blob: 5a870147fda663935eb4e14444f190f2ec1b96ca [file] [log] [blame]
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Dalvik.h"
#include "libdex/OpCode.h"
#include "dexdump/OpCodeNames.h"
#include "../../CompilerInternals.h"
#include "ArmLIR.h"
#include <unistd.h> /* for cacheflush */
/*
* opcode: ArmOpCode enum
* skeleton: pre-designated bit-pattern for this opcode
* k0: key to applying ds/de
* ds: dest start bit position
* de: dest end bit position
* k1: key to applying s1s/s1e
* s1s: src1 start bit position
* s1e: src1 end bit position
* k2: key to applying s2s/s2e
* s2s: src2 start bit position
* s2e: src2 end bit position
* operands: number of operands (for sanity check purposes)
* name: mnemonic name
* fmt: for pretty-prining
*/
#define ENCODING_MAP(opcode, skeleton, k0, ds, de, k1, s1s, s1e, k2, s2s, s2e, \
operands, name, fmt, size) \
{skeleton, {{k0, ds, de}, {k1, s1s, s1e}, {k2, s2s, s2e}}, \
opcode, operands, name, fmt, size}
/* Instruction dump string format keys: !pf, where "!" is the start
* of the key, "p" is which numeric operand to use and "f" is the
* print format.
*
* [p]ositions:
* 0 -> operands[0] (dest)
* 1 -> operands[1] (src1)
* 2 -> operands[2] (src2)
*
* [f]ormats:
* h -> 4-digit hex
* d -> decimal
* D -> decimal+8 (used to convert 3-bit regnum field to high reg)
* E -> decimal*4
* F -> decimal*2
* c -> branch condition (beq, bne, etc.)
* t -> pc-relative target
* u -> 1st half of bl[x] target
* v -> 2nd half ob bl[x] target
* R -> register list
*
* [!] escape. To insert "!", use "!!"
*/
/* NOTE: must be kept in sync with enum ArmOpcode from ArmLIR.h */
ArmEncodingMap EncodingMap[ARM_LAST] = {
ENCODING_MAP(ARM_16BIT_DATA, 0x0000,
BITBLT, 15, 0, UNUSED, -1, -1, UNUSED, -1, -1,
IS_UNARY_OP,
"data", "0x!0h(!0d)", 1),
ENCODING_MAP(THUMB_ADC, 0x4140,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"adc", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_ADD_RRI3, 0x1c00,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
IS_TERTIARY_OP | CLOBBER_DEST,
"add", "r!0d, r!1d, #!2d", 1),
ENCODING_MAP(THUMB_ADD_RI8, 0x3000,
BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"add", "r!0d, r!0d, #!1d", 1),
ENCODING_MAP(THUMB_ADD_RRR, 0x1800,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
IS_TERTIARY_OP | CLOBBER_DEST,
"add", "r!0d, r!1d, r!2d", 1),
ENCODING_MAP(THUMB_ADD_RR_LH, 0x4440,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"add",
"r!0d, r!1d", 1),
ENCODING_MAP(THUMB_ADD_RR_HL, 0x4480,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"add", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_ADD_RR_HH, 0x44c0,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"add", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_ADD_PC_REL, 0xa000,
BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
IS_TERTIARY_OP | CLOBBER_DEST,
"add", "r!0d, pc, #!1E", 1),
ENCODING_MAP(THUMB_ADD_SP_REL, 0xa800,
BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"add", "r!0d, sp, #!1E", 1),
ENCODING_MAP(THUMB_ADD_SPI7, 0xb000,
BITBLT, 6, 0, UNUSED, -1, -1, UNUSED, -1, -1,
IS_UNARY_OP | CLOBBER_DEST,
"add", "sp, #!0d*4", 1),
ENCODING_MAP(THUMB_AND_RR, 0x4000,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"and", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_ASR, 0x1000,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
IS_TERTIARY_OP | CLOBBER_DEST,
"asr", "r!0d, r!1d, #!2d", 1),
ENCODING_MAP(THUMB_ASRV, 0x4100,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"asr", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_B_COND, 0xd000,
BITBLT, 7, 0, BITBLT, 11, 8, UNUSED, -1, -1,
IS_BINARY_OP | IS_BRANCH,
"!1c", "!0t", 1),
ENCODING_MAP(THUMB_B_UNCOND, 0xe000,
BITBLT, 10, 0, UNUSED, -1, -1, UNUSED, -1, -1,
NO_OPERAND | IS_BRANCH,
"b", "!0t", 1),
