| |
| if (mapCentralDirectory(fd, debugFileName, pArchive) != 0) |
| goto bail; |
| |
| if (parseZipArchive(pArchive) != 0) { |
| LOGV("Zip: parsing '%s' failed\n", debugFileName); |
| goto bail; |
| } |
| |
| /* success */ |
| result = 0; |
| |
| bail: |
| if (result != 0) |
| dexZipCloseArchive(pArchive); |
| return result; |
| } |
| |
| |
| /* |
| * Close a ZipArchive, closing the file and freeing the contents. |
| * |
| * NOTE: the ZipArchive may not have been fully created. |
| */ |
| void dexZipCloseArchive(ZipArchive* pArchive) |
| { |
| LOGV("Closing archive %p\n", pArchive); |
| |
| if (pArchive->mFd >= 0) |
| close(pArchive->mFd); |
| |
| sysReleaseShmem(&pArchive->mDirectoryMap); |
| |
| free(pArchive->mHashTable); |
| |
| /* ensure nobody tries to use the ZipArchive after it's closed */ |
| pArchive->mDirectoryOffset = -1; |
| pArchive->mFd = -1; |
| pArchive->mNumEntries = -1; |
| pArchive->mHashTableSize = -1; |
| pArchive->mHashTable = NULL; |
| } |
| |
| |
| /* |
| * Find a matching entry. |
| * |
| * Returns 0 if not found. |
| */ |
| ZipEntry dexZipFindEntry(const ZipArchive* pArchive, const char* entryName) |
| { |
| int nameLen = strlen(entryName); |
| unsigned int hash = computeHash(entryName, nameLen); |
| const int hashTableSize = pArchive->mHashTableSize; |
| int ent = hash & (hashTableSize-1); |
| |
| while (pArchive->mHashTable[ent].name != NULL) { |
| if (pArchive->mHashTable[ent].nameLen == nameLen && |
| memcmp(pArchive->mHashTable[ent].name, entryName, nameLen) == 0) |
| { |
| /* match */ |
| return (ZipEntry)(long)(ent + kZipEntryAdj); |
| } |
| |
| ent = (ent + 1) & (hashTableSize-1); |
| } |
| |
| return NULL; |
| } |
| |
| #if 0 |
| /* |
| * Find the Nth entry. |
| * |
| * This currently involves walking through the sparse hash table, counting |
| * non-empty entries. If we need to speed this up we can either allocate |
| * a parallel lookup table or (perhaps better) provide an iterator interface. |
| */ |
| ZipEntry findEntryByIndex(ZipArchive* pArchive, int idx) |
| { |
| if (idx < 0 || idx >= pArchive->mNumEntries) { |
| LOGW("Invalid index %d\n", idx); |
| return NULL; |
| } |
| |
| int ent; |
| for (ent = 0; ent < pArchive->mHashTableSize; ent++) { |
| if (pArchive->mHashTable[ent].name != NULL) { |
| if (idx-- == 0) |
| return (ZipEntry) (ent + kZipEntryAdj); |
| } |
| } |
| |
| return NULL; |
| } |
| #endif |
| |
| /* |
| * Get the useful fields from the zip entry. |
| * |
| * Returns non-zero if the contents of the fields (particularly the data |
| * offset) appear to be bogus. |
| */ |
| int dexZipGetEntryInfo(const ZipArchive* pArchive, ZipEntry entry, |
| int* pMethod, size_t* pUncompLen, size_t* pCompLen, off_t* pOffset, |
| long* pModWhen, long* pCrc32) |
| { |
| int ent = entryToIndex(pArchive, entry); |
| if (ent < 0) |
| return -1; |
| |
| /* |
| * Recover the start of the central directory entry from the filename |
| * pointer. The filename is the first entry past the fixed-size data, |
| * so we can just subtract back from that. |
| */ |
| const unsigned char* basePtr = (const unsigned char*) |
| pArchive->mDirectoryMap.addr; |
| const unsigned char* ptr = (const unsigned char*) |
| pArchive->mHashTable[ent].name; |
| off_t cdOffset = pArchive->mDirectoryOffset; |
| |
| ptr -= kCDELen; |
| |
| int method = get2LE(ptr + kCDEMethod); |
| if (pMethod != NULL) |
| *pMethod = method; |
| |
| if (pModWhen != NULL) |
| *pModWhen = get4LE(ptr + kCDEModWhen); |
| if (pCrc32 != NULL) |
| *pCrc32 = get4LE(ptr + kCDECRC); |
| |
| size_t compLen = get4LE(ptr + kCDECompLen); |
