| /* |
| * Copyright (C) 2009 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* |
| * This file contains codegen and support common to all supported |
| * ARM variants. It is included by: |
| * |
| * Codegen-$(TARGET_ARCH_VARIANT).c |
| * |
| * which combines this common code with specific support found in the |
| * applicable directory below this one. |
| */ |
| |
| /* |
| * Mark garbage collection card. Skip if the value we're storing is null. |
| */ |
| static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg) |
| { |
| int regCardBase = dvmCompilerAllocTemp(cUnit); |
| int regCardNo = dvmCompilerAllocTemp(cUnit); |
| ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, valReg, 0); |
| loadWordDisp(cUnit, r6SELF, offsetof(Thread, cardTable), |
| regCardBase); |
| opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT); |
| storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0, |
| kUnsignedByte); |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branchOver->generic.target = (LIR *)target; |
| dvmCompilerFreeTemp(cUnit, regCardBase); |
| dvmCompilerFreeTemp(cUnit, regCardNo); |
| } |
| |
| static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct, |
| int srcSize, int tgtSize) |
| { |
| /* |
| * Don't optimize the register usage since it calls out to template |
| * functions |
| */ |
| RegLocation rlSrc; |
| RegLocation rlDest; |
| dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ |
| if (srcSize == 1) { |
| rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| loadValueDirectFixed(cUnit, rlSrc, r0); |
| } else { |
| rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| loadValueDirectWideFixed(cUnit, rlSrc, r0, r1); |
| } |
| LOAD_FUNC_ADDR(cUnit, r2, (int)funct); |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| if (tgtSize == 1) { |
| RegLocation rlResult; |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlResult = dvmCompilerGetReturn(cUnit); |
| storeValue(cUnit, rlDest, rlResult); |
| } else { |
| RegLocation rlResult; |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| rlResult = dvmCompilerGetReturnWide(cUnit); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } |
| return false; |
| } |
| |
| static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir, |
| RegLocation rlDest, RegLocation rlSrc1, |
| RegLocation rlSrc2) |
| { |
| RegLocation rlResult; |
| void* funct; |
| |
| switch (mir->dalvikInsn.opcode) { |
| case OP_ADD_FLOAT_2ADDR: |
| case OP_ADD_FLOAT: |
| funct = (void*) __aeabi_fadd; |
| break; |
| case OP_SUB_FLOAT_2ADDR: |
| case OP_SUB_FLOAT: |
| funct = (void*) __aeabi_fsub; |
| break; |
| case OP_DIV_FLOAT_2ADDR: |
| case OP_DIV_FLOAT: |
| funct = (void*) __aeabi_fdiv; |
| break; |
| case OP_MUL_FLOAT_2ADDR: |
| case OP_MUL_FLOAT: |
| funct = (void*) __aeabi_fmul; |
| break; |
| case OP_REM_FLOAT_2ADDR: |
| case OP_REM_FLOAT: |
| funct = (void*) fmodf; |
| break; |
| case OP_NEG_FLOAT: { |
| genNegFloat(cUnit, rlDest, rlSrc1); |
| return false; |
| } |
| default: |
| return true; |
| } |
| dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ |
| loadValueDirectFixed(cUnit, rlSrc1, r0); |
| loadValueDirectFixed(cUnit, rlSrc2, r1); |
| LOAD_FUNC_ADDR(cUnit, r2, (int)funct); |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| rlResult = dvmCompilerGetReturn(cUnit); |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir, |
| RegLocation rlDest, RegLocation rlSrc1, |
| RegLocation rlSrc2) |
| { |
| RegLocation rlResult; |
| void* funct; |
| |
| switch (mir->dalvikInsn.opcode) { |
| case OP_ADD_DOUBLE_2ADDR: |
| case OP_ADD_DOUBLE: |
| funct = (void*) __aeabi_dadd; |
| break; |
| case OP_SUB_DOUBLE_2ADDR: |
| case OP_SUB_DOUBLE: |
| funct = (void*) __aeabi_dsub; |
| break; |
| case OP_DIV_DOUBLE_2ADDR: |
| case OP_DIV_DOUBLE: |
| funct = (void*) __aeabi_ddiv; |
| break; |
| case OP_MUL_DOUBLE_2ADDR: |
| case OP_MUL_DOUBLE: |
| funct = (void*) __aeabi_dmul; |
| break; |
| case OP_REM_DOUBLE_2ADDR: |
| case OP_REM_DOUBLE: |
| funct = (void*) (double (*)(double, double)) fmod; |
| break; |
| case OP_NEG_DOUBLE: { |
| genNegDouble(cUnit, rlDest, rlSrc1); |
| return false; |
| } |
| default: |
| return true; |
| } |
| dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ |
| LOAD_FUNC_ADDR(cUnit, r14lr, (int)funct); |
| loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1); |
| loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3); |
| opReg(cUnit, kOpBlx, r14lr); |
| dvmCompilerClobberCallRegs(cUnit); |
| rlResult = dvmCompilerGetReturnWide(cUnit); |
| storeValueWide(cUnit, rlDest, rlResult); |
| #if defined(WITH_SELF_VERIFICATION) |
| cUnit->usesLinkRegister = true; |
| #endif |
| return false; |
| } |
| |
| static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir) |
| { |
| Opcode opcode = mir->dalvikInsn.opcode; |
| |
| switch (opcode) { |
| case OP_INT_TO_FLOAT: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1); |
| case OP_FLOAT_TO_INT: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1); |
| case OP_DOUBLE_TO_FLOAT: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1); |
| case OP_FLOAT_TO_DOUBLE: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2); |
| case OP_INT_TO_DOUBLE: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2); |
| case OP_DOUBLE_TO_INT: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1); |
| case OP_FLOAT_TO_LONG: |
| return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2); |
| case OP_LONG_TO_FLOAT: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1); |
| case OP_DOUBLE_TO_LONG: |
| return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2); |
| case OP_LONG_TO_DOUBLE: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2); |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| #if defined(WITH_SELF_VERIFICATION) |
| static void selfVerificationBranchInsert(LIR *currentLIR, ArmOpcode opcode, |
| int dest, int src1) |
| { |
| ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); |
| insn->opcode = opcode; |
| insn->operands[0] = dest; |
| insn->operands[1] = src1; |
| setupResourceMasks(insn); |
| dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn); |
| } |
| |
| /* |
| * Example where r14 (LR) is preserved around a heap access under |
| * self-verification mode in Thumb2: |
| * |
| * D/dalvikvm( 1538): 0x59414c5e (0026): ldr r14, [r15pc, #220] <-hoisted |
| * D/dalvikvm( 1538): 0x59414c62 (002a): mla r4, r0, r8, r4 |
| * D/dalvikvm( 1538): 0x59414c66 (002e): adds r3, r4, r3 |
| * D/dalvikvm( 1538): 0x59414c6a (0032): push <r5, r14> ---+ |
| * D/dalvikvm( 1538): 0x59414c6c (0034): blx_1 0x5940f494 | |
| * D/dalvikvm( 1538): 0x59414c6e (0036): blx_2 see above <-MEM_OP_DECODE |
| * D/dalvikvm( 1538): 0x59414c70 (0038): ldr r10, [r9, #0] | |
| * D/dalvikvm( 1538): 0x59414c74 (003c): pop <r5, r14> ---+ |
| * D/dalvikvm( 1538): 0x59414c78 (0040): mov r11, r10 |
| * D/dalvikvm( 1538): 0x59414c7a (0042): asr r12, r11, #31 |
| * D/dalvikvm( 1538): 0x59414c7e (0046): movs r0, r2 |
| * D/dalvikvm( 1538): 0x59414c80 (0048): movs r1, r3 |
| * D/dalvikvm( 1538): 0x59414c82 (004a): str r2, [r5, #16] |
| * D/dalvikvm( 1538): 0x59414c84 (004c): mov r2, r11 |
| * D/dalvikvm( 1538): 0x59414c86 (004e): str r3, [r5, #20] |
| * D/dalvikvm( 1538): 0x59414c88 (0050): mov r3, r12 |
| * D/dalvikvm( 1538): 0x59414c8a (0052): str r11, [r5, #24] |
| * D/dalvikvm( 1538): 0x59414c8e (0056): str r12, [r5, #28] |
| * D/dalvikvm( 1538): 0x59414c92 (005a): blx r14 <-use of LR |
| * |
| */ |
| static void selfVerificationBranchInsertPass(CompilationUnit *cUnit) |
| { |
| ArmLIR *thisLIR; |
| TemplateOpcode opcode = TEMPLATE_MEM_OP_DECODE; |
| |
| for (thisLIR = (ArmLIR *) cUnit->firstLIRInsn; |
| thisLIR != (ArmLIR *) cUnit->lastLIRInsn; |
| thisLIR = NEXT_LIR(thisLIR)) { |
| if (!thisLIR->flags.isNop && thisLIR->flags.insertWrapper) { |
| /* |
| * Push r5(FP) and r14(LR) onto stack. We need to make sure that |
| * SP is 8-byte aligned, and we use r5 as a temp to restore LR |
| * for Thumb-only target since LR cannot be directly accessed in |
| * Thumb mode. Another reason to choose r5 here is it is the Dalvik |
| * frame pointer and cannot be the target of the emulated heap |
| * load. |
| */ |
| if (cUnit->usesLinkRegister) { |
| genSelfVerificationPreBranch(cUnit, thisLIR); |
| } |
| |
| /* Branch to mem op decode template */ |
| selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1, |
| (int) gDvmJit.codeCache + templateEntryOffsets[opcode], |
| (int) gDvmJit.codeCache + templateEntryOffsets[opcode]); |
| selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2, |
| (int) gDvmJit.codeCache + templateEntryOffsets[opcode], |
| (int) gDvmJit.codeCache + templateEntryOffsets[opcode]); |
| |
| /* Restore LR */ |
| if (cUnit->usesLinkRegister) { |
| genSelfVerificationPostBranch(cUnit, thisLIR); |
| } |
| } |
| } |
| } |
| #endif |
| |
| /* Generate conditional branch instructions */ |
| static ArmLIR *genConditionalBranch(CompilationUnit *cUnit, |
| ArmConditionCode cond, |
| ArmLIR *target) |
| { |
| ArmLIR *branch = opCondBranch(cUnit, cond); |
| branch->generic.target = (LIR *) target; |
| return branch; |
| } |
| |
| /* Generate a unconditional branch to go to the interpreter */ |
| static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset, |
| ArmLIR *pcrLabel) |
| { |
| ArmLIR *branch = opNone(cUnit, kOpUncondBr); |
| return genCheckCommon(cUnit, dOffset, branch, pcrLabel); |
| } |
| |
| /* Load a wide field from an object instance */ |
| static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset) |
| { |
| RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| RegLocation rlResult; |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| int regPtr = dvmCompilerAllocTemp(cUnit); |
| |
| assert(rlDest.wide); |
| |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, |
| NULL);/* null object? */ |
| opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); |
| |
| HEAP_ACCESS_SHADOW(true); |
| loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg); |
| HEAP_ACCESS_SHADOW(false); |
| |
| dvmCompilerFreeTemp(cUnit, regPtr); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } |
| |
| /* Store a wide field to an object instance */ |
| static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset) |
| { |
| RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2); |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| int regPtr; |
| rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg); |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, |
| NULL);/* null object? */ |
| regPtr = dvmCompilerAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset); |
| |
| HEAP_ACCESS_SHADOW(true); |
| storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg); |
| HEAP_ACCESS_SHADOW(false); |
| |
| dvmCompilerFreeTemp(cUnit, regPtr); |
| } |
| |
| /* |
| * Load a field from an object instance |
| * |
| */ |
| static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size, |
| int fieldOffset, bool isVolatile) |
| { |
| RegLocation rlResult; |
| RegisterClass regClass = dvmCompilerRegClassBySize(size); |
| RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true); |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, |
| NULL);/* null object? */ |
| |
| HEAP_ACCESS_SHADOW(true); |
| loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg, |
| size, rlObj.sRegLow); |
| HEAP_ACCESS_SHADOW(false); |
| if (isVolatile) { |
| dvmCompilerGenMemBarrier(cUnit, kSY); |
| } |
| |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| |
| /* |
| * Store a field to an object instance |
| * |
| */ |
| static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size, |
| int fieldOffset, bool isObject, bool isVolatile) |
| { |
| RegisterClass regClass = dvmCompilerRegClassBySize(size); |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1); |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| rlSrc = loadValue(cUnit, rlSrc, regClass); |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, |
| NULL);/* null object? */ |
| |
| if (isVolatile) { |
| dvmCompilerGenMemBarrier(cUnit, kST); |
| } |
| HEAP_ACCESS_SHADOW(true); |
| storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size); |
| HEAP_ACCESS_SHADOW(false); |
| if (isVolatile) { |
| dvmCompilerGenMemBarrier(cUnit, kSY); |
| } |
| if (isObject) { |
| /* NOTE: marking card based on object head */ |
| markCard(cUnit, rlSrc.lowReg, rlObj.lowReg); |
| } |
| } |
| |
| |
| /* |
| * Generate array load |
| */ |
| static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size, |
| RegLocation rlArray, RegLocation rlIndex, |
| RegLocation rlDest, int scale) |
| { |
| RegisterClass regClass = dvmCompilerRegClassBySize(size); |
| int lenOffset = OFFSETOF_MEMBER(ArrayObject, length); |
| int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents); |
| RegLocation rlResult; |
| rlArray = loadValue(cUnit, rlArray, kCoreReg); |
| rlIndex = loadValue(cUnit, rlIndex, kCoreReg); |
| int regPtr; |
| |
| /* null object? */ |
| ArmLIR * pcrLabel = NULL; |
| |
| if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) { |
| pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, |
| rlArray.lowReg, mir->offset, NULL); |
| } |
| |
| regPtr = dvmCompilerAllocTemp(cUnit); |
| |
| if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) { |
| int regLen = dvmCompilerAllocTemp(cUnit); |
| /* Get len */ |
| loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen); |
| /* regPtr -> array data */ |
| opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset); |
| genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset, |
| pcrLabel); |
| dvmCompilerFreeTemp(cUnit, regLen); |
| } else { |
| /* regPtr -> array data */ |
| opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset); |
| } |
| if ((size == kLong) || (size == kDouble)) { |
| if (scale) { |
| int rNewIndex = dvmCompilerAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale); |
| opRegReg(cUnit, kOpAdd, regPtr, rNewIndex); |
| dvmCompilerFreeTemp(cUnit, rNewIndex); |
| } else { |
| opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg); |
| } |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true); |
| |
| HEAP_ACCESS_SHADOW(true); |
| loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg); |
| HEAP_ACCESS_SHADOW(false); |
| |
| dvmCompilerFreeTemp(cUnit, regPtr); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } else { |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true); |
| |
| HEAP_ACCESS_SHADOW(true); |
| loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg, |
| scale, size); |
| HEAP_ACCESS_SHADOW(false); |
| |
| dvmCompilerFreeTemp(cUnit, regPtr); |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| } |
| |
| /* |
| * Generate array store |
| * |
| */ |
| static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size, |
| RegLocation rlArray, RegLocation rlIndex, |
| RegLocation rlSrc, int scale) |
| { |
| RegisterClass regClass = dvmCompilerRegClassBySize(size); |
| int lenOffset = OFFSETOF_MEMBER(ArrayObject, length); |
| int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents); |
| |
| int regPtr; |
| rlArray = loadValue(cUnit, rlArray, kCoreReg); |
| rlIndex = loadValue(cUnit, rlIndex, kCoreReg); |
| |
| if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) { |
| dvmCompilerClobber(cUnit, rlArray.lowReg); |
| regPtr = rlArray.lowReg; |
| } else { |
| regPtr = dvmCompilerAllocTemp(cUnit); |
| genRegCopy(cUnit, regPtr, rlArray.lowReg); |
| } |
| |
| /* null object? */ |
| ArmLIR * pcrLabel = NULL; |
| |
| if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) { |
| pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg, |
| mir->offset, NULL); |
| } |
| |
| if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) { |
| int regLen = dvmCompilerAllocTemp(cUnit); |
| //NOTE: max live temps(4) here. |
| /* Get len */ |
| loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen); |
| /* regPtr -> array data */ |
| opRegImm(cUnit, kOpAdd, regPtr, dataOffset); |
| genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset, |
| pcrLabel); |
| dvmCompilerFreeTemp(cUnit, regLen); |
| } else { |
| /* regPtr -> array data */ |
| opRegImm(cUnit, kOpAdd, regPtr, dataOffset); |
| } |
| /* at this point, regPtr points to array, 2 live temps */ |
| if ((size == kLong) || (size == kDouble)) { |
| //TODO: need specific wide routine that can handle fp regs |
| if (scale) { |
| int rNewIndex = dvmCompilerAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale); |
| opRegReg(cUnit, kOpAdd, regPtr, rNewIndex); |
| dvmCompilerFreeTemp(cUnit, rNewIndex); |
| } else { |
| opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg); |
| } |
| rlSrc = loadValueWide(cUnit, rlSrc, regClass); |
| |
| HEAP_ACCESS_SHADOW(true); |
| storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg); |
| HEAP_ACCESS_SHADOW(false); |
| |
| dvmCompilerFreeTemp(cUnit, regPtr); |
| } else { |
| rlSrc = loadValue(cUnit, rlSrc, regClass); |
| |
| HEAP_ACCESS_SHADOW(true); |
| storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg, |
| scale, size); |
| HEAP_ACCESS_SHADOW(false); |
| } |
| } |
| |
| /* |
| * Generate array object store |
| * Must use explicit register allocation here because of |
| * call-out to dvmCanPutArrayElement |
| */ |
| static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir, |