ENCODING_MAP(THUMB_BIC, 0x4380,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"bic", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_BKPT, 0xbe00,
BITBLT, 7, 0, UNUSED, -1, -1, UNUSED, -1, -1,
IS_UNARY_OP | IS_BRANCH,
"bkpt", "!0d", 1),
ENCODING_MAP(THUMB_BLX_1, 0xf000,
BITBLT, 10, 0, UNUSED, -1, -1, UNUSED, -1, -1,
IS_BINARY_OP | IS_BRANCH,
"blx_1", "!0u", 1),
ENCODING_MAP(THUMB_BLX_2, 0xe800,
BITBLT, 10, 0, UNUSED, -1, -1, UNUSED, -1, -1,
IS_BINARY_OP | IS_BRANCH,
"blx_2", "!0v", 1),
ENCODING_MAP(THUMB_BL_1, 0xf000,
BITBLT, 10, 0, UNUSED, -1, -1, UNUSED, -1, -1,
IS_UNARY_OP | IS_BRANCH,
"bl_1", "!0u", 1),
ENCODING_MAP(THUMB_BL_2, 0xf800,
BITBLT, 10, 0, UNUSED, -1, -1, UNUSED, -1, -1,
IS_UNARY_OP | IS_BRANCH,
"bl_2", "!0v", 1),
ENCODING_MAP(THUMB_BLX_R, 0x4780,
BITBLT, 6, 3, UNUSED, -1, -1, UNUSED, -1, -1,
IS_UNARY_OP | IS_BRANCH,
"blx", "r!0d", 1),
ENCODING_MAP(THUMB_BX, 0x4700,
BITBLT, 6, 3, UNUSED, -1, -1, UNUSED, -1, -1,
IS_UNARY_OP | IS_BRANCH,
"bx", "r!0d", 1),
ENCODING_MAP(THUMB_CMN, 0x42c0,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP,
"cmn", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_CMP_RI8, 0x2800,
BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
IS_BINARY_OP,
"cmp", "r!0d, #!1d", 1),
ENCODING_MAP(THUMB_CMP_RR, 0x4280,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP,
"cmp", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_CMP_LH, 0x4540,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP,
"cmp", "r!0d, r!1D", 1),
ENCODING_MAP(THUMB_CMP_HL, 0x4580,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP,
"cmp", "r!0D, r!1d", 1),
ENCODING_MAP(THUMB_CMP_HH, 0x45c0,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP,
"cmp", "r!0D, r!1D", 1),
ENCODING_MAP(THUMB_EOR, 0x4040,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"eor", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_LDMIA, 0xc800,
BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST | CLOBBER_SRC1,
"ldmia", "r!0d!!, <!1R>", 1),
ENCODING_MAP(THUMB_LDR_RRI5, 0x6800,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
IS_TERTIARY_OP | CLOBBER_DEST,
"ldr", "r!0d, [r!1d, #!2E]", 1),
ENCODING_MAP(THUMB_LDR_RRR, 0x5800,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
IS_TERTIARY_OP | CLOBBER_DEST,
"ldr", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(THUMB_LDR_PC_REL, 0x4800,
BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
IS_TERTIARY_OP | CLOBBER_DEST,
"ldr", "r!0d, [pc, #!1E]", 1),
ENCODING_MAP(THUMB_LDR_SP_REL, 0x9800,
BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"ldr", "r!0d, [sp, #!1E]", 1),
ENCODING_MAP(THUMB_LDRB_RRI5, 0x7800,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
IS_TERTIARY_OP | CLOBBER_DEST,
"ldrb", "r!0d, [r!1d, #2d]", 1),
ENCODING_MAP(THUMB_LDRB_RRR, 0x5c00,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
IS_TERTIARY_OP | CLOBBER_DEST,
"ldrb", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(THUMB_LDRH_RRI5, 0x8800,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
IS_TERTIARY_OP | CLOBBER_DEST,
"ldrh", "r!0d, [r!1d, #!2F]", 1),
ENCODING_MAP(THUMB_LDRH_RRR, 0x5a00,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
IS_TERTIARY_OP | CLOBBER_DEST,
"ldrh", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(THUMB_LDRSB_RRR, 0x5600,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
IS_TERTIARY_OP | CLOBBER_DEST,
"ldrsb", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(THUMB_LDRSH_RRR, 0x5e00,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
IS_TERTIARY_OP | CLOBBER_DEST,
"ldrsh", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(THUMB_LSL, 0x0000,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
IS_TERTIARY_OP | CLOBBER_DEST,
"lsl", "r!0d, r!1d, #!2d", 1),