| if (pCompLen != NULL) |
| *pCompLen = compLen; |
| size_t uncompLen = get4LE(ptr + kCDEUncompLen); |
| if (pUncompLen != NULL) |
| *pUncompLen = uncompLen; |
| |
| /* |
| * If requested, determine the offset of the start of the data. All we |
| * have is the offset to the Local File Header, which is variable size, |
| * so we have to read the contents of the struct to figure out where |
| * the actual data starts. |
| * |
| * We also need to make sure that the lengths are not so large that |
| * somebody trying to map the compressed or uncompressed data runs |
| * off the end of the mapped region. |
| * |
| * Note we don't verify compLen/uncompLen if they don't request the |
| * dataOffset, because dataOffset is expensive to determine. However, |
| * if they don't have the file offset, they're not likely to be doing |
| * anything with the contents. |
| */ |
| if (pOffset != NULL) { |
| long localHdrOffset = (long) get4LE(ptr + kCDELocalOffset); |
| if (localHdrOffset + kLFHLen >= cdOffset) { |
| LOGW("Zip: bad local hdr offset in zip\n"); |
| return -1; |
| } |
| |
| u1 lfhBuf[kLFHLen]; |
| if (lseek(pArchive->mFd, localHdrOffset, SEEK_SET) != localHdrOffset) { |
| LOGW("Zip: failed seeking to lfh at offset %ld\n", localHdrOffset); |
| return -1; |
| } |
| ssize_t actual = |
| TEMP_FAILURE_RETRY(read(pArchive->mFd, lfhBuf, sizeof(lfhBuf))); |
| if (actual != sizeof(lfhBuf)) { |
| LOGW("Zip: failed reading lfh from offset %ld\n", localHdrOffset); |
| return -1; |
| } |
| |
| if (get4LE(lfhBuf) != kLFHSignature) { |
| LOGW("Zip: didn't find signature at start of lfh, offset=%ld\n", |
| localHdrOffset); |
| return -1; |
| } |
| |
| off_t dataOffset = localHdrOffset + kLFHLen |
| + get2LE(lfhBuf + kLFHNameLen) + get2LE(lfhBuf + kLFHExtraLen); |
| if (dataOffset >= cdOffset) { |
| LOGW("Zip: bad data offset %ld in zip\n", (long) dataOffset); |
| return -1; |
| } |
| |
| /* check lengths */ |
| if ((off_t)(dataOffset + compLen) > cdOffset) { |
| LOGW("Zip: bad compressed length in zip (%ld + %zd > %ld)\n", |
| (long) dataOffset, compLen, (long) cdOffset); |
| return -1; |
| } |
| |
| if (method == kCompressStored && |
| (off_t)(dataOffset + uncompLen) > cdOffset) |
| { |
| LOGW("Zip: bad uncompressed length in zip (%ld + %zd > %ld)\n", |
| (long) dataOffset, uncompLen, (long) cdOffset); |
| return -1; |
| } |
| |
| *pOffset = dataOffset; |
| } |
| return 0; |
| } |
| |
| /* |
| * Uncompress "deflate" data from the archive's file to an open file |
| * descriptor. |
| */ |
| static int inflateToFile(int inFd, int outFd, size_t uncompLen, size_t compLen) |
| { |
| int result = -1; |
| const size_t kBufSize = 32768; |
| unsigned char* readBuf = (unsigned char*) malloc(kBufSize); |
| unsigned char* writeBuf = (unsigned char*) malloc(kBufSize); |
| z_stream zstream; |
| int zerr; |
| |
| if (readBuf == NULL || writeBuf == NULL) |
| goto bail; |
| |
| /* |
| * Initialize the zlib stream struct. |
| */ |
| memset(&zstream, 0, sizeof(zstream)); |
| zstream.zalloc = Z_NULL; |
| zstream.zfree = Z_NULL; |
| zstream.opaque = Z_NULL; |
| zstream.next_in = NULL; |
| zstream.avail_in = 0; |
| zstream.next_out = (Bytef*) writeBuf; |
| zstream.avail_out = kBufSize; |
| zstream.data_type = Z_UNKNOWN; |
| |
| /* |
| * Use the undocumented "negative window bits" feature to tell zlib |
| * that there's no zlib header waiting for it. |
| */ |
| zerr = inflateInit2(&zstream, -MAX_WBITS); |
| if (zerr != Z_OK) { |
| if (zerr == Z_VERSION_ERROR) { |
| LOGE("Installed zlib is not compatible with linked version (%s)\n", |