| RegLocation rlArray, RegLocation rlIndex, |
| RegLocation rlSrc, int scale) |
| { |
| int lenOffset = OFFSETOF_MEMBER(ArrayObject, length); |
| int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents); |
| |
| dvmCompilerFlushAllRegs(cUnit); |
| |
| int regLen = r0; |
| int regPtr = r4PC; /* Preserved across call */ |
| int regArray = r1; |
| int regIndex = r7; /* Preserved across call */ |
| |
| loadValueDirectFixed(cUnit, rlArray, regArray); |
| loadValueDirectFixed(cUnit, rlIndex, regIndex); |
| |
| /* null object? */ |
| ArmLIR * pcrLabel = NULL; |
| |
| if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) { |
| pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray, |
| mir->offset, NULL); |
| } |
| |
| if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) { |
| /* Get len */ |
| loadWordDisp(cUnit, regArray, lenOffset, regLen); |
| /* regPtr -> array data */ |
| opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset); |
| genBoundsCheck(cUnit, regIndex, regLen, mir->offset, |
| pcrLabel); |
| } else { |
| /* regPtr -> array data */ |
| opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset); |
| } |
| |
| /* Get object to store */ |
| loadValueDirectFixed(cUnit, rlSrc, r0); |
| LOAD_FUNC_ADDR(cUnit, r2, (int)dvmCanPutArrayElement); |
| |
| /* Are we storing null? If so, avoid check */ |
| ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, r0, 0); |
| |
| /* Make sure the types are compatible */ |
| loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r1); |
| loadWordDisp(cUnit, r0, offsetof(Object, clazz), r0); |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| |
| /* |
| * Using fixed registers here, and counting on r4 and r7 being |
| * preserved across the above call. Tell the register allocation |
| * utilities about the regs we are using directly |
| */ |
| dvmCompilerLockTemp(cUnit, regPtr); // r4PC |
| dvmCompilerLockTemp(cUnit, regIndex); // r7 |
| dvmCompilerLockTemp(cUnit, r0); |
| dvmCompilerLockTemp(cUnit, r1); |
| |
| /* Bad? - roll back and re-execute if so */ |
| genRegImmCheck(cUnit, kArmCondEq, r0, 0, mir->offset, pcrLabel); |
| |
| /* Resume here - must reload element & array, regPtr & index preserved */ |
| loadValueDirectFixed(cUnit, rlSrc, r0); |
| loadValueDirectFixed(cUnit, rlArray, r1); |
| |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branchOver->generic.target = (LIR *) target; |
| |
| HEAP_ACCESS_SHADOW(true); |
| storeBaseIndexed(cUnit, regPtr, regIndex, r0, |
| scale, kWord); |
| HEAP_ACCESS_SHADOW(false); |
| |
| dvmCompilerFreeTemp(cUnit, regPtr); |
| dvmCompilerFreeTemp(cUnit, regIndex); |
| |
| /* NOTE: marking card here based on object head */ |
| markCard(cUnit, r0, r1); |
| } |
| |
| static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir, |
| RegLocation rlDest, RegLocation rlSrc1, |
| RegLocation rlShift) |
| { |
| /* |
| * Don't mess with the regsiters here as there is a particular calling |
| * convention to the out-of-line handler. |
| */ |
| RegLocation rlResult; |
| |
| loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1); |
| loadValueDirect(cUnit, rlShift, r2); |
| switch( mir->dalvikInsn.opcode) { |
| case OP_SHL_LONG: |
| case OP_SHL_LONG_2ADDR: |
| genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG); |
| break; |
| case OP_SHR_LONG: |
| case OP_SHR_LONG_2ADDR: |
| genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG); |
| break; |
| case OP_USHR_LONG: |
| case OP_USHR_LONG_2ADDR: |
| genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG); |
| break; |
| default: |
| return true; |
| } |
| rlResult = dvmCompilerGetReturnWide(cUnit); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir, |
| RegLocation rlDest, RegLocation rlSrc1, |
| RegLocation rlSrc2) |
| { |
| RegLocation rlResult; |
| OpKind firstOp = kOpBkpt; |
| OpKind secondOp = kOpBkpt; |
| bool callOut = false; |
| bool checkZero = false; |
| void *callTgt; |
| int retReg = r0; |
| |
| switch (mir->dalvikInsn.opcode) { |
| case OP_NOT_LONG: |
| rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg); |
| opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return false; |
| break; |
| case OP_ADD_LONG: |
| case OP_ADD_LONG_2ADDR: |
| firstOp = kOpAdd; |
| secondOp = kOpAdc; |
| break; |
| case OP_SUB_LONG: |
| case OP_SUB_LONG_2ADDR: |
| firstOp = kOpSub; |
| secondOp = kOpSbc; |
| break; |
| case OP_MUL_LONG: |
| case OP_MUL_LONG_2ADDR: |
| genMulLong(cUnit, rlDest, rlSrc1, rlSrc2); |
| return false; |
| case OP_DIV_LONG: |
| case OP_DIV_LONG_2ADDR: |
| callOut = true; |
| retReg = r0; |
| checkZero = true; |
| callTgt = (void*)__aeabi_ldivmod; |
| break; |
| /* NOTE - result is in r2/r3 instead of r0/r1 */ |
| case OP_REM_LONG: |
| case OP_REM_LONG_2ADDR: |
| callOut = true; |
| callTgt = (void*)__aeabi_ldivmod; |
| retReg = r2; |
| checkZero = true; |
| break; |
| case OP_AND_LONG_2ADDR: |
| case OP_AND_LONG: |
| firstOp = kOpAnd; |
| secondOp = kOpAnd; |
| break; |
| case OP_OR_LONG: |
| case OP_OR_LONG_2ADDR: |
| firstOp = kOpOr; |
| secondOp = kOpOr; |
| break; |
| case OP_XOR_LONG: |
| case OP_XOR_LONG_2ADDR: |
| firstOp = kOpXor; |
| secondOp = kOpXor; |
| break; |
| case OP_NEG_LONG: { |
| //TUNING: can improve this using Thumb2 code |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadConstantNoClobber(cUnit, tReg, 0); |
| opRegRegReg(cUnit, kOpSub, rlResult.lowReg, |
| tReg, rlSrc2.lowReg); |
| opRegReg(cUnit, kOpSbc, tReg, rlSrc2.highReg); |
| genRegCopy(cUnit, rlResult.highReg, tReg); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return false; |
| } |
| default: |
| ALOGE("Invalid long arith op"); |
| dvmCompilerAbort(cUnit); |
| } |
| if (!callOut) { |
| genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2); |
| } else { |
| // Adjust return regs in to handle case of rem returning r2/r3 |
| dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ |
| loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3); |
| loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1); |
| LOAD_FUNC_ADDR(cUnit, r14lr, (int) callTgt); |
| if (checkZero) { |
| int tReg = r12; // Using fixed registers during call sequence |
| opRegRegReg(cUnit, kOpOr, tReg, r2, r3); |
| genRegImmCheck(cUnit, kArmCondEq, tReg, 0, mir->offset, NULL); |
| } |
| opReg(cUnit, kOpBlx, r14lr); |
| dvmCompilerClobberCallRegs(cUnit); |
| if (retReg == r0) |
| rlResult = dvmCompilerGetReturnWide(cUnit); |
| else |
| rlResult = dvmCompilerGetReturnWideAlt(cUnit); |
| storeValueWide(cUnit, rlDest, rlResult); |
| #if defined(WITH_SELF_VERIFICATION) |
| cUnit->usesLinkRegister = true; |
| #endif |
| } |
| return false; |
| } |
| |
| static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir, |
| RegLocation rlDest, RegLocation rlSrc1, |
| RegLocation rlSrc2) |
| { |
| OpKind op = kOpBkpt; |
| bool callOut = false; |
| bool checkZero = false; |
| bool unary = false; |
| int retReg = r0; |
| int (*callTgt)(int, int); |
| RegLocation rlResult; |
| bool shiftOp = false; |
| |
| switch (mir->dalvikInsn.opcode) { |
| case OP_NEG_INT: |
| op = kOpNeg; |
| unary = true; |
| break; |
| case OP_NOT_INT: |
| op = kOpMvn; |
| unary = true; |
| break; |
| case OP_ADD_INT: |
| case OP_ADD_INT_2ADDR: |
| op = kOpAdd; |
| break; |
| case OP_SUB_INT: |
| case OP_SUB_INT_2ADDR: |
| op = kOpSub; |
| break; |
| case OP_MUL_INT: |
| case OP_MUL_INT_2ADDR: |
| op = kOpMul; |
| break; |
| case OP_DIV_INT: |
| case OP_DIV_INT_2ADDR: |
| callOut = true; |
| checkZero = true; |
| callTgt = __aeabi_idiv; |
| retReg = r0; |
| break; |
| /* NOTE: returns in r1 */ |
| case OP_REM_INT: |
| case OP_REM_INT_2ADDR: |
| callOut = true; |
| checkZero = true; |
| callTgt = __aeabi_idivmod; |
| retReg = r1; |
| break; |
| case OP_AND_INT: |
| case OP_AND_INT_2ADDR: |
| op = kOpAnd; |
| break; |
| case OP_OR_INT: |
| case OP_OR_INT_2ADDR: |
| op = kOpOr; |
| break; |
| case OP_XOR_INT: |
| case OP_XOR_INT_2ADDR: |
| op = kOpXor; |
| break; |
| case OP_SHL_INT: |
| case OP_SHL_INT_2ADDR: |
| shiftOp = true; |
| op = kOpLsl; |
| break; |
| case OP_SHR_INT: |
| case OP_SHR_INT_2ADDR: |
| shiftOp = true; |
| op = kOpAsr; |
| break; |
| case OP_USHR_INT: |
| case OP_USHR_INT_2ADDR: |
| shiftOp = true; |
| op = kOpLsr; |
| break; |
| default: |
| ALOGE("Invalid word arith op: %#x(%d)", |
| mir->dalvikInsn.opcode, mir->dalvikInsn.opcode); |
| dvmCompilerAbort(cUnit); |
| } |
| if (!callOut) { |
| rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); |
| if (unary) { |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegReg(cUnit, op, rlResult.lowReg, |
| rlSrc1.lowReg); |
| } else { |
| rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg); |
| if (shiftOp) { |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegRegReg(cUnit, op, rlResult.lowReg, |
| rlSrc1.lowReg, tReg); |
| dvmCompilerFreeTemp(cUnit, tReg); |
| } else { |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegRegReg(cUnit, op, rlResult.lowReg, |
| rlSrc1.lowReg, rlSrc2.lowReg); |
| } |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| } else { |
| RegLocation rlResult; |
| dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ |
| loadValueDirectFixed(cUnit, rlSrc2, r1); |
| LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt); |
| loadValueDirectFixed(cUnit, rlSrc1, r0); |
| if (checkZero) { |
| genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL); |
| } |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| if (retReg == r0) |
| rlResult = dvmCompilerGetReturn(cUnit); |
| else |
| rlResult = dvmCompilerGetReturnAlt(cUnit); |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| return false; |
| } |
| |
| static bool genArithOp(CompilationUnit *cUnit, MIR *mir) |
| { |
| Opcode opcode = mir->dalvikInsn.opcode; |
| RegLocation rlDest; |
| RegLocation rlSrc1; |
| RegLocation rlSrc2; |
| /* Deduce sizes of operands */ |
| if (mir->ssaRep->numUses == 2) { |
| rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0); |
| rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1); |
| } else if (mir->ssaRep->numUses == 3) { |
| rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2); |
| } else { |
| rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3); |
| assert(mir->ssaRep->numUses == 4); |
| } |
| if (mir->ssaRep->numDefs == 1) { |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| } else { |
| assert(mir->ssaRep->numDefs == 2); |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| } |
| |
| if ((opcode >= OP_ADD_LONG_2ADDR) && (opcode <= OP_XOR_LONG_2ADDR)) { |
| return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opcode >= OP_ADD_LONG) && (opcode <= OP_XOR_LONG)) { |
| return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opcode >= OP_SHL_LONG_2ADDR) && (opcode <= OP_USHR_LONG_2ADDR)) { |
| return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opcode >= OP_SHL_LONG) && (opcode <= OP_USHR_LONG)) { |
| return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_USHR_INT_2ADDR)) { |
| return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opcode >= OP_ADD_INT) && (opcode <= OP_USHR_INT)) { |
| return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opcode >= OP_ADD_FLOAT_2ADDR) && (opcode <= OP_REM_FLOAT_2ADDR)) { |
| return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opcode >= OP_ADD_FLOAT) && (opcode <= OP_REM_FLOAT)) { |
| return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opcode >= OP_ADD_DOUBLE_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) { |
| return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opcode >= OP_ADD_DOUBLE) && (opcode <= OP_REM_DOUBLE)) { |
| return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| return true; |
| } |
| |
| /* Generate unconditional branch instructions */ |
| static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target) |
| { |
| ArmLIR *branch = opNone(cUnit, kOpUncondBr); |
| branch->generic.target = (LIR *) target; |
| return branch; |
| } |
| |
| /* Perform the actual operation for OP_RETURN_* */ |
| static void genReturnCommon(CompilationUnit *cUnit, MIR *mir) |
| { |
| genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ? |
| TEMPLATE_RETURN_PROF : TEMPLATE_RETURN); |
| #if defined(WITH_JIT_TUNING) |
| gDvmJit.returnOp++; |
| #endif |
| int dPC = (int) (cUnit->method->insns + mir->offset); |
| /* Insert branch, but defer setting of target */ |
| ArmLIR *branch = genUnconditionalBranch(cUnit, NULL); |
| /* Set up the place holder to reconstruct this Dalvik PC */ |
| ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); |
| pcrLabel->opcode = kArmPseudoPCReconstructionCell; |
| pcrLabel->operands[0] = dPC; |
| pcrLabel->operands[1] = mir->offset; |
| /* Insert the place holder to the growable list */ |
| dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel); |
| /* Branch to the PC reconstruction code */ |
| branch->generic.target = (LIR *) pcrLabel; |
| } |
| |
| static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir, |
| DecodedInstruction *dInsn, |
| ArmLIR **pcrLabel) |
| { |
| unsigned int i; |
| unsigned int regMask = 0; |
| RegLocation rlArg; |
| int numDone = 0; |
| |
| /* |
| * Load arguments to r0..r4. Note that these registers may contain |
| * live values, so we clobber them immediately after loading to prevent |
| * them from being used as sources for subsequent loads. |
| */ |
| dvmCompilerLockAllTemps(cUnit); |
| for (i = 0; i < dInsn->vA; i++) { |
| regMask |= 1 << i; |
| rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++); |
| loadValueDirectFixed(cUnit, rlArg, i); |
| } |
| if (regMask) { |
| /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */ |
| opRegRegImm(cUnit, kOpSub, r7, r5FP, |
| sizeof(StackSaveArea) + (dInsn->vA << 2)); |
| /* generate null check */ |
| if (pcrLabel) { |
| *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0, |
| mir->offset, NULL); |
| } |
| storeMultiple(cUnit, r7, regMask); |
| } |
| } |
| |
| static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir, |
| DecodedInstruction *dInsn, |
| ArmLIR **pcrLabel) |
| { |
| int srcOffset = dInsn->vC << 2; |
| int numArgs = dInsn->vA; |
| int regMask; |
| |
| /* |
| * Note: here, all promoted registers will have been flushed |
| * back to the Dalvik base locations, so register usage restrictins |
| * are lifted. All parms loaded from original Dalvik register |
| * region - even though some might conceivably have valid copies |
| * cached in a preserved register. |
| */ |
| dvmCompilerLockAllTemps(cUnit); |
| |
| /* |
| * r4PC : &r5FP[vC] |
| * r7: &newFP[0] |
| */ |
| opRegRegImm(cUnit, kOpAdd, r4PC, r5FP, srcOffset); |
| /* load [r0 .. min(numArgs,4)] */ |
| regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1; |
| /* |
| * Protect the loadMultiple instruction from being reordered with other |
| * Dalvik stack accesses. |
| */ |
| if (numArgs != 0) loadMultiple(cUnit, r4PC, regMask); |
| |
| opRegRegImm(cUnit, kOpSub, r7, r5FP, |
| sizeof(StackSaveArea) + (numArgs << 2)); |
| /* generate null check */ |
| if (pcrLabel) { |
| *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0, |
| mir->offset, NULL); |
| } |
| |
| /* |
| * Handle remaining 4n arguments: |
| * store previously loaded 4 values and load the next 4 values |
| */ |
| if (numArgs >= 8) { |
| ArmLIR *loopLabel = NULL; |
| /* |
| * r0 contains "this" and it will be used later, so push it to the stack |
| * first. Pushing r5FP is just for stack alignment purposes. |
| */ |
| opImm(cUnit, kOpPush, (1 << r0 | 1 << r5FP)); |
| /* No need to generate the loop structure if numArgs <= 11 */ |
| if (numArgs > 11) { |
| loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2); |
| loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel); |
| loopLabel->defMask = ENCODE_ALL; |
| } |
| storeMultiple(cUnit, r7, regMask); |
| /* |
| * Protect the loadMultiple instruction from being reordered with other |
| * Dalvik stack accesses. |
| */ |
| loadMultiple(cUnit, r4PC, regMask); |
| /* No need to generate the loop structure if numArgs <= 11 */ |
| if (numArgs > 11) { |
| opRegImm(cUnit, kOpSub, r5FP, 4); |
| genConditionalBranch(cUnit, kArmCondNe, loopLabel); |
| } |
| } |
| |
| /* Save the last batch of loaded values */ |
| if (numArgs != 0) storeMultiple(cUnit, r7, regMask); |
| |
| /* Generate the loop epilogue - don't use r0 */ |
| if ((numArgs > 4) && (numArgs % 4)) { |
| regMask = ((1 << (numArgs & 0x3)) - 1) << 1; |
| /* |
| * Protect the loadMultiple instruction from being reordered with other |
| * Dalvik stack accesses. |
| */ |
| loadMultiple(cUnit, r4PC, regMask); |
| } |
| if (numArgs >= 8) |
| opImm(cUnit, kOpPop, (1 << r0 | 1 << r5FP)); |
| |
| /* Save the modulo 4 arguments */ |
| if ((numArgs > 4) && (numArgs % 4)) { |
| storeMultiple(cUnit, r7, regMask); |
| } |
| } |
| |
| /* |
| * Generate code to setup the call stack then jump to the chaining cell if it |
| * is not a native method. |
| */ |
| static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir, |
| BasicBlock *bb, ArmLIR *labelList, |
| ArmLIR *pcrLabel, |
| const Method *calleeMethod) |
| { |
| /* |
| * Note: all Dalvik register state should be flushed to |
| * memory by the point, so register usage restrictions no |
| * longer apply. All temp & preserved registers may be used. |
| */ |