ENCODING_MAP(THUMB_LSLV, 0x4080,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"lsl", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_LSR, 0x0800,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
IS_TERTIARY_OP | CLOBBER_DEST,
"lsr", "r!0d, r!1d, #!2d", 1),
ENCODING_MAP(THUMB_LSRV, 0x40c0,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"lsr", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_MOV_IMM, 0x2000,
BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"mov", "r!0d, #!1d", 1),
ENCODING_MAP(THUMB_MOV_RR, 0x1c00,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"mov", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_MOV_RR_H2H, 0x46c0,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"mov", "r!0D, r!1D", 1),
ENCODING_MAP(THUMB_MOV_RR_H2L, 0x4640,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"mov", "r!0d, r!1D", 1),
ENCODING_MAP(THUMB_MOV_RR_L2H, 0x4680,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"mov", "r!0D, r!1d", 1),
ENCODING_MAP(THUMB_MUL, 0x4340,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"mul", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_MVN, 0x43c0,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"mvn", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_NEG, 0x4240,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"neg", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_ORR, 0x4300,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"orr", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_POP, 0xbc00,
BITBLT, 8, 0, UNUSED, -1, -1, UNUSED, -1, -1,
IS_UNARY_OP,
"pop", "<!0R>", 1),
ENCODING_MAP(THUMB_PUSH, 0xb400,
BITBLT, 8, 0, UNUSED, -1, -1, UNUSED, -1, -1,
IS_UNARY_OP,
"push", "<!0R>", 1),
ENCODING_MAP(THUMB_ROR, 0x41c0,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"ror", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_SBC, 0x4180,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"sbc", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB_STMIA, 0xc000,
BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_SRC1,
"stmia", "r!0d!!, <!1R>", 1),
ENCODING_MAP(THUMB_STR_RRI5, 0x6000,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
IS_TERTIARY_OP,
"str", "r!0d, [r!1d, #!2E]", 1),
ENCODING_MAP(THUMB_STR_RRR, 0x5000,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
IS_TERTIARY_OP,
"str", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(THUMB_STR_SP_REL, 0x9000,
BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
IS_BINARY_OP,
"str", "r!0d, [sp, #!1E]", 1),
ENCODING_MAP(THUMB_STRB_RRI5, 0x7000,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
IS_TERTIARY_OP,
"strb", "r!0d, [r!1d, #!2d]", 1),
ENCODING_MAP(THUMB_STRB_RRR, 0x5400,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
IS_TERTIARY_OP,
"strb", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(THUMB_STRH_RRI5, 0x8000,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 10, 6,
IS_TERTIARY_OP,
"strh", "r!0d, [r!1d, #!2F]", 1),
ENCODING_MAP(THUMB_STRH_RRR, 0x5200,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
IS_TERTIARY_OP,
"strh", "r!0d, [r!1d, r!2d]", 1),
ENCODING_MAP(THUMB_SUB_RRI3, 0x1e00,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
IS_TERTIARY_OP | CLOBBER_DEST,
"sub", "r!0d, r!1d, #!2d]", 1),
ENCODING_MAP(THUMB_SUB_RI8, 0x3800,
BITBLT, 10, 8, BITBLT, 7, 0, UNUSED, -1, -1,
IS_BINARY_OP | CLOBBER_DEST,
"sub", "r!0d, #!1d", 1),
ENCODING_MAP(THUMB_SUB_RRR, 0x1a00,
BITBLT, 2, 0, BITBLT, 5, 3, BITBLT, 8, 6,
IS_TERTIARY_OP | CLOBBER_DEST,
"sub", "r!0d, r!1d, r!2d", 1),
ENCODING_MAP(THUMB_SUB_SPI7, 0xb080,
BITBLT, 6, 0, UNUSED, -1, -1, UNUSED, -1, -1,
IS_UNARY_OP | CLOBBER_DEST,
"sub", "sp, #!0d", 1),
ENCODING_MAP(THUMB_SWI, 0xdf00,
BITBLT, 7, 0, UNUSED, -1, -1, UNUSED, -1, -1,
IS_UNARY_OP | IS_BRANCH,
"swi", "!0d", 1),
ENCODING_MAP(THUMB_TST, 0x4200,
BITBLT, 2, 0, BITBLT, 5, 3, UNUSED, -1, -1,