| ZLIB_VERSION); |
| } else { |
| LOGW("Call to inflateInit2 failed (zerr=%d)\n", zerr); |
| } |
| goto bail; |
| } |
| |
| /* |
| * Loop while we have more to do. |
| */ |
| do { |
| /* read as much as we can */ |
| if (zstream.avail_in == 0) { |
| size_t getSize = (compLen > kBufSize) ? kBufSize : compLen; |
| |
| ssize_t actual = TEMP_FAILURE_RETRY(read(inFd, readBuf, getSize)); |
| if (actual != (ssize_t) getSize) { |
| LOGW("Zip: inflate read failed (%d vs %zd)\n", |
| (int)actual, getSize); |
| goto z_bail; |
| } |
| |
| compLen -= getSize; |
| |
| zstream.next_in = readBuf; |
| zstream.avail_in = getSize; |
| } |
| |
| /* uncompress the data */ |
| zerr = inflate(&zstream, Z_NO_FLUSH); |
| if (zerr != Z_OK && zerr != Z_STREAM_END) { |
| LOGW("Zip: inflate zerr=%d (nIn=%p aIn=%u nOut=%p aOut=%u)\n", |
| zerr, zstream.next_in, zstream.avail_in, |
| zstream.next_out, zstream.avail_out); |
| goto z_bail; |
| } |
| |
| /* write when we're full or when we're done */ |
| if (zstream.avail_out == 0 || |
| (zerr == Z_STREAM_END && zstream.avail_out != kBufSize)) |
| { |
| size_t writeSize = zstream.next_out - writeBuf; |
| if (sysWriteFully(outFd, writeBuf, writeSize, "Zip inflate") != 0) |
| goto z_bail; |
| |
| zstream.next_out = writeBuf; |
| zstream.avail_out = kBufSize; |
| } |
| } while (zerr == Z_OK); |
| |
| assert(zerr == Z_STREAM_END); /* other errors should've been caught */ |
| |
| /* paranoia */ |
| if (zstream.total_out != uncompLen) { |
| LOGW("Zip: size mismatch on inflated file (%ld vs %zd)\n", |
| zstream.total_out, uncompLen); |
| goto z_bail; |
| } |
| |
| result = 0; |
| |
| z_bail: |
| inflateEnd(&zstream); /* free up any allocated structures */ |
| |
| bail: |
| free(readBuf); |
| free(writeBuf); |
| return result; |
| } |
| |
| /* |
| * Copy bytes from input to output. |
| */ |
| static int copyFileToFile(int inFd, int outFd, size_t uncompLen) |
| { |
| const size_t kBufSize = 32768; |
| unsigned char buf[kBufSize]; |
| |
| while (uncompLen != 0) { |
| size_t getSize = (uncompLen > kBufSize) ? kBufSize : uncompLen; |
| |
| ssize_t actual = TEMP_FAILURE_RETRY(read(inFd, buf, getSize)); |
| if (actual != (ssize_t) getSize) { |
| LOGW("Zip: copy read failed (%d vs %zd)\n", (int)actual, getSize); |
| return -1; |
| } |
| |
| if (sysWriteFully(outFd, buf, getSize, "Zip copy") != 0) |
| return -1; |
| |
| uncompLen -= getSize; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Uncompress an entry, in its entirety, to an open file descriptor. |
| * |
| * TODO: this doesn't verify the data's CRC, but probably should (especially |
| * for uncompressed data). |
| */ |
| int dexZipExtractEntryToFile(const ZipArchive* pArchive, |
| const ZipEntry entry, int fd) |
| { |
| int result = -1; |
| int ent = entryToIndex(pArchive, entry); |
| if (ent < 0) { |
| LOGW("Zip: extract can't find entry %p\n", entry); |
| goto bail; |
| } |
| |
| int method; |
| size_t uncompLen, compLen; |
| off_t dataOffset; |
| |
| if (dexZipGetEntryInfo(pArchive, entry, &method, &uncompLen, &compLen, |
| &dataOffset, NULL, NULL) != 0) |
| { |
| goto bail; |
| } |
| if (lseek(pArchive->mFd, dataOffset, SEEK_SET) != dataOffset) { |
| LOGW("Zip: lseek to data at %ld failed\n", (long) dataOffset); |
| goto bail; |
| } |
| |
| if (method == kCompressStored) { |
| if (copyFileToFile(pArchive->mFd, fd, uncompLen) != 0) |
| goto bail; |
| } else { |
| if (inflateToFile(pArchive->mFd, fd, uncompLen, compLen) != 0) |
| goto bail; |
| } |
| |
| result = 0; |
| |
| bail: |
| return result; |
| } |