| dvmCompilerLockAllTemps(cUnit); |
| ArmLIR *retChainingCell = &labelList[bb->fallThrough->id]; |
| |
| /* r1 = &retChainingCell */ |
| ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0); |
| |
| /* r4PC = dalvikCallsite */ |
| loadConstant(cUnit, r4PC, |
| (int) (cUnit->method->insns + mir->offset)); |
| addrRetChain->generic.target = (LIR *) retChainingCell; |
| |
| /* r7 = calleeMethod->registersSize */ |
| loadConstant(cUnit, r7, calleeMethod->registersSize); |
| /* |
| * r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon) |
| * r1 = &ChainingCell |
| * r2 = calleeMethod->outsSize (to be loaded later for Java callees) |
| * r4PC = callsiteDPC |
| * r7 = calleeMethod->registersSize |
| */ |
| if (dvmIsNativeMethod(calleeMethod)) { |
| genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ? |
| TEMPLATE_INVOKE_METHOD_NATIVE_PROF : |
| TEMPLATE_INVOKE_METHOD_NATIVE); |
| #if defined(WITH_JIT_TUNING) |
| gDvmJit.invokeNative++; |
| #endif |
| } else { |
| /* For Java callees, set up r2 to be calleeMethod->outsSize */ |
| loadConstant(cUnit, r2, calleeMethod->outsSize); |
| genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ? |
| TEMPLATE_INVOKE_METHOD_CHAIN_PROF : |
| TEMPLATE_INVOKE_METHOD_CHAIN); |
| #if defined(WITH_JIT_TUNING) |
| gDvmJit.invokeMonomorphic++; |
| #endif |
| /* Branch to the chaining cell */ |
| genUnconditionalBranch(cUnit, &labelList[bb->taken->id]); |
| } |
| /* Handle exceptions using the interpreter */ |
| genTrap(cUnit, mir->offset, pcrLabel); |
| } |
| |
| /* |
| * Generate code to check the validity of a predicted chain and take actions |
| * based on the result. |
| * |
| * 0x426a99aa : ldr r4, [pc, #72] --> r4 <- dalvikPC of this invoke |
| * 0x426a99ac : add r1, pc, #32 --> r1 <- &retChainingCell |
| * 0x426a99ae : add r2, pc, #40 --> r2 <- &predictedChainingCell |
| * 0x426a99b0 : blx_1 0x426a918c --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN |
| * 0x426a99b2 : blx_2 see above --+ |
| * 0x426a99b4 : b 0x426a99d8 --> off to the predicted chain |
| * 0x426a99b6 : b 0x426a99c8 --> punt to the interpreter |
| * 0x426a99b8 : ldr r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx] |
| * 0x426a99ba : cmp r1, #0 --> compare r1 (rechain count) against 0 |
| * 0x426a99bc : bgt 0x426a99c2 --> >=0? don't rechain |
| * 0x426a99be : ldr r7, [pc, #off]--+ dvmJitToPatchPredictedChain |
| * 0x426a99c0 : blx r7 --+ |
| * 0x426a99c2 : add r1, pc, #12 --> r1 <- &retChainingCell |
| * 0x426a99c4 : blx_1 0x426a9098 --+ TEMPLATE_INVOKE_METHOD_NO_OPT |
| * 0x426a99c6 : blx_2 see above --+ |
| */ |
| static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir, |
| int methodIndex, |
| ArmLIR *retChainingCell, |
| ArmLIR *predChainingCell, |
| ArmLIR *pcrLabel) |
| { |
| /* |
| * Note: all Dalvik register state should be flushed to |
| * memory by the point, so register usage restrictions no |
| * longer apply. Lock temps to prevent them from being |
| * allocated by utility routines. |
| */ |
| dvmCompilerLockAllTemps(cUnit); |
| |
| /* |
| * For verbose printing, store the method pointer in operands[1] first as |
| * operands[0] will be clobbered in dvmCompilerMIR2LIR. |
| */ |
| predChainingCell->operands[1] = (int) mir->meta.callsiteInfo->method; |
| |
| /* "this" is already left in r0 by genProcessArgs* */ |
| |
| /* r4PC = dalvikCallsite */ |
| loadConstant(cUnit, r4PC, |
| (int) (cUnit->method->insns + mir->offset)); |
| |
| /* r1 = &retChainingCell */ |
| ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0); |
| addrRetChain->generic.target = (LIR *) retChainingCell; |
| |
| /* r2 = &predictedChainingCell */ |
| ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0); |
| predictedChainingCell->generic.target = (LIR *) predChainingCell; |
| |
| genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ? |
| TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF : |
| TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN); |
| |
| /* return through lr - jump to the chaining cell */ |
| genUnconditionalBranch(cUnit, predChainingCell); |
| |
| /* |
| * null-check on "this" may have been eliminated, but we still need a PC- |
| * reconstruction label for stack overflow bailout. |
| */ |
| if (pcrLabel == NULL) { |
| int dPC = (int) (cUnit->method->insns + mir->offset); |
| pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); |
| pcrLabel->opcode = kArmPseudoPCReconstructionCell; |
| pcrLabel->operands[0] = dPC; |
| pcrLabel->operands[1] = mir->offset; |
| /* Insert the place holder to the growable list */ |
| dvmInsertGrowableList(&cUnit->pcReconstructionList, |
| (intptr_t) pcrLabel); |
| } |
| |
| /* return through lr+2 - punt to the interpreter */ |
| genUnconditionalBranch(cUnit, pcrLabel); |
| |
| /* |
| * return through lr+4 - fully resolve the callee method. |
| * r1 <- count |
| * r2 <- &predictedChainCell |
| * r3 <- this->class |
| * r4 <- dPC |
| * r7 <- this->class->vtable |
| */ |
| |
| /* r0 <- calleeMethod */ |
| loadWordDisp(cUnit, r7, methodIndex * 4, r0); |
| |
| /* Check if rechain limit is reached */ |
| ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt, r1, 0); |
| |
| LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain); |
| |
| genRegCopy(cUnit, r1, r6SELF); |
| |
| /* |
| * r0 = calleeMethod |
| * r2 = &predictedChainingCell |
| * r3 = class |
| * |
| * &returnChainingCell has been loaded into r1 but is not needed |
| * when patching the chaining cell and will be clobbered upon |
| * returning so it will be reconstructed again. |
| */ |
| opReg(cUnit, kOpBlx, r7); |
| |
| /* r1 = &retChainingCell */ |
| addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0); |
| addrRetChain->generic.target = (LIR *) retChainingCell; |
| |
| bypassRechaining->generic.target = (LIR *) addrRetChain; |
| /* |
| * r0 = calleeMethod, |
| * r1 = &ChainingCell, |
| * r4PC = callsiteDPC, |
| */ |
| genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ? |
| TEMPLATE_INVOKE_METHOD_NO_OPT_PROF : |
| TEMPLATE_INVOKE_METHOD_NO_OPT); |
| #if defined(WITH_JIT_TUNING) |
| gDvmJit.invokePolymorphic++; |
| #endif |
| /* Handle exceptions using the interpreter */ |
| genTrap(cUnit, mir->offset, pcrLabel); |
| } |
| |
| /* "this" pointer is already in r0 */ |
| static void genInvokeVirtualWholeMethod(CompilationUnit *cUnit, |
| MIR *mir, |
| void *calleeAddr, |
| ArmLIR *retChainingCell) |
| { |
| CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo; |
| dvmCompilerLockAllTemps(cUnit); |
| |
| loadClassPointer(cUnit, r1, (int) callsiteInfo); |
| |
| loadWordDisp(cUnit, r0, offsetof(Object, clazz), r2); |
| /* Branch to the slow path if classes are not equal */ |
| opRegReg(cUnit, kOpCmp, r1, r2); |
| /* |
| * Set the misPredBranchOver target so that it will be generated when the |
| * code for the non-optimized invoke is generated. |
| */ |
| ArmLIR *classCheck = opCondBranch(cUnit, kArmCondNe); |
| |
| /* r0 = the Dalvik PC of the callsite */ |
| loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset)); |
| |
| newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr); |
| newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr); |
| genUnconditionalBranch(cUnit, retChainingCell); |
| |
| /* Target of slow path */ |
| ArmLIR *slowPathLabel = newLIR0(cUnit, kArmPseudoTargetLabel); |
| |
| slowPathLabel->defMask = ENCODE_ALL; |
| classCheck->generic.target = (LIR *) slowPathLabel; |
| |
| // FIXME |
| cUnit->printMe = true; |
| } |
| |
| static void genInvokeSingletonWholeMethod(CompilationUnit *cUnit, |
| MIR *mir, |
| void *calleeAddr, |
| ArmLIR *retChainingCell) |
| { |
| /* r0 = the Dalvik PC of the callsite */ |
| loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset)); |
| |
| newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr); |
| newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr); |
| genUnconditionalBranch(cUnit, retChainingCell); |
| |
| // FIXME |
| cUnit->printMe = true; |
| } |
| |
| /* Geneate a branch to go back to the interpreter */ |
| static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset) |
| { |
| /* r0 = dalvik pc */ |
| dvmCompilerFlushAllRegs(cUnit); |
| loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset)); |
| loadWordDisp(cUnit, r6SELF, offsetof(Thread, |
| jitToInterpEntries.dvmJitToInterpPunt), r1); |
| opReg(cUnit, kOpBlx, r1); |
| } |
| |
| /* |
| * Attempt to single step one instruction using the interpreter and return |
| * to the compiled code for the next Dalvik instruction |
| */ |
| static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir) |
| { |
| int flags = dexGetFlagsFromOpcode(mir->dalvikInsn.opcode); |
| int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn; |
| |
| // Single stepping is considered loop mode breaker |
| if (cUnit->jitMode == kJitLoop) { |
| cUnit->quitLoopMode = true; |
| return; |
| } |
| |
| //If already optimized out, just ignore |
| if (mir->dalvikInsn.opcode == OP_NOP) |
| return; |
| |
| //Ugly, but necessary. Flush all Dalvik regs so Interp can find them |
| dvmCompilerFlushAllRegs(cUnit); |
| |
| if ((mir->next == NULL) || (flags & flagsToCheck)) { |
| genPuntToInterp(cUnit, mir->offset); |
| return; |
| } |
| int entryAddr = offsetof(Thread, |
| jitToInterpEntries.dvmJitToInterpSingleStep); |
| loadWordDisp(cUnit, r6SELF, entryAddr, r2); |
| /* r0 = dalvik pc */ |
| loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset)); |
| /* r1 = dalvik pc of following instruction */ |
| loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset)); |
| opReg(cUnit, kOpBlx, r2); |
| } |
| |
| #if defined(_ARMV5TE) || defined(_ARMV5TE_VFP) |
| /* |
| * To prevent a thread in a monitor wait from blocking the Jit from |
| * resetting the code cache, heavyweight monitor lock will not |
| * be allowed to return to an existing translation. Instead, we will |
| * handle them by branching to a handler, which will in turn call the |
| * runtime lock routine and then branch directly back to the |
| * interpreter main loop. Given the high cost of the heavyweight |
| * lock operation, this additional cost should be slight (especially when |
| * considering that we expect the vast majority of lock operations to |
| * use the fast-path thin lock bypass). |
| */ |
| static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir) |
| { |
| bool isEnter = (mir->dalvikInsn.opcode == OP_MONITOR_ENTER); |
| genExportPC(cUnit, mir); |
| dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| loadValueDirectFixed(cUnit, rlSrc, r1); |
| genRegCopy(cUnit, r0, r6SELF); |
| genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL); |
| if (isEnter) { |
| /* Get dPC of next insn */ |
| loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset + |
| dexGetWidthFromOpcode(OP_MONITOR_ENTER))); |
| genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER); |
| } else { |
| LOAD_FUNC_ADDR(cUnit, r2, (int)dvmUnlockObject); |
| /* Do the call */ |
| opReg(cUnit, kOpBlx, r2); |
| /* Did we throw? */ |
| ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0); |
| loadConstant(cUnit, r0, |
| (int) (cUnit->method->insns + mir->offset + |
| dexGetWidthFromOpcode(OP_MONITOR_EXIT))); |
| genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branchOver->generic.target = (LIR *) target; |
| dvmCompilerClobberCallRegs(cUnit); |
| } |
| } |
| #endif |
| |
| /* |
| * Fetch *self->info.breakFlags. If the breakFlags are non-zero, |
| * punt to the interpreter. |
| */ |
| static void genSuspendPoll(CompilationUnit *cUnit, MIR *mir) |
| { |
| int rTemp = dvmCompilerAllocTemp(cUnit); |
| ArmLIR *ld; |
| ld = loadBaseDisp(cUnit, NULL, r6SELF, |
| offsetof(Thread, interpBreak.ctl.breakFlags), |
| rTemp, kUnsignedByte, INVALID_SREG); |
| setMemRefType(ld, true /* isLoad */, kMustNotAlias); |
| genRegImmCheck(cUnit, kArmCondNe, rTemp, 0, mir->offset, NULL); |
| } |
| |
| /* |
| * The following are the first-level codegen routines that analyze the format |
| * of each bytecode then either dispatch special purpose codegen routines |
| * or produce corresponding Thumb instructions directly. |
| */ |
| |
| static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir, |
| BasicBlock *bb, ArmLIR *labelList) |
| { |
| /* backward branch? */ |
| bool backwardBranch = (bb->taken->startOffset <= mir->offset); |
| |
| if (backwardBranch && |
| (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) { |
| genSuspendPoll(cUnit, mir); |
| } |
| |
| int numPredecessors = dvmCountSetBits(bb->taken->predecessors); |
| /* |
| * Things could be hoisted out of the taken block into the predecessor, so |
| * make sure it is dominated by the predecessor. |
| */ |
| if (numPredecessors == 1 && bb->taken->visited == false && |
| bb->taken->blockType == kDalvikByteCode) { |
| cUnit->nextCodegenBlock = bb->taken; |
| } else { |
| /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */ |
| genUnconditionalBranch(cUnit, &labelList[bb->taken->id]); |
| } |
| return false; |
| } |
| |
| static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir) |
| { |
| Opcode dalvikOpcode = mir->dalvikInsn.opcode; |
| if ((dalvikOpcode >= OP_UNUSED_3E) && (dalvikOpcode <= OP_UNUSED_43)) { |
| ALOGE("Codegen: got unused opcode %#x",dalvikOpcode); |
| return true; |
| } |
| switch (dalvikOpcode) { |
| case OP_RETURN_VOID_BARRIER: |
| dvmCompilerGenMemBarrier(cUnit, kST); |
| // Intentional fallthrough |
| case OP_RETURN_VOID: |
| genReturnCommon(cUnit,mir); |
| break; |
| case OP_UNUSED_73: |
| case OP_UNUSED_79: |
| case OP_UNUSED_7A: |
| case OP_UNUSED_FF: |
| ALOGE("Codegen: got unused opcode %#x",dalvikOpcode); |
| return true; |
| case OP_NOP: |
| break; |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir) |
| { |
| RegLocation rlDest; |
| RegLocation rlResult; |
| if (mir->ssaRep->numDefs == 2) { |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| } else { |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| } |
| |
| switch (mir->dalvikInsn.opcode) { |
| case OP_CONST: |
| case OP_CONST_4: { |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); |
| loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_CONST_WIDE_32: { |
| //TUNING: single routine to load constant pair for support doubles |
| //TUNING: load 0/-1 separately to avoid load dependency |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB); |
| opRegRegImm(cUnit, kOpAsr, rlResult.highReg, |
| rlResult.lowReg, 31); |
| storeValueWide(cUnit, rlDest, rlResult); |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir) |
| { |
| RegLocation rlDest; |
| RegLocation rlResult; |
| if (mir->ssaRep->numDefs == 2) { |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| } else { |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| } |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); |
| |
| switch (mir->dalvikInsn.opcode) { |
| case OP_CONST_HIGH16: { |
| loadConstantNoClobber(cUnit, rlResult.lowReg, |
| mir->dalvikInsn.vB << 16); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_CONST_WIDE_HIGH16: { |
| loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg, |
| 0, mir->dalvikInsn.vB << 16); |
| storeValueWide(cUnit, rlDest, rlResult); |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir) |
| { |
| /* For OP_THROW_VERIFICATION_ERROR */ |
| genInterpSingleStep(cUnit, mir); |
| return false; |
| } |
| |
| static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir) |
| { |
| RegLocation rlResult; |
| RegLocation rlDest; |
| RegLocation rlSrc; |
| |
| switch (mir->dalvikInsn.opcode) { |
| case OP_CONST_STRING_JUMBO: |
| case OP_CONST_STRING: { |
| void *strPtr = (void*) |
| (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]); |
| |
| if (strPtr == NULL) { |
| BAIL_LOOP_COMPILATION(); |
| ALOGE("Unexpected null string"); |
| dvmAbort(); |
| } |
| |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr ); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_CONST_CLASS: { |
| void *classPtr = (void*) |
| (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]); |
| |
| if (classPtr == NULL) { |
| BAIL_LOOP_COMPILATION(); |
| ALOGE("Unexpected null class"); |
| dvmAbort(); |
| } |
| |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr ); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_SGET: |
| case OP_SGET_VOLATILE: |
| case OP_SGET_OBJECT: |
| case OP_SGET_OBJECT_VOLATILE: |
| case OP_SGET_BOOLEAN: |
| case OP_SGET_CHAR: |
| case OP_SGET_BYTE: |
| case OP_SGET_SHORT: { |
| int valOffset = OFFSETOF_MEMBER(StaticField, value); |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| bool isVolatile; |
| const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ? |
| mir->meta.calleeMethod : cUnit->method; |
| void *fieldPtr = (void*) |
| (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]); |
| |
| if (fieldPtr == NULL) { |
| BAIL_LOOP_COMPILATION(); |
| ALOGE("Unexpected null static field"); |
| dvmAbort(); |
| } |
| |
| /* |
| * On SMP systems, Dalvik opcodes found to be referencing |
| * volatile fields are rewritten to their _VOLATILE variant. |
| * However, this does not happen on non-SMP systems. The JIT |
| * still needs to know about volatility to avoid unsafe |
| * optimizations so we determine volatility based on either |
| * the opcode or the field access flags. |
| */ |
| #if ANDROID_SMP != 0 |