IS_UNARY_OP,
"tst", "r!0d, r!1d", 1),
ENCODING_MAP(THUMB2_VLDRS, 0xed900a00,
SFP, 22, 12, BITBLT, 19, 16, BITBLT, 7, 0,
IS_TERTIARY_OP,
"vldr", "s!0d, [r!1d, #!2E]", 2),
ENCODING_MAP(THUMB2_VLDRD, 0xed900b00,
DFP, 22, 12, BITBLT, 19, 16, BITBLT, 7, 0,
IS_TERTIARY_OP,
"vldr", "d!0d, [r!1d, #!2E]", 2),
ENCODING_MAP(THUMB2_VMULS, 0xee200a00,
SFP, 22, 12, SFP, 7, 16, SFP, 5, 0,
IS_TERTIARY_OP,
"vmuls", "s!0d, s!1d, s!2d", 2),
ENCODING_MAP(THUMB2_VMULD, 0xee200b00,
DFP, 22, 12, DFP, 7, 16, DFP, 5, 0,
IS_TERTIARY_OP,
"vmuld", "d!0d, d!1d, d!2d", 2),
ENCODING_MAP(THUMB2_VSTRS, 0xed800a00,
SFP, 22, 12, BITBLT, 19, 16, BITBLT, 7, 0,
IS_TERTIARY_OP,
"vstr", "s!0d, [r!1d, #!2E]", 2),
ENCODING_MAP(THUMB2_VSTRD, 0xed800b00,
DFP, 22, 12, BITBLT, 19, 16, BITBLT, 7, 0,
IS_TERTIARY_OP,
"vstr", "d!0d, [r!1d, #!2E]", 2),
ENCODING_MAP(THUMB2_VSUBS, 0xee300a40,
SFP, 22, 12, SFP, 7, 16, SFP, 5, 0,
IS_TERTIARY_OP,
"vsub", "s!0d, s!1d, s!2d", 2),
ENCODING_MAP(THUMB2_VSUBD, 0xee300b40,
DFP, 22, 12, DFP, 7, 16, DFP, 5, 0,
IS_TERTIARY_OP,
"vsub", "d!0d, s!1d, s!2d", 2),
ENCODING_MAP(THUMB2_VADDS, 0xee300a00,
SFP, 22, 12, SFP, 7, 16, SFP, 5, 0,
IS_TERTIARY_OP,
"vadd", "s!0d, s!1d, s!2d", 2),
ENCODING_MAP(THUMB2_VADDD, 0xee300b00,
DFP, 22, 12, DFP, 7, 16, DFP, 5, 0,
IS_TERTIARY_OP,
"vadd", "d!0d, s!1d, s!2d", 2),
ENCODING_MAP(THUMB2_VDIVS, 0xee800a00,
SFP, 22, 12, SFP, 7, 16, SFP, 5, 0,
IS_TERTIARY_OP,
"vdivs", "s!0d, s!1d, s!2d", 2),
ENCODING_MAP(THUMB2_VDIVD, 0xee800b00,
DFP, 22, 12, DFP, 7, 16, DFP, 5, 0,
IS_TERTIARY_OP,
"vdivs", "s!0d, s!1d, s!2d", 2),
ENCODING_MAP(THUMB2_VCVTIF, 0xeeb80ac0,
SFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1,
IS_BINARY_OP,
"vcvf.f32", "s!0d, s!1d", 2),
ENCODING_MAP(THUMB2_VCVTID, 0xeeb80bc0,
DFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1,
IS_BINARY_OP,
"vcvf.f64", "s!0d, s!1d", 2),
ENCODING_MAP(THUMB2_VCVTFI, 0xeebd0ac0,
SFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1,
IS_BINARY_OP,
"vcvf.s32.f32", "s!0d, s!1d", 2),
ENCODING_MAP(THUMB2_VCVTDI, 0xeebd0bc0,
SFP, 22, 12, DFP, 5, 0, UNUSED, -1, -1,
IS_BINARY_OP,
"vcvf.s32.f64", "s!0d, s!1d", 2),
ENCODING_MAP(THUMB2_VCVTFD, 0xeeb70ac0,
DFP, 22, 12, SFP, 5, 0, UNUSED, -1, -1,
IS_BINARY_OP,
"vcvf.f64.f32", "s!0d, s!1d", 2),
ENCODING_MAP(THUMB2_VCVTDF, 0xeeb70bc0,
SFP, 22, 12, DFP, 5, 0, UNUSED, -1, -1,
IS_BINARY_OP,
"vcvf.f32.f64", "s!0d, s!1d", 2),
};
#define PADDING_MOV_R0_R0 0x1C00
/* Write the numbers in the literal pool to the codegen stream */
static void installDataContent(CompilationUnit *cUnit)
{
int *dataPtr = (int *) ((char *) cUnit->baseAddr + cUnit->dataOffset);
ArmLIR *dataLIR = (ArmLIR *) cUnit->wordList;
while (dataLIR) {
*dataPtr++ = dataLIR->operands[0];
dataLIR = NEXT_LIR(dataLIR);
}
}
/* Returns the size of a Jit trace description */
static int jitTraceDescriptionSize(const JitTraceDescription *desc)
{
int runCount;
for (runCount = 0; ; runCount++) {
if (desc->trace[runCount].frag.runEnd)
break;
}
return sizeof(JitCodeDesc) + ((runCount+1) * sizeof(JitTraceRun));
}
/* Return TRUE if error happens */
static bool assembleInstructions(CompilationUnit *cUnit, intptr_t startAddr)
{
short *bufferAddr = (short *) cUnit->codeBuffer;
ArmLIR *lir;
for (lir = (ArmLIR *) cUnit->firstLIRInsn; lir; lir = NEXT_LIR(lir)) {
if (lir->opCode < 0) {
if ((lir->opCode == ARM_PSEUDO_ALIGN4) &&
/* 1 means padding is needed */
(lir->operands[0] == 1)) {
*bufferAddr++ = PADDING_MOV_R0_R0;
}
continue;
}
if (lir->isNop) {
continue;
}
if (lir->opCode == THUMB_LDR_PC_REL ||
lir->opCode == THUMB_ADD_PC_REL) {
ArmLIR *lirTarget = (ArmLIR *) lir->generic.target;
intptr_t pc = (lir->generic.offset + 4) & ~3;
/*
* Allow an offset (stored in operands[2] to be added to the
* PC-relative target. Useful to get to a fixed field inside a
* chaining cell.
*/
intptr_t target = lirTarget->generic.offset + lir->operands[2];
int delta = target - pc;
if (delta & 0x3) {
LOGE("PC-rel distance is not multiples of 4: %d\n", delta);
dvmAbort();
}
if (delta > 1023) {
return true;
}
lir->operands[1] = delta >> 2;
} else if (lir->opCode == THUMB_B_COND) {
ArmLIR *targetLIR = (ArmLIR *) lir->generic.target;
intptr_t pc = lir->generic.offset + 4;
intptr_t target = targetLIR->generic.offset;
int delta = target - pc;
if (delta > 254 || delta < -256) {
return true;
}
lir->operands[0] = delta >> 1;
} else if (lir->opCode == THUMB_B_UNCOND) {
ArmLIR *targetLIR = (ArmLIR *) lir->generic.target;
intptr_t pc = lir->generic.offset + 4;
intptr_t target = targetLIR->generic.offset;
int delta = target - pc;
if (delta > 2046 || delta < -2048) {
LOGE("Unconditional branch distance out of range: %d\n", delta);
dvmAbort();
}
lir->operands[0] = delta >> 1;
} else if (lir->opCode == THUMB_BLX_1) {
assert(NEXT_LIR(lir)->opCode == THUMB_BLX_2);
/* curPC is Thumb */
intptr_t curPC = (startAddr + lir->generic.offset + 4) & ~3;
intptr_t target = lir->operands[1];
/* Match bit[1] in target with base */
if (curPC & 0x2) {
target |= 0x2;
}
int delta = target - curPC;
assert((delta >= -(1<<22)) && (delta <= ((1<<22)-2)));
lir->operands[0] = (delta >> 12) & 0x7ff;
NEXT_LIR(lir)->operands[0] = (delta>> 1) & 0x7ff;
}
ArmEncodingMap *encoder = &EncodingMap[lir->opCode];
u4 bits = encoder->skeleton;
int i;
for (i = 0; i < 3; i++) {
u4 value;
switch(encoder->fieldLoc[i].kind) {
case UNUSED:
break;
case BITBLT:
value = (lir->operands[i] << encoder->fieldLoc[i].start) &
((1 << (encoder->fieldLoc[i].end + 1)) - 1);
bits |= value;
break;
case DFP:
/* Snag the 1-bit slice and position it */
value = ((lir->operands[i] & 0x10) >> 4) <<
encoder->fieldLoc[i].end;
/* Extract and position the 4-bit slice */
value |= (lir->operands[i] & 0x0f) <<
encoder->fieldLoc[i].start;
bits |= value;
break;
case SFP:
/* Snag the 1-bit slice and position it */
value = (lir->operands[i] & 0x1) <<
encoder->fieldLoc[i].end;
/* Extract and position the 4-bit slice */
value |= ((lir->operands[i] & 0x1e) >> 1) <<
encoder->fieldLoc[i].start;
bits |= value;
break;
case IMMSHIFT8:
case IMM12:
value = ((lir->operands[i] & 0x800) >> 11) << 26;
value |= ((lir->operands[i] & 0x700) >> 8) << 12;
value |= lir->operands[i] & 0x0ff;
break;
default:
assert(0);
}
}
if (encoder->size == 2) {
*bufferAddr++ = (bits >> 16) & 0xffff;
}
*bufferAddr++ = bits & 0xffff;
}
return false;
}
/*
* Translation layout in the code cache. Note that the codeAddress pointer
* in JitTable will point directly to the code body (field codeAddress). The
* chain cell offset codeAddress - 2, and (if present) executionCount is at
* codeAddress - 6.
*
* +----------------------------+
* | Execution count | -> [Optional] 4 bytes
* +----------------------------+
* +--| Offset to chain cell counts| -> 2 bytes
* | +----------------------------+
* | | Code body | -> Start address for translation
* | | | variable in 2-byte chunks
* | . . (JitTable's codeAddress points here)
* | . .
* | | |
* | +----------------------------+
* | | Chaining Cells | -> 8 bytes each, must be 4 byte aligned
* | . .
* | . .
* | | |
* | +----------------------------+
* +->| Chaining cell counts | -> 4 bytes, chain cell counts by type
* +----------------------------+
* | Trace description | -> variable sized
* . .
* | |
* +----------------------------+
* | Literal pool | -> 4-byte aligned, variable size
* . .
* . .
* | |
* +----------------------------+
*
* Go over each instruction in the list and calculate the offset from the top
* before sending them off to the assembler. If out-of-range branch distance is
* seen rearrange the instructions a bit to correct it.
*/
void dvmCompilerAssembleLIR(CompilationUnit *cUnit, JitTranslationInfo *info)
{
LIR *lir;
ArmLIR *armLIR;
int offset = 0;
int i;
ChainCellCounts chainCellCounts;
int descSize = jitTraceDescriptionSize(cUnit->traceDesc);
info->codeAddress = NULL;
info->instructionSet = cUnit->instructionSet;
/* Beginning offset needs to allow space for chain cell offset */
for (armLIR = (ArmLIR *) cUnit->firstLIRInsn;
armLIR;
armLIR = NEXT_LIR(armLIR)) {
armLIR->generic.offset = offset;
if (armLIR->opCode >= 0 && !armLIR->isNop) {
armLIR->size = EncodingMap[armLIR->opCode].size * 2;
offset += armLIR->size;
} else if (armLIR->opCode == ARM_PSEUDO_ALIGN4) {
if (offset & 0x2) {
offset += 2;
armLIR->operands[0] = 1;
} else {
armLIR->operands[0] = 0;
}
}
/* Pseudo opcodes don't consume space */
}
/* Const values have to be word aligned */
offset = (offset + 3) & ~3;
/* Add space for chain cell counts & trace description */
u4 chainCellOffset = offset;
ArmLIR *chainCellOffsetLIR = (ArmLIR *) cUnit->chainCellOffsetLIR;
assert(chainCellOffsetLIR);
assert(chainCellOffset < 0x10000);
assert(chainCellOffsetLIR->opCode == ARM_16BIT_DATA &&
chainCellOffsetLIR->operands[0] == CHAIN_CELL_OFFSET_TAG);
/*
* Replace the CHAIN_CELL_OFFSET_TAG with the real value. If trace
* profiling is enabled, subtract 4 (occupied by the counter word) from
* the absolute offset as the value stored in chainCellOffsetLIR is the
* delta from &chainCellOffsetLIR to &ChainCellCounts.