| Opcode opcode = mir->dalvikInsn.opcode; |
| isVolatile = (opcode == OP_SGET_VOLATILE) || |
| (opcode == OP_SGET_OBJECT_VOLATILE); |
| assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr)); |
| #else |
| isVolatile = dvmIsVolatileField((Field *) fieldPtr); |
| #endif |
| |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); |
| loadConstant(cUnit, tReg, (int) fieldPtr + valOffset); |
| |
| if (isVolatile) { |
| dvmCompilerGenMemBarrier(cUnit, kSY); |
| } |
| HEAP_ACCESS_SHADOW(true); |
| loadWordDisp(cUnit, tReg, 0, rlResult.lowReg); |
| HEAP_ACCESS_SHADOW(false); |
| |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_SGET_WIDE: { |
| int valOffset = OFFSETOF_MEMBER(StaticField, value); |
| const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ? |
| mir->meta.calleeMethod : cUnit->method; |
| void *fieldPtr = (void*) |
| (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]); |
| |
| if (fieldPtr == NULL) { |
| BAIL_LOOP_COMPILATION(); |
| ALOGE("Unexpected null static field"); |
| dvmAbort(); |
| } |
| |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); |
| loadConstant(cUnit, tReg, (int) fieldPtr + valOffset); |
| |
| HEAP_ACCESS_SHADOW(true); |
| loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg); |
| HEAP_ACCESS_SHADOW(false); |
| |
| storeValueWide(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_SPUT: |
| case OP_SPUT_VOLATILE: |
| case OP_SPUT_OBJECT: |
| case OP_SPUT_OBJECT_VOLATILE: |
| case OP_SPUT_BOOLEAN: |
| case OP_SPUT_CHAR: |
| case OP_SPUT_BYTE: |
| case OP_SPUT_SHORT: { |
| int valOffset = OFFSETOF_MEMBER(StaticField, value); |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| int objHead; |
| bool isVolatile; |
| bool isSputObject; |
| const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ? |
| mir->meta.calleeMethod : cUnit->method; |
| void *fieldPtr = (void*) |
| (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]); |
| Opcode opcode = mir->dalvikInsn.opcode; |
| |
| if (fieldPtr == NULL) { |
| BAIL_LOOP_COMPILATION(); |
| ALOGE("Unexpected null static field"); |
| dvmAbort(); |
| } |
| |
| #if ANDROID_SMP != 0 |
| isVolatile = (opcode == OP_SPUT_VOLATILE) || |
| (opcode == OP_SPUT_OBJECT_VOLATILE); |
| assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr)); |
| #else |
| isVolatile = dvmIsVolatileField((Field *) fieldPtr); |
| #endif |
| |
| isSputObject = (opcode == OP_SPUT_OBJECT) || |
| (opcode == OP_SPUT_OBJECT_VOLATILE); |
| |
| rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| rlSrc = loadValue(cUnit, rlSrc, kAnyReg); |
| loadConstant(cUnit, tReg, (int) fieldPtr); |
| if (isSputObject) { |
| objHead = dvmCompilerAllocTemp(cUnit); |
| loadWordDisp(cUnit, tReg, OFFSETOF_MEMBER(Field, clazz), objHead); |
| } |
| if (isVolatile) { |
| dvmCompilerGenMemBarrier(cUnit, kST); |
| } |
| HEAP_ACCESS_SHADOW(true); |
| storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg); |
| dvmCompilerFreeTemp(cUnit, tReg); |
| HEAP_ACCESS_SHADOW(false); |
| if (isVolatile) { |
| dvmCompilerGenMemBarrier(cUnit, kSY); |
| } |
| if (isSputObject) { |
| /* NOTE: marking card based sfield->clazz */ |
| markCard(cUnit, rlSrc.lowReg, objHead); |
| dvmCompilerFreeTemp(cUnit, objHead); |
| } |
| |
| break; |
| } |
| case OP_SPUT_WIDE: { |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| int valOffset = OFFSETOF_MEMBER(StaticField, value); |
| const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ? |
| mir->meta.calleeMethod : cUnit->method; |
| void *fieldPtr = (void*) |
| (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]); |
| |
| if (fieldPtr == NULL) { |
| BAIL_LOOP_COMPILATION(); |
| ALOGE("Unexpected null static field"); |
| dvmAbort(); |
| } |
| |
| rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg); |
| loadConstant(cUnit, tReg, (int) fieldPtr + valOffset); |
| |
| HEAP_ACCESS_SHADOW(true); |
| storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg); |
| HEAP_ACCESS_SHADOW(false); |
| break; |
| } |
| case OP_NEW_INSTANCE: { |
| /* |
| * Obey the calling convention and don't mess with the register |
| * usage. |
| */ |
| ClassObject *classPtr = (ClassObject *) |
| (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]); |
| |
| if (classPtr == NULL) { |
| BAIL_LOOP_COMPILATION(); |
| ALOGE("Unexpected null class"); |
| dvmAbort(); |
| } |
| |
| /* |
| * If it is going to throw, it should not make to the trace to begin |
| * with. However, Alloc might throw, so we need to genExportPC() |
| */ |
| assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0); |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| genExportPC(cUnit, mir); |
| LOAD_FUNC_ADDR(cUnit, r2, (int)dvmAllocObject); |
| loadConstant(cUnit, r0, (int) classPtr); |
| loadConstant(cUnit, r1, ALLOC_DONT_TRACK); |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| /* generate a branch over if allocation is successful */ |
| ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0); |
| /* |
| * OOM exception needs to be thrown here and cannot re-execute |
| */ |
| loadConstant(cUnit, r0, |
| (int) (cUnit->method->insns + mir->offset)); |
| genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); |
| /* noreturn */ |
| |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branchOver->generic.target = (LIR *) target; |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlResult = dvmCompilerGetReturn(cUnit); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_CHECK_CAST: { |
| /* |
| * Obey the calling convention and don't mess with the register |
| * usage. |
| */ |
| ClassObject *classPtr = |
| (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]); |
| /* |
| * Note: It is possible that classPtr is NULL at this point, |
| * even though this instruction has been successfully interpreted. |
| * If the previous interpretation had a null source, the |
| * interpreter would not have bothered to resolve the clazz. |
| * Bail out to the interpreter in this case, and log it |
| * so that we can tell if it happens frequently. |
| */ |
| if (classPtr == NULL) { |
| BAIL_LOOP_COMPILATION(); |
| LOGVV("null clazz in OP_CHECK_CAST, single-stepping"); |
| genInterpSingleStep(cUnit, mir); |
| return false; |
| } |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| loadConstant(cUnit, r1, (int) classPtr ); |
| rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| /* Null? */ |
| ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq, |
| rlSrc.lowReg, 0); |
| /* |
| * rlSrc.lowReg now contains object->clazz. Note that |
| * it could have been allocated r0, but we're okay so long |
| * as we don't do anything desctructive until r0 is loaded |
| * with clazz. |
| */ |
| /* r0 now contains object->clazz */ |
| loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0); |
| LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInstanceofNonTrivial); |
| opRegReg(cUnit, kOpCmp, r0, r1); |
| ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq); |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| /* |
| * If null, check cast failed - punt to the interpreter. Because |
| * interpreter will be the one throwing, we don't need to |
| * genExportPC() here. |
| */ |
| genZeroCheck(cUnit, r0, mir->offset, NULL); |
| /* check cast passed - branch target here */ |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branch1->generic.target = (LIR *)target; |
| branch2->generic.target = (LIR *)target; |
| break; |
| } |
| case OP_SGET_WIDE_VOLATILE: |
| case OP_SPUT_WIDE_VOLATILE: |
| genInterpSingleStep(cUnit, mir); |
| break; |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * A typical example of inlined getter/setter from a monomorphic callsite: |
| * |
| * D/dalvikvm( 289): -------- dalvik offset: 0x0000 @ invoke-static (I) |
| * D/dalvikvm( 289): -------- dalvik offset: 0x0000 @ sget-object (C) v0, ... |
| * D/dalvikvm( 289): 0x4427fc22 (0002): ldr r0, [pc, #56] |
| * D/dalvikvm( 289): 0x4427fc24 (0004): ldr r1, [r0, #0] |
| * D/dalvikvm( 289): 0x4427fc26 (0006): str r1, [r5, #0] |
| * D/dalvikvm( 289): 0x4427fc28 (0008): .align4 |
| * D/dalvikvm( 289): L0x0003: |
| * D/dalvikvm( 289): -------- dalvik offset: 0x0003 @ move-result-object (I) v0 |
| * |
| * Note the invoke-static and move-result-object with the (I) notation are |
| * turned into no-op. |
| */ |
| static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir) |
| { |
| Opcode dalvikOpcode = mir->dalvikInsn.opcode; |
| RegLocation rlResult; |
| switch (dalvikOpcode) { |
| case OP_MOVE_EXCEPTION: { |
| int exOffset = offsetof(Thread, exception); |
| int resetReg = dvmCompilerAllocTemp(cUnit); |
| RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadWordDisp(cUnit, r6SELF, exOffset, rlResult.lowReg); |
| loadConstant(cUnit, resetReg, 0); |
| storeWordDisp(cUnit, r6SELF, exOffset, resetReg); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_MOVE_RESULT: |
| case OP_MOVE_RESULT_OBJECT: { |
| /* An inlined move result is effectively no-op */ |
| if (mir->OptimizationFlags & MIR_INLINED) |
| break; |
| RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| RegLocation rlSrc = LOC_DALVIK_RETURN_VAL; |
| rlSrc.fp = rlDest.fp; |
| storeValue(cUnit, rlDest, rlSrc); |
| break; |
| } |
| case OP_MOVE_RESULT_WIDE: { |
| /* An inlined move result is effectively no-op */ |
| if (mir->OptimizationFlags & MIR_INLINED) |
| break; |
| RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE; |
| rlSrc.fp = rlDest.fp; |
| storeValueWide(cUnit, rlDest, rlSrc); |
| break; |
| } |
| case OP_RETURN_WIDE: { |
| RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE; |
| rlDest.fp = rlSrc.fp; |
| storeValueWide(cUnit, rlDest, rlSrc); |
| genReturnCommon(cUnit,mir); |
| break; |
| } |
| case OP_RETURN: |
| case OP_RETURN_OBJECT: { |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlDest = LOC_DALVIK_RETURN_VAL; |
| rlDest.fp = rlSrc.fp; |
| storeValue(cUnit, rlDest, rlSrc); |
| genReturnCommon(cUnit, mir); |
| break; |
| } |
| case OP_MONITOR_EXIT: |
| case OP_MONITOR_ENTER: |
| genMonitor(cUnit, mir); |
| break; |
| case OP_THROW: |
| genInterpSingleStep(cUnit, mir); |
| break; |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir) |
| { |
| Opcode opcode = mir->dalvikInsn.opcode; |
| RegLocation rlDest; |
| RegLocation rlSrc; |
| RegLocation rlResult; |
| |
| if ( (opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) { |
| return genArithOp( cUnit, mir ); |
| } |
| |
| if (mir->ssaRep->numUses == 2) |
| rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| else |
| rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| if (mir->ssaRep->numDefs == 2) |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| else |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| |
| switch (opcode) { |
| case OP_DOUBLE_TO_INT: |
| case OP_INT_TO_FLOAT: |
| case OP_FLOAT_TO_INT: |
| case OP_DOUBLE_TO_FLOAT: |
| case OP_FLOAT_TO_DOUBLE: |
| case OP_INT_TO_DOUBLE: |
| case OP_FLOAT_TO_LONG: |
| case OP_LONG_TO_FLOAT: |
| case OP_DOUBLE_TO_LONG: |
| case OP_LONG_TO_DOUBLE: |
| return genConversion(cUnit, mir); |
| case OP_NEG_INT: |
| case OP_NOT_INT: |
| return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc); |
| case OP_NEG_LONG: |
| case OP_NOT_LONG: |
| return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc); |
| case OP_NEG_FLOAT: |
| return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc); |
| case OP_NEG_DOUBLE: |
| return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc); |
| case OP_MOVE_WIDE: |
| storeValueWide(cUnit, rlDest, rlSrc); |
| break; |
| case OP_INT_TO_LONG: |
| rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| //TUNING: shouldn't loadValueDirect already check for phys reg? |
| if (rlSrc.location == kLocPhysReg) { |
| genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg); |
| } else { |
| loadValueDirect(cUnit, rlSrc, rlResult.lowReg); |
| } |
| opRegRegImm(cUnit, kOpAsr, rlResult.highReg, |
| rlResult.lowReg, 31); |
| storeValueWide(cUnit, rlDest, rlResult); |
| break; |
| case OP_LONG_TO_INT: |
| rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc); |
| rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc); |
| // Intentional fallthrough |
| case OP_MOVE: |
| case OP_MOVE_OBJECT: |
| storeValue(cUnit, rlDest, rlSrc); |
| break; |
| case OP_INT_TO_BYTE: |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| case OP_INT_TO_SHORT: |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| case OP_INT_TO_CHAR: |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| case OP_ARRAY_LENGTH: { |
| int lenOffset = OFFSETOF_MEMBER(ArrayObject, length); |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg, |
| mir->offset, NULL); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadWordDisp(cUnit, rlSrc.lowReg, lenOffset, |
| rlResult.lowReg); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir) |
| { |
| Opcode dalvikOpcode = mir->dalvikInsn.opcode; |
| RegLocation rlDest; |
| RegLocation rlResult; |
| int BBBB = mir->dalvikInsn.vB; |
| if (dalvikOpcode == OP_CONST_WIDE_16) { |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB); |
| //TUNING: do high separately to avoid load dependency |
| opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } else if (dalvikOpcode == OP_CONST_16) { |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); |
| loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB); |
| storeValue(cUnit, rlDest, rlResult); |
| } else |
| return true; |
| return false; |
| } |
| |
| /* Compare agaist zero */ |
| static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb, |
| ArmLIR *labelList) |
| { |
| Opcode dalvikOpcode = mir->dalvikInsn.opcode; |
| ArmConditionCode cond; |
| /* backward branch? */ |
| bool backwardBranch = (bb->taken->startOffset <= mir->offset); |
| |
| if (backwardBranch && |
| (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) { |
| genSuspendPoll(cUnit, mir); |
| } |
| |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| |
| switch (dalvikOpcode) { |
| case OP_IF_EQZ: |
| cond = kArmCondEq; |
| break; |
| case OP_IF_NEZ: |
| cond = kArmCondNe; |
| break; |
| case OP_IF_LTZ: |
| cond = kArmCondLt; |
| break; |
| case OP_IF_GEZ: |
| cond = kArmCondGe; |
| break; |
| case OP_IF_GTZ: |
| cond = kArmCondGt; |
| break; |
| case OP_IF_LEZ: |
| cond = kArmCondLe; |
| break; |
| default: |
| cond = (ArmConditionCode)0; |
| ALOGE("Unexpected opcode (%d) for Fmt21t", dalvikOpcode); |
| dvmCompilerAbort(cUnit); |
| } |
| ArmLIR* branch = genCmpImmBranch(cUnit, cond, rlSrc.lowReg, 0); |
| branch->generic.target = (LIR*)&labelList[bb->taken->id]; |
| /* This mostly likely will be optimized away in a later phase */ |
| genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]); |
| return false; |
| } |
| |
| static bool isPowerOfTwo(int x) |
| { |
| return (x & (x - 1)) == 0; |
| } |
| |
| // Returns true if no more than two bits are set in 'x'. |
| static bool isPopCountLE2(unsigned int x) |
| { |
| x &= x - 1; |
| return (x & (x - 1)) == 0; |
| } |
| |
| // Returns the index of the lowest set bit in 'x'. |
| static int lowestSetBit(unsigned int x) { |
| int bit_posn = 0; |
| while ((x & 0xf) == 0) { |
| bit_posn += 4; |
| x >>= 4; |
| } |
| while ((x & 1) == 0) { |
| bit_posn++; |
| x >>= 1; |
| } |
| return bit_posn; |
| } |
| |
| // Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit' |
| // and store the result in 'rlDest'. |
| static bool handleEasyDivide(CompilationUnit *cUnit, Opcode dalvikOpcode, |
| RegLocation rlSrc, RegLocation rlDest, int lit) |
| { |
| if (lit < 2 || !isPowerOfTwo(lit)) { |
| return false; |
| } |
| int k = lowestSetBit(lit); |
| if (k >= 30) { |
| // Avoid special cases. |
| return false; |
| } |
| bool div = (dalvikOpcode == OP_DIV_INT_LIT8 || dalvikOpcode == OP_DIV_INT_LIT16); |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| if (div) { |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| if (lit == 2) { |
| // Division by 2 is by far the most common division by constant. |
| opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k); |
| opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg); |
| opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k); |
| } else { |
| opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31); |
| opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k); |
| opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg); |
| opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k); |
| } |
| } else { |
| int cReg = dvmCompilerAllocTemp(cUnit); |
| loadConstant(cUnit, cReg, lit - 1); |
| int tReg1 = dvmCompilerAllocTemp(cUnit); |
| int tReg2 = dvmCompilerAllocTemp(cUnit); |
| if (lit == 2) { |
| opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k); |
| opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg); |
| opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg); |
| opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1); |
| } else { |
| opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31); |
| opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k); |
| opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg); |
| opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg); |
| opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1); |
| } |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| return true; |
| } |
| |
| // Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit' |
| // and store the result in 'rlDest'. |
| static bool handleEasyMultiply(CompilationUnit *cUnit, |
| RegLocation rlSrc, RegLocation rlDest, int lit) |
| { |
| // Can we simplify this multiplication? |
| bool powerOfTwo = false; |
| bool popCountLE2 = false; |
| bool powerOfTwoMinusOne = false; |
| if (lit < 2) { |
| // Avoid special cases. |
| return false; |
| } else if (isPowerOfTwo(lit)) { |
| powerOfTwo = true; |
| } else if (isPopCountLE2(lit)) { |
| popCountLE2 = true; |
| } else if (isPowerOfTwo(lit + 1)) { |
| powerOfTwoMinusOne = true; |
| } else { |
| return false; |
| } |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| if (powerOfTwo) { |
| // Shift. |
| opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg, |
| lowestSetBit(lit)); |
| } else if (popCountLE2) { |
| // Shift and add and shift. |
| int firstBit = lowestSetBit(lit); |
| int secondBit = lowestSetBit(lit ^ (1 << firstBit)); |
| genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit, |
| firstBit, secondBit); |
| } else { |
| // Reverse subtract: (src << (shift + 1)) - src. |
| assert(powerOfTwoMinusOne); |
| genMultiplyByShiftAndReverseSubtract(cUnit, rlSrc, rlResult, lowestSetBit(lit + 1)); |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| return true; |
| } |
| |
| static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir) |
| { |
| Opcode dalvikOpcode = mir->dalvikInsn.opcode; |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| RegLocation rlResult; |
| int lit = mir->dalvikInsn.vC; |
| OpKind op = (OpKind)0; /* Make gcc happy */ |
| int shiftOp = false; |
| bool isDiv = false; |
| |
| switch (dalvikOpcode) { |
| case OP_RSUB_INT_LIT8: |
| case OP_RSUB_INT: { |
| int tReg; |
| //TUNING: add support for use of Arm rsub op |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| tReg = dvmCompilerAllocTemp(cUnit); |
| loadConstant(cUnit, tReg, lit); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegRegReg(cUnit, kOpSub, rlResult.lowReg, |
| tReg, rlSrc.lowReg); |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| break; |
| } |
| |
| case OP_ADD_INT_LIT8: |
| case OP_ADD_INT_LIT16: |
| op = kOpAdd; |
| break; |
| case OP_MUL_INT_LIT8: |
| case OP_MUL_INT_LIT16: { |
| if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) { |
| return false; |
| } |
| op = kOpMul; |
| break; |
| } |
| case OP_AND_INT_LIT8: |
| case OP_AND_INT_LIT16: |
| op = kOpAnd; |
| break; |
| case OP_OR_INT_LIT8: |
| case OP_OR_INT_LIT16: |
| op = kOpOr; |
| break; |
| case OP_XOR_INT_LIT8: |
| case OP_XOR_INT_LIT16: |
| op = kOpXor; |
| break; |
| case OP_SHL_INT_LIT8: |
| lit &= 31; |
| shiftOp = true; |
| op = kOpLsl; |
| break; |
| case OP_SHR_INT_LIT8: |
| lit &= 31; |
| shiftOp = true; |
| op = kOpAsr; |
| break; |
| case OP_USHR_INT_LIT8: |
| lit &= 31; |
| shiftOp = true; |
| op = kOpLsr; |
| break; |
| |
| case OP_DIV_INT_LIT8: |
| case OP_DIV_INT_LIT16: |
| case OP_REM_INT_LIT8: |
| case OP_REM_INT_LIT16: |
| if (lit == 0) { |
| /* Let the interpreter deal with div by 0 */ |
| genInterpSingleStep(cUnit, mir); |
| return false; |
| } |
| if (handleEasyDivide(cUnit, dalvikOpcode, rlSrc, rlDest, lit)) { |
| return false; |
| } |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| loadValueDirectFixed(cUnit, rlSrc, r0); |
| dvmCompilerClobber(cUnit, r0); |
| if ((dalvikOpcode == OP_DIV_INT_LIT8) || |
| (dalvikOpcode == OP_DIV_INT_LIT16)) { |
| LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idiv); |
| isDiv = true; |
| } else { |
| LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idivmod); |
| isDiv = false; |
| } |
| loadConstant(cUnit, r1, lit); |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| if (isDiv) |
| rlResult = dvmCompilerGetReturn(cUnit); |
| else |
| rlResult = dvmCompilerGetReturnAlt(cUnit); |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| break; |
| default: |
| return true; |
| } |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| // Avoid shifts by literal 0 - no support in Thumb. Change to copy |
| if (shiftOp && (lit == 0)) { |
| genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg); |
| } else { |
| opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit); |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir) |
| { |
| Opcode dalvikOpcode = mir->dalvikInsn.opcode; |
| int fieldOffset = -1; |
| bool isVolatile = false; |
| switch (dalvikOpcode) { |
| /* |
| * Wide volatiles currently handled via single step. |
| * Add them here if generating in-line code. |
| * case OP_IGET_WIDE_VOLATILE: |
| * case OP_IPUT_WIDE_VOLATILE: |
| */ |
| case OP_IGET_VOLATILE: |
| case OP_IGET_OBJECT_VOLATILE: |
| case OP_IPUT_VOLATILE: |
| case OP_IPUT_OBJECT_VOLATILE: |
| #if ANDROID_SMP != 0 |
| isVolatile = true; |
| // NOTE: intentional fallthrough |
| #endif |
| case OP_IGET: |
| case OP_IGET_WIDE: |
| case OP_IGET_OBJECT: |
| case OP_IGET_BOOLEAN: |
| case OP_IGET_BYTE: |
| case OP_IGET_CHAR: |
| case OP_IGET_SHORT: |
| case OP_IPUT: |
| case OP_IPUT_WIDE: |
| case OP_IPUT_OBJECT: |
| case OP_IPUT_BOOLEAN: |
| case OP_IPUT_BYTE: |
| case OP_IPUT_CHAR: |
| case OP_IPUT_SHORT: { |
| const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ? |
| mir->meta.calleeMethod : cUnit->method; |
| Field *fieldPtr = |
| method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC]; |
| |
| if (fieldPtr == NULL) { |
| BAIL_LOOP_COMPILATION(); |
| ALOGE("Unexpected null instance field"); |
| dvmAbort(); |
| } |
| |
| #if ANDROID_SMP != 0 |
| assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr)); |
| #else |
| isVolatile = dvmIsVolatileField((Field *) fieldPtr); |
| #endif |
| fieldOffset = ((InstField *)fieldPtr)->byteOffset; |
| break; |
| } |
| default: |
| break; |
| } |
| |
| switch (dalvikOpcode) { |
| case OP_NEW_ARRAY: { |
| // Generates a call - use explicit registers |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| RegLocation rlResult; |
| void *classPtr = (void*) |
| (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]); |
| |
| if (classPtr == NULL) { |
| BAIL_LOOP_COMPILATION(); |
| ALOGE("Unexpected null class"); |
| dvmAbort(); |
| } |
| |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| genExportPC(cUnit, mir); |
| loadValueDirectFixed(cUnit, rlSrc, r1); /* Len */ |
| loadConstant(cUnit, r0, (int) classPtr ); |
| LOAD_FUNC_ADDR(cUnit, r3, (int)dvmAllocArrayByClass); |
| /* |
| * "len < 0": bail to the interpreter to re-execute the |
| * instruction |
| */ |
| genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL); |
| loadConstant(cUnit, r2, ALLOC_DONT_TRACK); |
| opReg(cUnit, kOpBlx, r3); |
| dvmCompilerClobberCallRegs(cUnit); |
| /* generate a branch over if allocation is successful */ |
| ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0); |
| /* |
| * OOM exception needs to be thrown here and cannot re-execute |
| */ |
| loadConstant(cUnit, r0, |
| (int) (cUnit->method->insns + mir->offset)); |
| genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); |
| /* noreturn */ |
| |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branchOver->generic.target = (LIR *) target; |
| rlResult = dvmCompilerGetReturn(cUnit); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_INSTANCE_OF: { |
| // May generate a call - use explicit registers |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| RegLocation rlResult; |
| ClassObject *classPtr = |
| (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]); |
| /* |
| * Note: It is possible that classPtr is NULL at this point, |
| * even though this instruction has been successfully interpreted. |
| * If the previous interpretation had a null source, the |
| * interpreter would not have bothered to resolve the clazz. |
| * Bail out to the interpreter in this case, and log it |
| * so that we can tell if it happens frequently. |
| */ |
| if (classPtr == NULL) { |
| BAIL_LOOP_COMPILATION(); |
| ALOGD("null clazz in OP_INSTANCE_OF, single-stepping"); |
| genInterpSingleStep(cUnit, mir); |
| break; |
| } |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| loadValueDirectFixed(cUnit, rlSrc, r0); /* Ref */ |
| loadConstant(cUnit, r2, (int) classPtr ); |
| /* When taken r0 has NULL which can be used for store directly */ |
| ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq, r0, 0); |
| /* r1 now contains object->clazz */ |
| loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1); |
| /* r1 now contains object->clazz */ |
| LOAD_FUNC_ADDR(cUnit, r3, (int)dvmInstanceofNonTrivial); |
| loadConstant(cUnit, r0, 1); /* Assume true */ |
| opRegReg(cUnit, kOpCmp, r1, r2); |
| ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq); |
| genRegCopy(cUnit, r0, r1); |
| genRegCopy(cUnit, r1, r2); |
| opReg(cUnit, kOpBlx, r3); |
| dvmCompilerClobberCallRegs(cUnit); |
| /* branch target here */ |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| rlResult = dvmCompilerGetReturn(cUnit); |
| storeValue(cUnit, rlDest, rlResult); |
| branch1->generic.target = (LIR *)target; |
| branch2->generic.target = (LIR *)target; |
| break; |
| } |
| case OP_IGET_WIDE: |
| genIGetWide(cUnit, mir, fieldOffset); |
| break; |
| case OP_IGET_VOLATILE: |
| case OP_IGET_OBJECT_VOLATILE: |
| case OP_IGET: |
| case OP_IGET_OBJECT: |
| case OP_IGET_BOOLEAN: |
| case OP_IGET_BYTE: |
| case OP_IGET_CHAR: |
| case OP_IGET_SHORT: |
| genIGet(cUnit, mir, kWord, fieldOffset, isVolatile); |
| break; |
| case OP_IPUT_WIDE: |
| genIPutWide(cUnit, mir, fieldOffset); |
| break; |
| case OP_IPUT_VOLATILE: |
| case OP_IPUT: |
| case OP_IPUT_BOOLEAN: |
| case OP_IPUT_BYTE: |
| case OP_IPUT_CHAR: |
| case OP_IPUT_SHORT: |
| genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile); |
| break; |
| case OP_IPUT_OBJECT_VOLATILE: |
| case OP_IPUT_OBJECT: |
| genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile); |
| break; |
| case OP_IGET_WIDE_VOLATILE: |
| case OP_IPUT_WIDE_VOLATILE: |
| genInterpSingleStep(cUnit, mir); |
| break; |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir) |
| { |
| Opcode dalvikOpcode = mir->dalvikInsn.opcode; |
| int fieldOffset = mir->dalvikInsn.vC; |
| switch (dalvikOpcode) { |
| case OP_IGET_QUICK: |
| case OP_IGET_OBJECT_QUICK: |
| genIGet(cUnit, mir, kWord, fieldOffset, false); |
| break; |
| case OP_IPUT_QUICK: |
| genIPut(cUnit, mir, kWord, fieldOffset, false, false); |
| break; |
| case OP_IPUT_OBJECT_QUICK: |
| genIPut(cUnit, mir, kWord, fieldOffset, true, false); |
| break; |
| case OP_IGET_WIDE_QUICK: |
| genIGetWide(cUnit, mir, fieldOffset); |
| break; |
| case OP_IPUT_WIDE_QUICK: |
| genIPutWide(cUnit, mir, fieldOffset); |
| break; |
| default: |
| return true; |
| } |
| return false; |
| |
| } |
| |
| /* Compare agaist zero */ |
| static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb, |
| ArmLIR *labelList) |
| { |
| Opcode dalvikOpcode = mir->dalvikInsn.opcode; |
| ArmConditionCode cond; |
| /* backward branch? */ |
| bool backwardBranch = (bb->taken->startOffset <= mir->offset); |
| |
| if (backwardBranch && |
| (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) { |
| genSuspendPoll(cUnit, mir); |
| } |
| |
| RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1); |
| |
| rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); |
| rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg); |
| |
| opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg); |
| |
| switch (dalvikOpcode) { |
| case OP_IF_EQ: |
| cond = kArmCondEq; |
| break; |
| case OP_IF_NE: |
| cond = kArmCondNe; |
| break; |
| case OP_IF_LT: |
| cond = kArmCondLt; |
| break; |
| case OP_IF_GE: |
| cond = kArmCondGe; |
| break; |
| case OP_IF_GT: |
| cond = kArmCondGt; |
| break; |
| case OP_IF_LE: |
| cond = kArmCondLe; |
| break; |
| default: |
| cond = (ArmConditionCode)0; |
| ALOGE("Unexpected opcode (%d) for Fmt22t", dalvikOpcode); |
| dvmCompilerAbort(cUnit); |
| } |
| genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]); |
| /* This mostly likely will be optimized away in a later phase */ |
| genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]); |
| return false; |
| } |
| |
| static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir) |
| { |
| Opcode opcode = mir->dalvikInsn.opcode; |
| |
| switch (opcode) { |
| case OP_MOVE_16: |
| case OP_MOVE_OBJECT_16: |
| case OP_MOVE_FROM16: |
| case OP_MOVE_OBJECT_FROM16: { |
| storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0), |
| dvmCompilerGetSrc(cUnit, mir, 0)); |
| break; |
| } |
| case OP_MOVE_WIDE_16: |
| case OP_MOVE_WIDE_FROM16: { |
| storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1), |
| dvmCompilerGetSrcWide(cUnit, mir, 0, 1)); |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir) |
| { |
| Opcode opcode = mir->dalvikInsn.opcode; |
| RegLocation rlSrc1; |
| RegLocation rlSrc2; |
| RegLocation rlDest; |
| |
| if ( (opcode >= OP_ADD_INT) && (opcode <= OP_REM_DOUBLE)) { |
| return genArithOp( cUnit, mir ); |
| } |
| |
| /* APUTs have 3 sources and no targets */ |
| if (mir->ssaRep->numDefs == 0) { |
| if (mir->ssaRep->numUses == 3) { |
| rlDest = dvmCompilerGetSrc(cUnit, mir, 0); |
| rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1); |
| rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2); |
| } else { |
| assert(mir->ssaRep->numUses == 4); |
| rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2); |
| rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3); |
| } |
| } else { |
| /* Two sources and 1 dest. Deduce the operand sizes */ |
| if (mir->ssaRep->numUses == 4) { |
| rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3); |
| } else { |
| assert(mir->ssaRep->numUses == 2); |
| rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0); |
| rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1); |
| } |
| if (mir->ssaRep->numDefs == 2) { |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| } else { |
| assert(mir->ssaRep->numDefs == 1); |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| } |
| } |
| |
| |
| switch (opcode) { |
| case OP_CMPL_FLOAT: |
| case OP_CMPG_FLOAT: |
| case OP_CMPL_DOUBLE: |
| case OP_CMPG_DOUBLE: |
| return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2); |
| case OP_CMP_LONG: |
| genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2); |
| break; |
| case OP_AGET_WIDE: |
| genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3); |
| break; |
| case OP_AGET: |
| case OP_AGET_OBJECT: |
| genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2); |
| break; |
| case OP_AGET_BOOLEAN: |
| genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0); |
| break; |
| case OP_AGET_BYTE: |
| genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0); |
| break; |
| case OP_AGET_CHAR: |
| genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1); |
| break; |
| case OP_AGET_SHORT: |
| genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1); |
| break; |
| case OP_APUT_WIDE: |
| genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3); |
| break; |
| case OP_APUT: |
| genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2); |
| break; |
| case OP_APUT_OBJECT: |
| genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2); |
| break; |
| case OP_APUT_SHORT: |
| case OP_APUT_CHAR: |
| genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1); |
| break; |
| case OP_APUT_BYTE: |
| case OP_APUT_BOOLEAN: |
| genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0); |
| break; |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Find the matching case. |
| * |
| * return values: |
| * r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case, |
| * including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES). |
| * r1 (high 32-bit): the branch offset of the matching case (only for indexes |
| * above MAX_CHAINED_SWITCH_CASES). |
| * |
| * Instructions around the call are: |
| * |
| * mov r2, pc |
| * blx &findPackedSwitchIndex |
| * mov pc, r0 |
| * .align4 |
| * chaining cell for case 0 [12 bytes] |
| * chaining cell for case 1 [12 bytes] |
| * : |
| * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [12 bytes] |
| * chaining cell for case default [8 bytes] |
| * noChain exit |
| */ |
| static u8 findPackedSwitchIndex(const u2* switchData, int testVal, uintptr_t pc) |
| { |
| int size; |
| int firstKey; |
| const int *entries; |
| int index; |
| int jumpIndex; |
| uintptr_t caseDPCOffset = 0; |
| /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */ |
| uintptr_t chainingPC = (pc + 4) & ~3; |
| |
| /* |
| * Packed switch data format: |
| * ushort ident = 0x0100 magic value |
| * ushort size number of entries in the table |
| * int first_key first (and lowest) switch case value |
| * int targets[size] branch targets, relative to switch opcode |
| * |
| * Total size is (4+size*2) 16-bit code units. |
| */ |
| size = switchData[1]; |
| assert(size > 0); |
| |
| firstKey = switchData[2]; |
| firstKey |= switchData[3] << 16; |
| |
| |
| /* The entries are guaranteed to be aligned on a 32-bit boundary; |
| * we can treat them as a native int array. |
| */ |
| entries = (const int*) &switchData[4]; |
| assert(((u4)entries & 0x3) == 0); |
| |
| index = testVal - firstKey; |
| |
| /* Jump to the default cell */ |
| if (index < 0 || index >= size) { |
| jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES); |
| /* Jump to the non-chaining exit point */ |
| } else if (index >= MAX_CHAINED_SWITCH_CASES) { |
| jumpIndex = MAX_CHAINED_SWITCH_CASES + 1; |
| caseDPCOffset = entries[index]; |
| /* Jump to the inline chaining cell */ |
| } else { |
| jumpIndex = index; |
| } |
| |
| chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE; |
| return (((u8) caseDPCOffset) << 32) | (u8) chainingPC; |
| } |
| |
| /* See comments for findPackedSwitchIndex */ |
| static u8 findSparseSwitchIndex(const u2* switchData, int testVal, uintptr_t pc) |
| { |
| int size; |
| const int *keys; |
| const int *entries; |
| uintptr_t chainingPC = (pc + 4) & ~3; |
| int i; |
| |
| /* |
| * Sparse switch data format: |
| * ushort ident = 0x0200 magic value |
| * ushort size number of entries in the table; > 0 |
| * int keys[size] keys, sorted low-to-high; 32-bit aligned |
| * int targets[size] branch targets, relative to switch opcode |
| * |
| * Total size is (2+size*4) 16-bit code units. |
| */ |
| |
| size = switchData[1]; |
| assert(size > 0); |
| |
| /* The keys are guaranteed to be aligned on a 32-bit boundary; |
| * we can treat them as a native int array. |
| */ |
| keys = (const int*) &switchData[2]; |
| assert(((u4)keys & 0x3) == 0); |
| |
| /* The entries are guaranteed to be aligned on a 32-bit boundary; |
| * we can treat them as a native int array. |
| */ |
| entries = keys + size; |
| assert(((u4)entries & 0x3) == 0); |
| |
| /* |
| * Run through the list of keys, which are guaranteed to |
| * be sorted low-to-high. |
| * |
| * Most tables have 3-4 entries. Few have more than 10. A binary |
| * search here is probably not useful. |
| */ |
| for (i = 0; i < size; i++) { |
| int k = keys[i]; |
| if (k == testVal) { |
| /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */ |
| int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ? |
| i : MAX_CHAINED_SWITCH_CASES + 1; |
| chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE; |
| return (((u8) entries[i]) << 32) | (u8) chainingPC; |
| } else if (k > testVal) { |
| break; |
| } |
| } |
| return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) * |
| CHAIN_CELL_NORMAL_SIZE; |
| } |
| |
| static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir) |
| { |
| Opcode dalvikOpcode = mir->dalvikInsn.opcode; |
| switch (dalvikOpcode) { |
| case OP_FILL_ARRAY_DATA: { |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| // Making a call - use explicit registers |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| genExportPC(cUnit, mir); |
| loadValueDirectFixed(cUnit, rlSrc, r0); |
| LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInterpHandleFillArrayData); |
| loadConstant(cUnit, r1, |
| (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB)); |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| /* generate a branch over if successful */ |
| ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0); |
| loadConstant(cUnit, r0, |
| (int) (cUnit->method->insns + mir->offset)); |
| genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branchOver->generic.target = (LIR *) target; |
| break; |
| } |
| /* |
| * Compute the goto target of up to |
| * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells. |
| * See the comment before findPackedSwitchIndex for the code layout. |
| */ |
| case OP_PACKED_SWITCH: |
| case OP_SPARSE_SWITCH: { |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| loadValueDirectFixed(cUnit, rlSrc, r1); |
| dvmCompilerLockAllTemps(cUnit); |
| if (dalvikOpcode == OP_PACKED_SWITCH) { |
| LOAD_FUNC_ADDR(cUnit, r4PC, (int)findPackedSwitchIndex); |
| } else { |
| LOAD_FUNC_ADDR(cUnit, r4PC, (int)findSparseSwitchIndex); |
| } |
| /* r0 <- Addr of the switch data */ |
| loadConstant(cUnit, r0, |
| (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB)); |
| /* r2 <- pc of the instruction following the blx */ |
| opRegReg(cUnit, kOpMov, r2, r15pc); |
| opReg(cUnit, kOpBlx, r4PC); |
| dvmCompilerClobberCallRegs(cUnit); |
| /* pc <- computed goto target */ |
| opRegReg(cUnit, kOpMov, r15pc, r0); |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * See the example of predicted inlining listed before the |
| * genValidationForPredictedInline function. The function here takes care the |
| * branch over at 0x4858de78 and the misprediction target at 0x4858de7a. |
| */ |
| static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir, |
| BasicBlock *bb, |
| ArmLIR *labelList) |
| { |
| BasicBlock *fallThrough = bb->fallThrough; |
| |
| /* Bypass the move-result block if there is one */ |
| if (fallThrough->firstMIRInsn) { |
| assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED); |
| fallThrough = fallThrough->fallThrough; |
| } |
| /* Generate a branch over if the predicted inlining is correct */ |
| genUnconditionalBranch(cUnit, &labelList[fallThrough->id]); |
| |
| /* Reset the register state */ |
| dvmCompilerResetRegPool(cUnit); |
| dvmCompilerClobberAllRegs(cUnit); |
| dvmCompilerResetNullCheck(cUnit); |
| |
| /* Target for the slow invoke path */ |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| /* Hook up the target to the verification branch */ |
| mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target; |
| } |
| |
| static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir, |
| BasicBlock *bb, ArmLIR *labelList) |
| { |
| ArmLIR *retChainingCell = NULL; |
| ArmLIR *pcrLabel = NULL; |
| |
| /* An invoke with the MIR_INLINED is effectively a no-op */ |
| if (mir->OptimizationFlags & MIR_INLINED) |
| return false; |
| |
| if (bb->fallThrough != NULL) |
| retChainingCell = &labelList[bb->fallThrough->id]; |
| |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| switch (mir->dalvikInsn.opcode) { |
| /* |
| * calleeMethod = this->clazz->vtable[ |
| * method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex |
| * ] |
| */ |
| case OP_INVOKE_VIRTUAL: |
| case OP_INVOKE_VIRTUAL_RANGE: { |
| ArmLIR *predChainingCell = &labelList[bb->taken->id]; |
| int methodIndex = |
| cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]-> |
| methodIndex; |
| |
| /* |
| * If the invoke has non-null misPredBranchOver, we need to generate |
| * the non-inlined version of the invoke here to handle the |
| * mispredicted case. |
| */ |
| if (mir->meta.callsiteInfo->misPredBranchOver) { |
| genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList); |
| } |
| |
| if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL) |
| genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); |
| else |
| genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); |
| |
| genInvokeVirtualCommon(cUnit, mir, methodIndex, |
| retChainingCell, |
| predChainingCell, |
| pcrLabel); |
| break; |
| } |
| /* |
| * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex |
| * ->pResMethods[BBBB]->methodIndex] |
| */ |
| case OP_INVOKE_SUPER: |
| case OP_INVOKE_SUPER_RANGE: { |
| /* Grab the method ptr directly from what the interpreter sees */ |
| const Method *calleeMethod = mir->meta.callsiteInfo->method; |
| assert(calleeMethod == cUnit->method->clazz->super->vtable[ |
| cUnit->method->clazz->pDvmDex-> |
| pResMethods[dInsn->vB]->methodIndex]); |
| |
| if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER) |
| genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); |
| else |
| genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); |
| |
| if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) { |
| const Method *calleeMethod = mir->meta.callsiteInfo->method; |
| void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns); |
| assert(calleeAddr); |
| genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr, |
| retChainingCell); |
| } else { |
| /* r0 = calleeMethod */ |
| loadConstant(cUnit, r0, (int) calleeMethod); |
| |
| genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel, |
| calleeMethod); |
| } |
| break; |
| } |
| /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */ |
| case OP_INVOKE_DIRECT: |
| case OP_INVOKE_DIRECT_RANGE: { |
| /* Grab the method ptr directly from what the interpreter sees */ |
| const Method *calleeMethod = mir->meta.callsiteInfo->method; |
| assert(calleeMethod == |
| cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]); |
| |
| if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT) |
| genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); |
| else |
| genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); |
| |
| /* r0 = calleeMethod */ |
| loadConstant(cUnit, r0, (int) calleeMethod); |
| |
| genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel, |
| calleeMethod); |
| break; |
| } |
| /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */ |
| case OP_INVOKE_STATIC: |
| case OP_INVOKE_STATIC_RANGE: { |
| /* Grab the method ptr directly from what the interpreter sees */ |
| const Method *calleeMethod = mir->meta.callsiteInfo->method; |
| assert(calleeMethod == |
| cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]); |
| |
| if (mir->dalvikInsn.opcode == OP_INVOKE_STATIC) |
| genProcessArgsNoRange(cUnit, mir, dInsn, |
| NULL /* no null check */); |
| else |
| genProcessArgsRange(cUnit, mir, dInsn, |
| NULL /* no null check */); |
| |
| if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) { |
| const Method *calleeMethod = mir->meta.callsiteInfo->method; |
| void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns); |
| assert(calleeAddr); |
| genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr, |
| retChainingCell); |
| } else { |
| /* r0 = calleeMethod */ |
| loadConstant(cUnit, r0, (int) calleeMethod); |
| |
| genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel, |
| calleeMethod); |
| } |
| break; |
| } |
| /* |
| * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz, |
| * BBBB, method, method->clazz->pDvmDex) |
| * |
| * The following is an example of generated code for |
| * "invoke-interface v0" |
| * |
| * -------- dalvik offset: 0x0008 @ invoke-interface v0 |
| * 0x47357e36 : ldr r0, [r5, #0] --+ |
| * 0x47357e38 : sub r7,r5,#24 | |
| * 0x47357e3c : cmp r0, #0 | genProcessArgsNoRange |
| * 0x47357e3e : beq 0x47357e82 | |
| * 0x47357e40 : stmia r7, <r0> --+ |
| * 0x47357e42 : ldr r4, [pc, #120] --> r4 <- dalvikPC of this invoke |
| * 0x47357e44 : add r1, pc, #64 --> r1 <- &retChainingCell |
| * 0x47357e46 : add r2, pc, #72 --> r2 <- &predictedChainingCell |
| * 0x47357e48 : blx_1 0x47348190 --+ TEMPLATE_INVOKE_METHOD_ |
| * 0x47357e4a : blx_2 see above --+ PREDICTED_CHAIN |
| * 0x47357e4c : b 0x47357e90 --> off to the predicted chain |
| * 0x47357e4e : b 0x47357e82 --> punt to the interpreter |
| * 0x47357e50 : mov r8, r1 --+ |
| * 0x47357e52 : mov r9, r2 | |
| * 0x47357e54 : ldr r2, [pc, #96] | |
| * 0x47357e56 : mov r10, r3 | |
| * 0x47357e58 : movs r0, r3 | dvmFindInterfaceMethodInCache |
| * 0x47357e5a : ldr r3, [pc, #88] | |
| * 0x47357e5c : ldr r7, [pc, #80] | |
| * 0x47357e5e : mov r1, #1452 | |
| * 0x47357e62 : blx r7 --+ |
| * 0x47357e64 : cmp r0, #0 --> calleeMethod == NULL? |
| * 0x47357e66 : bne 0x47357e6e --> branch over the throw if !r0 |
| * 0x47357e68 : ldr r0, [pc, #80] --> load Dalvik PC of the invoke |
| * 0x47357e6a : blx_1 0x47348494 --+ TEMPLATE_THROW_EXCEPTION_ |
| * 0x47357e6c : blx_2 see above --+ COMMON |
| * 0x47357e6e : mov r1, r8 --> r1 <- &retChainingCell |
| * 0x47357e70 : cmp r1, #0 --> compare against 0 |
| * 0x47357e72 : bgt 0x47357e7c --> >=0? don't rechain |
| * 0x47357e74 : ldr r7, [pc, #off] --+ |
| * 0x47357e76 : mov r2, r9 | dvmJitToPatchPredictedChain |
| * 0x47357e78 : mov r3, r10 | |
| * 0x47357e7a : blx r7 --+ |
| * 0x47357e7c : add r1, pc, #8 --> r1 <- &retChainingCell |
| * 0x47357e7e : blx_1 0x4734809c --+ TEMPLATE_INVOKE_METHOD_NO_OPT |
| * 0x47357e80 : blx_2 see above --+ |
| * -------- reconstruct dalvik PC : 0x425719dc @ +0x0008 |
| * 0x47357e82 : ldr r0, [pc, #56] |
| * Exception_Handling: |
| * 0x47357e84 : ldr r1, [r6, #92] |
| * 0x47357e86 : blx r1 |
| * 0x47357e88 : .align4 |
| * -------- chaining cell (hot): 0x000b |
| * 0x47357e88 : ldr r0, [r6, #104] |
| * 0x47357e8a : blx r0 |
| * 0x47357e8c : data 0x19e2(6626) |
| * 0x47357e8e : data 0x4257(16983) |
| * 0x47357e90 : .align4 |
| * -------- chaining cell (predicted) |
| * 0x47357e90 : data 0xe7fe(59390) --> will be patched into bx |
| * 0x47357e92 : data 0x0000(0) |
| * 0x47357e94 : data 0x0000(0) --> class |
| * 0x47357e96 : data 0x0000(0) |
| * 0x47357e98 : data 0x0000(0) --> method |
| * 0x47357e9a : data 0x0000(0) |
| * 0x47357e9c : data 0x0000(0) --> rechain count |
| * 0x47357e9e : data 0x0000(0) |
| * -------- end of chaining cells (0x006c) |
| * 0x47357eb0 : .word (0xad03e369) |
| * 0x47357eb4 : .word (0x28a90) |
| * 0x47357eb8 : .word (0x41a63394) |
| * 0x47357ebc : .word (0x425719dc) |
| */ |
| case OP_INVOKE_INTERFACE: |
| case OP_INVOKE_INTERFACE_RANGE: { |
| ArmLIR *predChainingCell = &labelList[bb->taken->id]; |
| |
| /* |
| * If the invoke has non-null misPredBranchOver, we need to generate |
| * the non-inlined version of the invoke here to handle the |
| * mispredicted case. |
| */ |
| if (mir->meta.callsiteInfo->misPredBranchOver) { |
| genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList); |
| } |
| |
| if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE) |
| genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); |
| else |
| genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); |
| |
| /* "this" is already left in r0 by genProcessArgs* */ |
| |
| /* r4PC = dalvikCallsite */ |
| loadConstant(cUnit, r4PC, |
| (int) (cUnit->method->insns + mir->offset)); |
| |
| /* r1 = &retChainingCell */ |
| ArmLIR *addrRetChain = |
| opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0); |
| addrRetChain->generic.target = (LIR *) retChainingCell; |
| |
| /* r2 = &predictedChainingCell */ |
| ArmLIR *predictedChainingCell = |
| opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0); |
| predictedChainingCell->generic.target = (LIR *) predChainingCell; |
| |
| genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ? |
| TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF : |
| TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN); |
| |
| /* return through lr - jump to the chaining cell */ |
| genUnconditionalBranch(cUnit, predChainingCell); |
| |
| /* |
| * null-check on "this" may have been eliminated, but we still need |
| * a PC-reconstruction label for stack overflow bailout. |
| */ |
| if (pcrLabel == NULL) { |
| int dPC = (int) (cUnit->method->insns + mir->offset); |
| pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); |
| pcrLabel->opcode = kArmPseudoPCReconstructionCell; |
| pcrLabel->operands[0] = dPC; |
| pcrLabel->operands[1] = mir->offset; |
| /* Insert the place holder to the growable list */ |
| dvmInsertGrowableList(&cUnit->pcReconstructionList, |
| (intptr_t) pcrLabel); |
| } |
| |
| /* return through lr+2 - punt to the interpreter */ |
| genUnconditionalBranch(cUnit, pcrLabel); |
| |
| /* |
| * return through lr+4 - fully resolve the callee method. |
| * r1 <- count |
| * r2 <- &predictedChainCell |
| * r3 <- this->class |
| * r4 <- dPC |
| * r7 <- this->class->vtable |
| */ |
| |
| /* Save count, &predictedChainCell, and class to high regs first */ |
| genRegCopy(cUnit, r8, r1); |
| genRegCopy(cUnit, r9, r2); |
| genRegCopy(cUnit, r10, r3); |
| |
| /* r0 now contains this->clazz */ |
| genRegCopy(cUnit, r0, r3); |
| |
| /* r1 = BBBB */ |
| loadConstant(cUnit, r1, dInsn->vB); |
| |
| /* r2 = method (caller) */ |
| loadConstant(cUnit, r2, (int) cUnit->method); |
| |
| /* r3 = pDvmDex */ |
| loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex); |
| |
| LOAD_FUNC_ADDR(cUnit, r7, |
| (intptr_t) dvmFindInterfaceMethodInCache); |
| opReg(cUnit, kOpBlx, r7); |
| /* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */ |
| |
| dvmCompilerClobberCallRegs(cUnit); |
| /* generate a branch over if the interface method is resolved */ |
| ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0); |
| /* |
| * calleeMethod == NULL -> throw |
| */ |
| loadConstant(cUnit, r0, |
| (int) (cUnit->method->insns + mir->offset)); |
| genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); |
| /* noreturn */ |
| |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branchOver->generic.target = (LIR *) target; |
| |
| genRegCopy(cUnit, r1, r8); |
| |
| /* Check if rechain limit is reached */ |
| ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt, |
| r1, 0); |
| |
| LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain); |
| |
| genRegCopy(cUnit, r1, r6SELF); |
| genRegCopy(cUnit, r2, r9); |
| genRegCopy(cUnit, r3, r10); |
| |
| /* |
| * r0 = calleeMethod |
| * r2 = &predictedChainingCell |
| * r3 = class |
| * |
| * &returnChainingCell has been loaded into r1 but is not needed |
| * when patching the chaining cell and will be clobbered upon |
| * returning so it will be reconstructed again. |
| */ |
| opReg(cUnit, kOpBlx, r7); |
| |
| /* r1 = &retChainingCell */ |
| addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0); |
| addrRetChain->generic.target = (LIR *) retChainingCell; |
| |
| bypassRechaining->generic.target = (LIR *) addrRetChain; |
| |
| /* |
| * r0 = this, r1 = calleeMethod, |
| * r1 = &ChainingCell, |
| * r4PC = callsiteDPC, |
| */ |
| genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ? |
| TEMPLATE_INVOKE_METHOD_NO_OPT_PROF : |
| TEMPLATE_INVOKE_METHOD_NO_OPT); |
| #if defined(WITH_JIT_TUNING) |
| gDvmJit.invokePolymorphic++; |
| #endif |
| /* Handle exceptions using the interpreter */ |
| genTrap(cUnit, mir->offset, pcrLabel); |
| break; |
| } |
| case OP_INVOKE_OBJECT_INIT_RANGE: |
| case OP_FILLED_NEW_ARRAY: |
| case OP_FILLED_NEW_ARRAY_RANGE: { |
| /* Just let the interpreter deal with these */ |
| genInterpSingleStep(cUnit, mir); |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir, |
| BasicBlock *bb, ArmLIR *labelList) |
| { |
| ArmLIR *pcrLabel = NULL; |
| |
| /* An invoke with the MIR_INLINED is effectively a no-op */ |
| if (mir->OptimizationFlags & MIR_INLINED) |
| return false; |
| |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| switch (mir->dalvikInsn.opcode) { |
| /* calleeMethod = this->clazz->vtable[BBBB] */ |
| case OP_INVOKE_VIRTUAL_QUICK_RANGE: |
| case OP_INVOKE_VIRTUAL_QUICK: { |
| int methodIndex = dInsn->vB; |
| ArmLIR *retChainingCell = &labelList[bb->fallThrough->id]; |
| ArmLIR *predChainingCell = &labelList[bb->taken->id]; |
| |
| /* |
| * If the invoke has non-null misPredBranchOver, we need to generate |
| * the non-inlined version of the invoke here to handle the |
| * mispredicted case. |
| */ |
| if (mir->meta.callsiteInfo->misPredBranchOver) { |
| genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList); |
| } |
| |
| if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL_QUICK) |
| genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); |
| else |
| genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); |
| |
| |
| if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) { |
| const Method *calleeMethod = mir->meta.callsiteInfo->method; |
| void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns); |
| assert(calleeAddr); |
| genInvokeVirtualWholeMethod(cUnit, mir, calleeAddr, |
| retChainingCell); |
| } |
| |
| genInvokeVirtualCommon(cUnit, mir, methodIndex, |
| retChainingCell, |
| predChainingCell, |
| pcrLabel); |
| break; |
| } |
| /* calleeMethod = method->clazz->super->vtable[BBBB] */ |
| case OP_INVOKE_SUPER_QUICK: |
| case OP_INVOKE_SUPER_QUICK_RANGE: { |
| /* Grab the method ptr directly from what the interpreter sees */ |
| const Method *calleeMethod = mir->meta.callsiteInfo->method; |
| assert(calleeMethod == |
| cUnit->method->clazz->super->vtable[dInsn->vB]); |
| |
| if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER_QUICK) |
| genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); |
| else |
| genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); |
| |
| /* r0 = calleeMethod */ |
| loadConstant(cUnit, r0, (int) calleeMethod); |
| |
| genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel, |
| calleeMethod); |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * This operation is complex enough that we'll do it partly inline |
| * and partly with a handler. NOTE: the handler uses hardcoded |
| * values for string object offsets and must be revisitied if the |
| * layout changes. |
| */ |
| static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir) |
| { |
| #if defined(USE_GLOBAL_STRING_DEFS) |
| return handleExecuteInlineC(cUnit, mir); |
| #else |
| ArmLIR *rollback; |
| RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1); |
| |
| loadValueDirectFixed(cUnit, rlThis, r0); |
| loadValueDirectFixed(cUnit, rlComp, r1); |
| /* Test objects for NULL */ |
| rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL); |
| genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback); |
| /* |
| * TUNING: we could check for object pointer equality before invoking |
| * handler. Unclear whether the gain would be worth the added code size |
| * expansion. |
| */ |
| genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO); |
| storeValue(cUnit, inlinedTarget(cUnit, mir, false), |
| dvmCompilerGetReturn(cUnit)); |
| return false; |
| #endif |
| } |
| |
| static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir) |
| { |
| #if defined(USE_GLOBAL_STRING_DEFS) |
| return handleExecuteInlineC(cUnit, mir); |
| #else |
| RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1); |
| |
| loadValueDirectFixed(cUnit, rlThis, r0); |
| loadValueDirectFixed(cUnit, rlChar, r1); |
| RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2); |
| loadValueDirectFixed(cUnit, rlStart, r2); |
| /* Test objects for NULL */ |
| genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL); |
| genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF); |
| storeValue(cUnit, inlinedTarget(cUnit, mir, false), |
| dvmCompilerGetReturn(cUnit)); |
| return false; |
| #endif |
| } |
| |
| // Generates an inlined String.isEmpty or String.length. |
| static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir, |
| bool isEmpty) |
| { |
| // dst = src.length(); |
| RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlDest = inlinedTarget(cUnit, mir, false); |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL); |
| loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, |
| rlResult.lowReg); |
| if (isEmpty) { |
| // dst = (dst == 0); |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg); |
| opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg); |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir) |
| { |
| return genInlinedStringIsEmptyOrLength(cUnit, mir, false); |
| } |
| |
| static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir) |
| { |
| return genInlinedStringIsEmptyOrLength(cUnit, mir, true); |
| } |
| |
| static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir) |
| { |
| int contents = OFFSETOF_MEMBER(ArrayObject, contents); |
| RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1); |
| RegLocation rlDest = inlinedTarget(cUnit, mir, false); |
| RegLocation rlResult; |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| rlIdx = loadValue(cUnit, rlIdx, kCoreReg); |
| int regMax = dvmCompilerAllocTemp(cUnit); |
| int regOff = dvmCompilerAllocTemp(cUnit); |
| int regPtr = dvmCompilerAllocTemp(cUnit); |
| ArmLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, |
| mir->offset, NULL); |
| loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax); |
| loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff); |
| loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr); |
| genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel); |
| dvmCompilerFreeTemp(cUnit, regMax); |
| opRegImm(cUnit, kOpAdd, regPtr, contents); |
| opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf); |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir) |
| { |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| RegLocation rlDest = inlinedTarget(cUnit, mir, false); |
| RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| int signReg = dvmCompilerAllocTemp(cUnit); |
| /* |
| * abs(x) = y<=x>>31, (x+y)^y. |
| * Thumb2's IT block also yields 3 instructions, but imposes |
| * scheduling constraints. |
| */ |
| opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31); |
| opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg); |
| opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg); |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir) |
| { |
| RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| RegLocation rlDest = inlinedTargetWide(cUnit, mir, false); |
| rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg); |
| RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| int signReg = dvmCompilerAllocTemp(cUnit); |
| /* |
| * abs(x) = y<=x>>31, (x+y)^y. |
| * Thumb2 IT block allows slightly shorter sequence, |
| * but introduces a scheduling barrier. Stick with this |
| * mechanism for now. |
| */ |
| opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31); |
| opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg); |
| opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg); |
| opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg); |
| opRegReg(cUnit, kOpXor, rlResult.highReg, signReg); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir) |
| { |
| // Just move from source to destination... |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlDest = inlinedTarget(cUnit, mir, false); |
| storeValue(cUnit, rlDest, rlSrc); |
| return false; |
| } |
| |
| static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir) |
| { |
| // Just move from source to destination... |
| RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| RegLocation rlDest = inlinedTargetWide(cUnit, mir, false); |
| storeValueWide(cUnit, rlDest, rlSrc); |
| return false; |
| } |
| |
| /* |
| * JITs a call to a C function. |
| * TODO: use this for faster native method invocation for simple native |
| * methods (http://b/3069458). |
| */ |
| static bool handleExecuteInlineC(CompilationUnit *cUnit, MIR *mir) |
| { |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| int operation = dInsn->vB; |
| unsigned int i; |
| const InlineOperation* inLineTable = dvmGetInlineOpsTable(); |
| uintptr_t fn = (int) inLineTable[operation].func; |
| if (fn == 0) { |
| dvmCompilerAbort(cUnit); |
| } |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| dvmCompilerClobberCallRegs(cUnit); |
| dvmCompilerClobber(cUnit, r4PC); |
| dvmCompilerClobber(cUnit, r7); |
| int offset = offsetof(Thread, interpSave.retval); |
| opRegRegImm(cUnit, kOpAdd, r4PC, r6SELF, offset); |
| opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7)); |
| LOAD_FUNC_ADDR(cUnit, r4PC, fn); |
| genExportPC(cUnit, mir); |
| for (i=0; i < dInsn->vA; i++) { |
| loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i); |
| } |
| opReg(cUnit, kOpBlx, r4PC); |
| opRegImm(cUnit, kOpAdd, r13sp, 8); |
| /* NULL? */ |
| ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0); |
| loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset)); |
| genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branchOver->generic.target = (LIR *) target; |
| return false; |
| } |
| |
| /* |
| * NOTE: Handles both range and non-range versions (arguments |
| * have already been normalized by this point). |
| */ |
| static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir) |
| { |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| assert(dInsn->opcode == OP_EXECUTE_INLINE_RANGE || |
| dInsn->opcode == OP_EXECUTE_INLINE); |
| switch (dInsn->vB) { |
| case INLINE_EMPTYINLINEMETHOD: |
| return false; /* Nop */ |
| |
| /* These ones we potentially JIT inline. */ |
| |
| case INLINE_STRING_CHARAT: |
| return genInlinedStringCharAt(cUnit, mir); |
| case INLINE_STRING_LENGTH: |
| return genInlinedStringLength(cUnit, mir); |
| case INLINE_STRING_IS_EMPTY: |
| return genInlinedStringIsEmpty(cUnit, mir); |
| case INLINE_STRING_COMPARETO: |
| return genInlinedCompareTo(cUnit, mir); |
| case INLINE_STRING_FASTINDEXOF_II: |
| return genInlinedFastIndexOf(cUnit, mir); |
| |
| case INLINE_MATH_ABS_INT: |
| case INLINE_STRICT_MATH_ABS_INT: |
| return genInlinedAbsInt(cUnit, mir); |
| case INLINE_MATH_ABS_LONG: |
| case INLINE_STRICT_MATH_ABS_LONG: |
| return genInlinedAbsLong(cUnit, mir); |
| case INLINE_MATH_MIN_INT: |
| case INLINE_STRICT_MATH_MIN_INT: |
| return genInlinedMinMaxInt(cUnit, mir, true); |
| case INLINE_MATH_MAX_INT: |
| case INLINE_STRICT_MATH_MAX_INT: |
| return genInlinedMinMaxInt(cUnit, mir, false); |
| case INLINE_MATH_SQRT: |
| case INLINE_STRICT_MATH_SQRT: |
| return genInlineSqrt(cUnit, mir); |
| case INLINE_MATH_ABS_FLOAT: |
| case INLINE_STRICT_MATH_ABS_FLOAT: |
| return genInlinedAbsFloat(cUnit, mir); |
| case INLINE_MATH_ABS_DOUBLE: |
| case INLINE_STRICT_MATH_ABS_DOUBLE: |
| return genInlinedAbsDouble(cUnit, mir); |
| |
| case INLINE_FLOAT_TO_RAW_INT_BITS: |
| case INLINE_INT_BITS_TO_FLOAT: |
| return genInlinedIntFloatConversion(cUnit, mir); |
| case INLINE_DOUBLE_TO_RAW_LONG_BITS: |
| case INLINE_LONG_BITS_TO_DOUBLE: |
| return genInlinedLongDoubleConversion(cUnit, mir); |
| |
| /* |
| * These ones we just JIT a call to a C function for. |
| * TODO: special-case these in the other "invoke" call paths. |
| */ |
| case INLINE_STRING_EQUALS: |
| case INLINE_MATH_COS: |
| case INLINE_MATH_SIN: |
| case INLINE_FLOAT_TO_INT_BITS: |
| case INLINE_DOUBLE_TO_LONG_BITS: |
| return handleExecuteInlineC(cUnit, mir); |
| } |
| dvmCompilerAbort(cUnit); |
| return false; // Not reachable; keeps compiler happy. |
| } |
| |
| static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir) |
| { |
| //TUNING: We're using core regs here - not optimal when target is a double |
| RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadConstantNoClobber(cUnit, rlResult.lowReg, |
| mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL); |
| loadConstantNoClobber(cUnit, rlResult.highReg, |
| (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| /* |
| * The following are special processing routines that handle transfer of |
| * controls between compiled code and the interpreter. Certain VM states like |
| * Dalvik PC and special-purpose registers are reconstructed here. |
| */ |
| |
| /* |
| * Insert a |
| * b .+4 |
| * nop |
| * pair at the beginning of a chaining cell. This serves as the |
| * switch branch that selects between reverting to the interpreter or |
| * not. Once the cell is chained to a translation, the cell will |
| * contain a 32-bit branch. Subsequent chain/unchain operations will |
| * then only alter that first 16-bits - the "b .+4" for unchaining, |
| * and the restoration of the first half of the 32-bit branch for |
| * rechaining. |
| */ |
| static void insertChainingSwitch(CompilationUnit *cUnit) |
| { |
| ArmLIR *branch = newLIR0(cUnit, kThumbBUncond); |
| newLIR2(cUnit, kThumbOrr, r0, r0); |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branch->generic.target = (LIR *) target; |
| } |
| |
| /* Chaining cell for code that may need warmup. */ |
| static void handleNormalChainingCell(CompilationUnit *cUnit, |
| unsigned int offset) |
| { |
| /* |
| * Use raw instruction constructors to guarantee that the generated |
| * instructions fit the predefined cell size. |
| */ |
| insertChainingSwitch(cUnit); |
| newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF, |
| offsetof(Thread, |
| jitToInterpEntries.dvmJitToInterpNormal) >> 2); |
| newLIR1(cUnit, kThumbBlxR, r0); |
| addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset)); |
| } |
| |
| /* |
| * Chaining cell for instructions that immediately following already translated |
| * code. |
| */ |
| static void handleHotChainingCell(CompilationUnit *cUnit, |
| unsigned int offset) |
| { |
| /* |
| * Use raw instruction constructors to guarantee that the generated |
| * instructions fit the predefined cell size. |
| */ |
| insertChainingSwitch(cUnit); |
| newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF, |
| offsetof(Thread, |
| jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2); |
| newLIR1(cUnit, kThumbBlxR, r0); |
| addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset)); |
| } |
| |
| /* Chaining cell for branches that branch back into the same basic block */ |
| static void handleBackwardBranchChainingCell(CompilationUnit *cUnit, |
| unsigned int offset) |
| { |
| /* |
| * Use raw instruction constructors to guarantee that the generated |
| * instructions fit the predefined cell size. |
| */ |
| insertChainingSwitch(cUnit); |
| #if defined(WITH_SELF_VERIFICATION) |
| newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF, |
| offsetof(Thread, |
| jitToInterpEntries.dvmJitToInterpBackwardBranch) >> 2); |
| #else |
| newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF, |
| offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal) >> 2); |
| #endif |
| newLIR1(cUnit, kThumbBlxR, r0); |
| addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset)); |
| } |
| |
| /* Chaining cell for monomorphic method invocations. */ |
| static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit, |
| const Method *callee) |
| { |
| /* |
| * Use raw instruction constructors to guarantee that the generated |
| * instructions fit the predefined cell size. |
| */ |
| insertChainingSwitch(cUnit); |
| newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF, |
| offsetof(Thread, |
| jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2); |
| newLIR1(cUnit, kThumbBlxR, r0); |
| addWordData(cUnit, NULL, (int) (callee->insns)); |
| } |
| |
| /* Chaining cell for monomorphic method invocations. */ |
| static void handleInvokePredictedChainingCell(CompilationUnit *cUnit) |
| { |
| |
| /* Should not be executed in the initial state */ |
| addWordData(cUnit, NULL, PREDICTED_CHAIN_BX_PAIR_INIT); |
| /* To be filled: class */ |
| addWordData(cUnit, NULL, PREDICTED_CHAIN_CLAZZ_INIT); |
| /* To be filled: method */ |
| addWordData(cUnit, NULL, PREDICTED_CHAIN_METHOD_INIT); |
| /* |
| * Rechain count. The initial value of 0 here will trigger chaining upon |
| * the first invocation of this callsite. |
| */ |
| addWordData(cUnit, NULL, PREDICTED_CHAIN_COUNTER_INIT); |
| } |
| |
| /* Load the Dalvik PC into r0 and jump to the specified target */ |
| static void handlePCReconstruction(CompilationUnit *cUnit, |
| ArmLIR *targetLabel) |
| { |
| ArmLIR **pcrLabel = |
| (ArmLIR **) cUnit->pcReconstructionList.elemList; |