*/
chainCellOffsetLIR->operands[0] =
gDvmJit.profile ? (chainCellOffset - 4) : chainCellOffset;
offset += sizeof(chainCellCounts) + descSize;
assert((offset & 0x3) == 0); /* Should still be word aligned */
/* Set up offsets for literals */
cUnit->dataOffset = offset;
for (lir = cUnit->wordList; lir; lir = lir->next) {
lir->offset = offset;
offset += 4;
}
cUnit->totalSize = offset;
if (gDvmJit.codeCacheByteUsed + cUnit->totalSize > CODE_CACHE_SIZE) {
gDvmJit.codeCacheFull = true;
cUnit->baseAddr = NULL;
return;
}
/* Allocate enough space for the code block */
cUnit->codeBuffer = dvmCompilerNew(chainCellOffset, true);
if (cUnit->codeBuffer == NULL) {
LOGE("Code buffer allocation failure\n");
cUnit->baseAddr = NULL;
return;
}
bool assemblerFailure = assembleInstructions(
cUnit, (intptr_t) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed);
/*
* Currently the only reason that can cause the assembler to fail is due to
* trace length - cut it in half and retry.
*/
if (assemblerFailure) {
cUnit->halveInstCount = true;
return;
}
cUnit->baseAddr = (char *) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed;
gDvmJit.codeCacheByteUsed += offset;
/* Install the code block */
memcpy((char*)cUnit->baseAddr, cUnit->codeBuffer, chainCellOffset);
gDvmJit.numCompilations++;
/* Install the chaining cell counts */
for (i=0; i< CHAINING_CELL_LAST; i++) {
chainCellCounts.u.count[i] = cUnit->numChainingCells[i];
}
memcpy((char*)cUnit->baseAddr + chainCellOffset, &chainCellCounts,
sizeof(chainCellCounts));
/* Install the trace description */
memcpy((char*)cUnit->baseAddr + chainCellOffset + sizeof(chainCellCounts),
cUnit->traceDesc, descSize);
/* Write the literals directly into the code cache */
installDataContent(cUnit);
/* Flush dcache and invalidate the icache to maintain coherence */
cacheflush((long)cUnit->baseAddr,
(long)((char *) cUnit->baseAddr + offset), 0);
/* Record code entry point and instruction set */
info->codeAddress = (char*)cUnit->baseAddr + cUnit->headerSize;
info->instructionSet = cUnit->instructionSet;
/* If applicable, mark low bit to denote thumb */
if (info->instructionSet != DALVIK_JIT_ARM)
info->codeAddress = (char*)info->codeAddress + 1;
}
static u4 assembleBXPair(int branchOffset)
{
u4 thumb1, thumb2;
if ((branchOffset < -2048) | (branchOffset > 2046)) {
thumb1 = (0xf000 | ((branchOffset>>12) & 0x7ff));
thumb2 = (0xf800 | ((branchOffset>> 1) & 0x7ff));
} else {
thumb1 = (0xe000 | ((branchOffset>> 1) & 0x7ff));
thumb2 = 0x4300; /* nop -> or r0, r0 */
}
return thumb2<<16 | thumb1;
}
/*
* Perform translation chain operation.
* For ARM, we'll use a pair of thumb instructions to generate
* an unconditional chaining branch of up to 4MB in distance.
* Use a BL, though we don't really need the link. The format is
* 111HHooooooooooo
* Where HH is 10 for the 1st inst, and 11 for the second and
* the "o" field is each instruction's 11-bit contribution to the
* 22-bit branch offset.
* If the target is nearby, use a single-instruction bl.
* If one or more threads is suspended, don't chain.
*/
void* dvmJitChain(void* tgtAddr, u4* branchAddr)
{
int baseAddr = (u4) branchAddr + 4;
int branchOffset = (int) tgtAddr - baseAddr;
u4 newInst;
if (gDvm.sumThreadSuspendCount == 0) {
assert((branchOffset >= -(1<<22)) && (branchOffset <= ((1<<22)-2)));
gDvmJit.translationChains++;
COMPILER_TRACE_CHAINING(
LOGD("Jit Runtime: chaining 0x%x to 0x%x\n",
(int) branchAddr, (int) tgtAddr & -2));
newInst = assembleBXPair(branchOffset);
*branchAddr = newInst;
cacheflush((long)branchAddr, (long)branchAddr + 4, 0);
}
return tgtAddr;
}
/*
* This method is called from the invoke templates for virtual and interface
* methods to speculatively setup a chain to the callee. The templates are
* written in assembly and have setup method, cell, and clazz at r0, r2, and
* r3 respectively, so there is a unused argument in the list. Upon return one
* of the following three results may happen:
* 1) Chain is not setup because the callee is native. Reset the rechain
* count to a big number so that it will take a long time before the next
* rechain attempt to happen.
* 2) Chain is not setup because the callee has not been created yet. Reset
* the rechain count to a small number and retry in the near future.
* 3) Ask all other threads to stop before patching this chaining cell.
* This is required because another thread may have passed the class check
* but hasn't reached the chaining cell yet to follow the chain. If we
* patch the content before halting the other thread, there could be a
* small window for race conditions to happen that it may follow the new
* but wrong chain to invoke a different method.
*/
const Method *dvmJitToPatchPredictedChain(const Method *method,
void *unused,
PredictedChainingCell *cell,
const ClassObject *clazz)
{
/* Don't come back here for a long time if the method is native */
if (dvmIsNativeMethod(method)) {
cell->counter = PREDICTED_CHAIN_COUNTER_AVOID;
cacheflush((long) cell, (long) (cell+1), 0);
COMPILER_TRACE_CHAINING(
LOGD("Jit Runtime: predicted chain %p to native method %s ignored",
cell, method->name));
goto done;
}
int tgtAddr = (int) dvmJitGetCodeAddr(method->insns);
/*
* Compilation not made yet for the callee. Reset the counter to a small
* value and come back to check soon.
*/
if (tgtAddr == 0) {
/*
* Wait for a few invocations (currently set to be 16) before trying
* to setup the chain again.
*/
cell->counter = PREDICTED_CHAIN_COUNTER_DELAY;
cacheflush((long) cell, (long) (cell+1), 0);
COMPILER_TRACE_CHAINING(
LOGD("Jit Runtime: predicted chain %p to method %s delayed",
cell, method->name));
goto done;
}
/* Stop the world */
dvmSuspendAllThreads(SUSPEND_FOR_JIT);
int baseAddr = (int) cell + 4; // PC is cur_addr + 4
int branchOffset = tgtAddr - baseAddr;
COMPILER_TRACE_CHAINING(
LOGD("Jit Runtime: predicted chain %p from %s to %s (%s) patched",
cell, cell->clazz ? cell->clazz->descriptor : "NULL",
clazz->descriptor,
method->name));
cell->branch = assembleBXPair(branchOffset);
cell->clazz = clazz;
cell->method = method;
cell->counter = PREDICTED_CHAIN_COUNTER_RECHAIN;
cacheflush((long) cell, (long) (cell+1), 0);
/* All done - resume all other threads */
dvmResumeAllThreads(SUSPEND_FOR_JIT);
done:
return method;
}
/*
* Unchain a trace given the starting address of the translation
* in the code cache. Refer to the diagram in dvmCompilerAssembleLIR.
* Returns the address following the last cell unchained. Note that
* the incoming codeAddr is a thumb code address, and therefore has
* the low bit set.
*/
u4* dvmJitUnchain(void* codeAddr)
{
u2* pChainCellOffset = (u2*)((char*)codeAddr - 3);
u2 chainCellOffset = *pChainCellOffset;
ChainCellCounts *pChainCellCounts =
(ChainCellCounts*)((char*)codeAddr + chainCellOffset - 3);
int cellSize;
u4* pChainCells;
u4* pStart;
u4 thumb1;
u4 thumb2;
u4 newInst;
int i,j;
PredictedChainingCell *predChainCell;
/* Get total count of chain cells */
for (i = 0, cellSize = 0; i < CHAINING_CELL_LAST; i++) {
if (i != CHAINING_CELL_INVOKE_PREDICTED) {
cellSize += pChainCellCounts->u.count[i] * 2;
} else {
cellSize += pChainCellCounts->u.count[i] * 4;
}
}
/* Locate the beginning of the chain cell region */
pStart = pChainCells = ((u4 *) pChainCellCounts) - cellSize;
/* The cells are sorted in order - walk through them and reset */
for (i = 0; i < CHAINING_CELL_LAST; i++) {
int elemSize = 2; /* Most chaining cell has two words */
if (i == CHAINING_CELL_INVOKE_PREDICTED) {
elemSize = 4;
}
for (j = 0; j < pChainCellCounts->u.count[i]; j++) {
int targetOffset;
switch(i) {
case CHAINING_CELL_NORMAL:
targetOffset = offsetof(InterpState,
jitToInterpEntries.dvmJitToInterpNormal);
break;
case CHAINING_CELL_HOT:
case CHAINING_CELL_INVOKE_SINGLETON:
targetOffset = offsetof(InterpState,
jitToInterpEntries.dvmJitToTraceSelect);
break;
case CHAINING_CELL_INVOKE_PREDICTED:
targetOffset = 0;
predChainCell = (PredictedChainingCell *) pChainCells;
/* Reset the cell to the init state */
predChainCell->branch = PREDICTED_CHAIN_BX_PAIR_INIT;
predChainCell->clazz = PREDICTED_CHAIN_CLAZZ_INIT;
predChainCell->method = PREDICTED_CHAIN_METHOD_INIT;
predChainCell->counter = PREDICTED_CHAIN_COUNTER_INIT;
break;
default:
dvmAbort();
}
COMPILER_TRACE_CHAINING(
LOGD("Jit Runtime: unchaining 0x%x", (int)pChainCells));
/*
* Thumb code sequence for a chaining cell is:
* ldr r0, rGLUE, #<word offset>
* blx r0
*/
if (i != CHAINING_CELL_INVOKE_PREDICTED) {
targetOffset = targetOffset >> 2; /* convert to word offset */
thumb1 = 0x6800 | (targetOffset << 6) |
(rGLUE << 3) | (r0 << 0);
thumb2 = 0x4780 | (r0 << 3);
newInst = thumb2<<16 | thumb1;
*pChainCells = newInst;
}
pChainCells += elemSize; /* Advance by a fixed number of words */
}
}
return pChainCells;
}
/* Unchain all translation in the cache. */
void dvmJitUnchainAll()
{
u4* lowAddress = NULL;
u4* highAddress = NULL;
unsigned int i;
if (gDvmJit.pJitEntryTable != NULL) {
COMPILER_TRACE_CHAINING(LOGD("Jit Runtime: unchaining all"));
dvmLockMutex(&gDvmJit.tableLock);
for (i = 0; i < gDvmJit.jitTableSize; i++) {
if (gDvmJit.pJitEntryTable[i].dPC &&
gDvmJit.pJitEntryTable[i].codeAddress) {
u4* lastAddress;
lastAddress =
dvmJitUnchain(gDvmJit.pJitEntryTable[i].codeAddress);
if (lowAddress == NULL ||
(u4*)gDvmJit.pJitEntryTable[i].codeAddress < lowAddress)
lowAddress = lastAddress;
if (lastAddress > highAddress)
highAddress = lastAddress;
}
}
cacheflush((long)lowAddress, (long)highAddress, 0);
dvmUnlockMutex(&gDvmJit.tableLock);
}
}
typedef struct jitProfileAddrToLine {
u4 lineNum;
u4 bytecodeOffset;
} jitProfileAddrToLine;
/* Callback function to track the bytecode offset/line number relationiship */
static int addrToLineCb (void *cnxt, u4 bytecodeOffset, u4 lineNum)
{
jitProfileAddrToLine *addrToLine = (jitProfileAddrToLine *) cnxt;
/* Best match so far for this offset */
if (addrToLine->bytecodeOffset >= bytecodeOffset) {
addrToLine->lineNum = lineNum;
}
return 0;
}
char *getTraceBase(const JitEntry *p)
{
return (char*)p->codeAddress -
(6 + (p->u.info.instructionSet == DALVIK_JIT_ARM ? 0 : 1));
}
/* Dumps profile info for a single trace */
static int dumpTraceProfile(JitEntry *p)
{
ChainCellCounts* pCellCounts;
char* traceBase;
u4* pExecutionCount;
u2* pCellOffset;
JitTraceDescription *desc;
const Method* method;
traceBase = getTraceBase(p);
if (p->codeAddress == NULL) {
LOGD("TRACEPROFILE 0x%08x 0 NULL 0 0", (int)traceBase);
return 0;
}
pExecutionCount = (u4*) (traceBase);
pCellOffset = (u2*) (traceBase + 4);
pCellCounts = (ChainCellCounts*) ((char *)pCellOffset + *pCellOffset);
desc = (JitTraceDescription*) ((char*)pCellCounts + sizeof(*pCellCounts));
method = desc->method;
char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype);
jitProfileAddrToLine addrToLine = {0, desc->trace[0].frag.startOffset};
/*
* We may end up decoding the debug information for the same method
* multiple times, but the tradeoff is we don't need to allocate extra
* space to store the addr/line mapping. Since this is a debugging feature
* and done infrequently so the slower but simpler mechanism should work
* just fine.
*/
dexDecodeDebugInfo(method->clazz->pDvmDex->pDexFile,
dvmGetMethodCode(method),
method->clazz->descriptor,
method->prototype.protoIdx,
method->accessFlags,
addrToLineCb, NULL, &addrToLine);
LOGD("TRACEPROFILE 0x%08x % 10d [%#x(+%d), %d] %s%s;%s",
(int)traceBase,
*pExecutionCount,
desc->trace[0].frag.startOffset,
desc->trace[0].frag.numInsts,
addrToLine.lineNum,
method->clazz->descriptor, method->name, methodDesc);
free(methodDesc);
return *pExecutionCount;
}
/* Handy function to retrieve the profile count */
static inline int getProfileCount(const JitEntry *entry)
{
if (entry->dPC == 0 || entry->codeAddress == 0)
return 0;
u4 *pExecutionCount = (u4 *) getTraceBase(entry);
return *pExecutionCount;
}
/* qsort callback function */
static int sortTraceProfileCount(const void *entry1, const void *entry2)
{
const JitEntry *jitEntry1 = entry1;
const JitEntry *jitEntry2 = entry2;
int count1 = getProfileCount(jitEntry1);
int count2 = getProfileCount(jitEntry2);
return (count1 == count2) ? 0 : ((count1 > count2) ? -1 : 1);
}
/* Sort the trace profile counts and dump them */
void dvmCompilerSortAndPrintTraceProfiles()
{
JitEntry *sortedEntries;
int numTraces = 0;
unsigned long counts = 0;
unsigned int i;
/* Make sure that the table is not changing */
dvmLockMutex(&gDvmJit.tableLock);
/* Sort the entries by descending order */
sortedEntries = malloc(sizeof(JitEntry) * gDvmJit.jitTableSize);
if (sortedEntries == NULL)
goto done;
memcpy(sortedEntries, gDvmJit.pJitEntryTable,
sizeof(JitEntry) * gDvmJit.jitTableSize);
qsort(sortedEntries, gDvmJit.jitTableSize, sizeof(JitEntry),
sortTraceProfileCount);
/* Dump the sorted entries */
for (i=0; i < gDvmJit.jitTableSize; i++) {
if (sortedEntries[i].dPC != 0) {
counts += dumpTraceProfile(&sortedEntries[i]);
numTraces++;
}
}
if (numTraces == 0)
numTraces = 1;
LOGD("JIT: Average execution count -> %d",(int)(counts / numTraces));
free(sortedEntries);
done:
dvmUnlockMutex(&gDvmJit.tableLock);
return;
}