| int numElems = cUnit->pcReconstructionList.numUsed; |
| int i; |
| |
| /* |
| * We should never reach here through fall-through code, so insert |
| * a bomb to signal troubles immediately. |
| */ |
| if (numElems) { |
| newLIR0(cUnit, kThumbUndefined); |
| } |
| |
| for (i = 0; i < numElems; i++) { |
| dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]); |
| /* r0 = dalvik PC */ |
| loadConstant(cUnit, r0, pcrLabel[i]->operands[0]); |
| genUnconditionalBranch(cUnit, targetLabel); |
| } |
| } |
| |
| static const char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = { |
| "kMirOpPhi", |
| "kMirOpNullNRangeUpCheck", |
| "kMirOpNullNRangeDownCheck", |
| "kMirOpLowerBound", |
| "kMirOpPunt", |
| "kMirOpCheckInlinePrediction", |
| }; |
| |
| /* |
| * vA = arrayReg; |
| * vB = idxReg; |
| * vC = endConditionReg; |
| * arg[0] = maxC |
| * arg[1] = minC |
| * arg[2] = loopBranchConditionCode |
| */ |
| static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir) |
| { |
| /* |
| * NOTE: these synthesized blocks don't have ssa names assigned |
| * for Dalvik registers. However, because they dominate the following |
| * blocks we can simply use the Dalvik name w/ subscript 0 as the |
| * ssa name. |
| */ |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length); |
| const int maxC = dInsn->arg[0]; |
| int regLength; |
| RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA]; |
| RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC]; |
| |
| /* regArray <- arrayRef */ |
| rlArray = loadValue(cUnit, rlArray, kCoreReg); |
| rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg); |
| genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0, |
| (ArmLIR *) cUnit->loopAnalysis->branchToPCR); |
| |
| /* regLength <- len(arrayRef) */ |
| regLength = dvmCompilerAllocTemp(cUnit); |
| loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength); |
| |
| int delta = maxC; |
| /* |
| * If the loop end condition is ">=" instead of ">", then the largest value |
| * of the index is "endCondition - 1". |
| */ |
| if (dInsn->arg[2] == OP_IF_GE) { |
| delta--; |
| } |
| |
| if (delta) { |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta); |
| rlIdxEnd.lowReg = tReg; |
| dvmCompilerFreeTemp(cUnit, tReg); |
| } |
| /* Punt if "regIdxEnd < len(Array)" is false */ |
| genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0, |
| (ArmLIR *) cUnit->loopAnalysis->branchToPCR); |
| } |
| |
| /* |
| * vA = arrayReg; |
| * vB = idxReg; |
| * vC = endConditionReg; |
| * arg[0] = maxC |
| * arg[1] = minC |
| * arg[2] = loopBranchConditionCode |
| */ |
| static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir) |
| { |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length); |
| const int regLength = dvmCompilerAllocTemp(cUnit); |
| const int maxC = dInsn->arg[0]; |
| RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA]; |
| RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB]; |
| |
| /* regArray <- arrayRef */ |
| rlArray = loadValue(cUnit, rlArray, kCoreReg); |
| rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg); |
| genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0, |
| (ArmLIR *) cUnit->loopAnalysis->branchToPCR); |
| |
| /* regLength <- len(arrayRef) */ |
| loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength); |
| |
| if (maxC) { |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC); |
| rlIdxInit.lowReg = tReg; |
| dvmCompilerFreeTemp(cUnit, tReg); |
| } |
| |
| /* Punt if "regIdxInit < len(Array)" is false */ |
| genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0, |
| (ArmLIR *) cUnit->loopAnalysis->branchToPCR); |
| } |
| |
| /* |
| * vA = idxReg; |
| * vB = minC; |
| */ |
| static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir) |
| { |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| const int minC = dInsn->vB; |
| RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA]; |
| |
| /* regIdx <- initial index value */ |
| rlIdx = loadValue(cUnit, rlIdx, kCoreReg); |
| |
| /* Punt if "regIdxInit + minC >= 0" is false */ |
| genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0, |
| (ArmLIR *) cUnit->loopAnalysis->branchToPCR); |
| } |
| |
| /* |
| * vC = this |
| * |
| * A predicted inlining target looks like the following, where instructions |
| * between 0x4858de66 and 0x4858de72 are checking if the predicted class |
| * matches "this", and the verificaion code is generated by this routine. |
| * |
| * (C) means the instruction is inlined from the callee, and (PI) means the |
| * instruction is the predicted inlined invoke, whose corresponding |
| * instructions are still generated to handle the mispredicted case. |
| * |
| * D/dalvikvm( 86): -------- kMirOpCheckInlinePrediction |
| * D/dalvikvm( 86): 0x4858de66 (0002): ldr r0, [r5, #68] |
| * D/dalvikvm( 86): 0x4858de68 (0004): ldr r1, [pc, #140] |
| * D/dalvikvm( 86): 0x4858de6a (0006): cmp r0, #0 |
| * D/dalvikvm( 86): 0x4858de6c (0008): beq 0x4858deb2 |
| * D/dalvikvm( 86): 0x4858de6e (000a): ldr r2, [r0, #0] |
| * D/dalvikvm( 86): 0x4858de70 (000c): cmp r1, r2 |
| * D/dalvikvm( 86): 0x4858de72 (000e): bne 0x4858de7a |
| * D/dalvikvm( 86): -------- dalvik offset: 0x004c @ +iget-object-quick (C) |
| * v4, v17, (#8) |
| * D/dalvikvm( 86): 0x4858de74 (0010): ldr r3, [r0, #8] |
| * D/dalvikvm( 86): 0x4858de76 (0012): str r3, [r5, #16] |
| * D/dalvikvm( 86): -------- dalvik offset: 0x004c @ |
| * +invoke-virtual-quick/range (PI) v17..v17 |
| * D/dalvikvm( 86): 0x4858de78 (0014): b 0x4858debc |
| * D/dalvikvm( 86): 0x4858de7a (0016): add r4,r5,#68 |
| * D/dalvikvm( 86): -------- BARRIER |
| * D/dalvikvm( 86): 0x4858de7e (001a): ldmia r4, <r0> |
| * D/dalvikvm( 86): -------- BARRIER |
| * D/dalvikvm( 86): 0x4858de80 (001c): sub r7,r5,#24 |
| * D/dalvikvm( 86): 0x4858de84 (0020): cmp r0, #0 |
| * D/dalvikvm( 86): 0x4858de86 (0022): beq 0x4858deb6 |
| * D/dalvikvm( 86): -------- BARRIER |
| * D/dalvikvm( 86): 0x4858de88 (0024): stmia r7, <r0> |
| * D/dalvikvm( 86): -------- BARRIER |
| * D/dalvikvm( 86): 0x4858de8a (0026): ldr r4, [pc, #104] |
| * D/dalvikvm( 86): 0x4858de8c (0028): add r1, pc, #28 |
| * D/dalvikvm( 86): 0x4858de8e (002a): add r2, pc, #56 |
| * D/dalvikvm( 86): 0x4858de90 (002c): blx_1 0x48589198 |
| * D/dalvikvm( 86): 0x4858de92 (002e): blx_2 see above |
| * D/dalvikvm( 86): 0x4858de94 (0030): b 0x4858dec8 |
| * D/dalvikvm( 86): 0x4858de96 (0032): b 0x4858deb6 |
| * D/dalvikvm( 86): 0x4858de98 (0034): ldr r0, [r7, #72] |
| * D/dalvikvm( 86): 0x4858de9a (0036): cmp r1, #0 |
| * D/dalvikvm( 86): 0x4858de9c (0038): bgt 0x4858dea4 |
| * D/dalvikvm( 86): 0x4858de9e (003a): ldr r7, [r6, #116] |
| * D/dalvikvm( 86): 0x4858dea0 (003c): movs r1, r6 |
| * D/dalvikvm( 86): 0x4858dea2 (003e): blx r7 |
| * D/dalvikvm( 86): 0x4858dea4 (0040): add r1, pc, #4 |
| * D/dalvikvm( 86): 0x4858dea6 (0042): blx_1 0x485890a0 |
| * D/dalvikvm( 86): 0x4858dea8 (0044): blx_2 see above |
| * D/dalvikvm( 86): 0x4858deaa (0046): b 0x4858deb6 |
| * D/dalvikvm( 86): 0x4858deac (0048): .align4 |
| * D/dalvikvm( 86): L0x004f: |
| * D/dalvikvm( 86): -------- dalvik offset: 0x004f @ move-result-object (PI) |
| * v4, (#0), (#0) |
| * D/dalvikvm( 86): 0x4858deac (0048): ldr r4, [r6, #8] |
| * D/dalvikvm( 86): 0x4858deae (004a): str r4, [r5, #16] |
| * D/dalvikvm( 86): 0x4858deb0 (004c): b 0x4858debc |
| * D/dalvikvm( 86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c |
| * D/dalvikvm( 86): 0x4858deb2 (004e): ldr r0, [pc, #64] |
| * D/dalvikvm( 86): 0x4858deb4 (0050): b 0x4858deb8 |
| * D/dalvikvm( 86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c |
| * D/dalvikvm( 86): 0x4858deb6 (0052): ldr r0, [pc, #60] |
| * D/dalvikvm( 86): Exception_Handling: |
| * D/dalvikvm( 86): 0x4858deb8 (0054): ldr r1, [r6, #100] |
| * D/dalvikvm( 86): 0x4858deba (0056): blx r1 |
| * D/dalvikvm( 86): 0x4858debc (0058): .align4 |
| * D/dalvikvm( 86): -------- chaining cell (hot): 0x0050 |
| * D/dalvikvm( 86): 0x4858debc (0058): b 0x4858dec0 |
| * D/dalvikvm( 86): 0x4858debe (005a): orrs r0, r0 |
| * D/dalvikvm( 86): 0x4858dec0 (005c): ldr r0, [r6, #112] |
| * D/dalvikvm( 86): 0x4858dec2 (005e): blx r0 |
| * D/dalvikvm( 86): 0x4858dec4 (0060): data 0xefd4(61396) |
| * D/dalvikvm( 86): 0x4858dec6 (0062): data 0x42be(17086) |
| * D/dalvikvm( 86): 0x4858dec8 (0064): .align4 |
| * D/dalvikvm( 86): -------- chaining cell (predicted) |
| * D/dalvikvm( 86): 0x4858dec8 (0064): data 0xe7fe(59390) |
| * D/dalvikvm( 86): 0x4858deca (0066): data 0x0000(0) |
| * D/dalvikvm( 86): 0x4858decc (0068): data 0x0000(0) |
| * D/dalvikvm( 86): 0x4858dece (006a): data 0x0000(0) |
| * : |
| */ |
| static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir) |
| { |
| CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo; |
| RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC]; |
| |
| rlThis = loadValue(cUnit, rlThis, kCoreReg); |
| int regPredictedClass = dvmCompilerAllocTemp(cUnit); |
| loadClassPointer(cUnit, regPredictedClass, (int) callsiteInfo); |
| genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset, |
| NULL);/* null object? */ |
| int regActualClass = dvmCompilerAllocTemp(cUnit); |
| loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass); |
| opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass); |
| /* |
| * Set the misPredBranchOver target so that it will be generated when the |
| * code for the non-optimized invoke is generated. |
| */ |
| callsiteInfo->misPredBranchOver = (LIR *) opCondBranch(cUnit, kArmCondNe); |
| } |
| |
| /* Extended MIR instructions like PHI */ |
| static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir) |
| { |
| int opOffset = mir->dalvikInsn.opcode - kMirOpFirst; |
| char *msg = (char *)dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1, |
| false); |
| strcpy(msg, extendedMIROpNames[opOffset]); |
| newLIR1(cUnit, kArmPseudoExtended, (int) msg); |
| |
| switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) { |
| case kMirOpPhi: { |
| char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep); |
| newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString); |
| break; |
| } |
| case kMirOpNullNRangeUpCheck: { |
| genHoistedChecksForCountUpLoop(cUnit, mir); |
| break; |
| } |
| case kMirOpNullNRangeDownCheck: { |
| genHoistedChecksForCountDownLoop(cUnit, mir); |
| break; |
| } |
| case kMirOpLowerBound: { |
| genHoistedLowerBoundCheck(cUnit, mir); |
| break; |
| } |
| case kMirOpPunt: { |
| genUnconditionalBranch(cUnit, |
| (ArmLIR *) cUnit->loopAnalysis->branchToPCR); |
| break; |
| } |
| case kMirOpCheckInlinePrediction: { |
| genValidationForPredictedInline(cUnit, mir); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * Create a PC-reconstruction cell for the starting offset of this trace. |
| * Since the PCR cell is placed near the end of the compiled code which is |
| * usually out of range for a conditional branch, we put two branches (one |
| * branch over to the loop body and one layover branch to the actual PCR) at the |
| * end of the entry block. |
| */ |
| static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry, |
| ArmLIR *bodyLabel) |
| { |
| /* Set up the place holder to reconstruct this Dalvik PC */ |
| ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); |
| pcrLabel->opcode = kArmPseudoPCReconstructionCell; |
| pcrLabel->operands[0] = |
| (int) (cUnit->method->insns + entry->startOffset); |
| pcrLabel->operands[1] = entry->startOffset; |
| /* Insert the place holder to the growable list */ |
| dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel); |
| |
| /* |
| * Next, create two branches - one branch over to the loop body and the |
| * other branch to the PCR cell to punt. |
| */ |
| ArmLIR *branchToBody = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); |
| branchToBody->opcode = kThumbBUncond; |
| branchToBody->generic.target = (LIR *) bodyLabel; |
| setupResourceMasks(branchToBody); |
| cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody; |
| |
| ArmLIR *branchToPCR = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true); |
| branchToPCR->opcode = kThumbBUncond; |
| branchToPCR->generic.target = (LIR *) pcrLabel; |
| setupResourceMasks(branchToPCR); |
| cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR; |
| } |
| |
| #if defined(WITH_SELF_VERIFICATION) |
| static bool selfVerificationPuntOps(MIR *mir) |
| { |
| DecodedInstruction *decInsn = &mir->dalvikInsn; |
| |
| /* |
| * All opcodes that can throw exceptions and use the |
| * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace |
| * under self-verification mode. |
| */ |
| switch (decInsn->opcode) { |
| case OP_MONITOR_ENTER: |
| case OP_MONITOR_EXIT: |
| case OP_NEW_INSTANCE: |
| case OP_NEW_ARRAY: |
| case OP_CHECK_CAST: |
| case OP_MOVE_EXCEPTION: |
| case OP_FILL_ARRAY_DATA: |
| case OP_EXECUTE_INLINE: |
| case OP_EXECUTE_INLINE_RANGE: |
| return true; |
| default: |
| return false; |
| } |
| } |
| #endif |
| |
| void dvmCompilerMIR2LIR(CompilationUnit *cUnit) |
| { |
| /* Used to hold the labels of each block */ |
| ArmLIR *labelList = |
| (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true); |
| ArmLIR *headLIR = NULL; |
| GrowableList chainingListByType[kChainingCellGap]; |
| int i; |
| |
| /* |
| * Initialize various types chaining lists. |
| */ |
| for (i = 0; i < kChainingCellGap; i++) { |
| dvmInitGrowableList(&chainingListByType[i], 2); |
| } |
| |
| /* Clear the visited flag for each block */ |
| dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag, |
| kAllNodes, false /* isIterative */); |
| |
| GrowableListIterator iterator; |
| dvmGrowableListIteratorInit(&cUnit->blockList, &iterator); |
| |
| /* Traces start with a profiling entry point. Generate it here */ |
| cUnit->profileCodeSize = genTraceProfileEntry(cUnit); |
| |
| /* Handle the content in each basic block */ |
| for (i = 0; ; i++) { |
| MIR *mir; |
| BasicBlock *bb = (BasicBlock *) dvmGrowableListIteratorNext(&iterator); |
| if (bb == NULL) break; |
| if (bb->visited == true) continue; |
| |
| labelList[i].operands[0] = bb->startOffset; |
| |
| if (bb->blockType >= kChainingCellGap) { |
| if (bb->isFallThroughFromInvoke == true) { |
| /* Align this block first since it is a return chaining cell */ |
| newLIR0(cUnit, kArmPseudoPseudoAlign4); |
| } |
| /* |
| * Append the label pseudo LIR first. Chaining cells will be handled |
| * separately afterwards. |
| */ |
| dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]); |
| } |
| |
| if (bb->blockType == kEntryBlock) { |
| labelList[i].opcode = kArmPseudoEntryBlock; |
| if (bb->firstMIRInsn == NULL) { |
| continue; |
| } else { |
| setupLoopEntryBlock(cUnit, bb, |
| &labelList[bb->fallThrough->id]); |
| } |
| } else if (bb->blockType == kExitBlock) { |
| labelList[i].opcode = kArmPseudoExitBlock; |
| goto gen_fallthrough; |
| } else if (bb->blockType == kDalvikByteCode) { |
| if (bb->hidden == true) continue; |
| labelList[i].opcode = kArmPseudoNormalBlockLabel; |
| /* Reset the register state */ |
| dvmCompilerResetRegPool(cUnit); |
| dvmCompilerClobberAllRegs(cUnit); |
| dvmCompilerResetNullCheck(cUnit); |
| } else { |
| switch (bb->blockType) { |
| case kChainingCellNormal: |
| labelList[i].opcode = kArmPseudoChainingCellNormal; |
| /* handle the codegen later */ |
| dvmInsertGrowableList( |
| &chainingListByType[kChainingCellNormal], i); |
| break; |
| case kChainingCellInvokeSingleton: |
| labelList[i].opcode = |
| kArmPseudoChainingCellInvokeSingleton; |
| labelList[i].operands[0] = |
| (int) bb->containingMethod; |
| /* handle the codegen later */ |
| dvmInsertGrowableList( |
| &chainingListByType[kChainingCellInvokeSingleton], i); |
| break; |
| case kChainingCellInvokePredicted: |
| labelList[i].opcode = |
| kArmPseudoChainingCellInvokePredicted; |
| /* |
| * Move the cached method pointer from operand 1 to 0. |
| * Operand 0 was clobbered earlier in this routine to store |
| * the block starting offset, which is not applicable to |
| * predicted chaining cell. |
| */ |
| labelList[i].operands[0] = labelList[i].operands[1]; |
| /* handle the codegen later */ |
| dvmInsertGrowableList( |
| &chainingListByType[kChainingCellInvokePredicted], i); |
| break; |
| case kChainingCellHot: |
| labelList[i].opcode = |
| kArmPseudoChainingCellHot; |
| /* handle the codegen later */ |
| dvmInsertGrowableList( |
| &chainingListByType[kChainingCellHot], i); |
| break; |
| case kPCReconstruction: |
| /* Make sure exception handling block is next */ |
| labelList[i].opcode = |
| kArmPseudoPCReconstructionBlockLabel; |
| handlePCReconstruction(cUnit, |
| &labelList[cUnit->puntBlock->id]); |
| break; |
| case kExceptionHandling: |
| labelList[i].opcode = kArmPseudoEHBlockLabel; |
| if (cUnit->pcReconstructionList.numUsed) { |
| loadWordDisp(cUnit, r6SELF, offsetof(Thread, |
| jitToInterpEntries.dvmJitToInterpPunt), |
| r1); |
| opReg(cUnit, kOpBlx, r1); |
| } |
| break; |
| case kChainingCellBackwardBranch: |
| labelList[i].opcode = |
| kArmPseudoChainingCellBackwardBranch; |
| /* handle the codegen later */ |
| dvmInsertGrowableList( |
| &chainingListByType[kChainingCellBackwardBranch], |
| i); |
| break; |
| default: |
| break; |
| } |
| continue; |
| } |
| |
| /* |
| * Try to build a longer optimization unit. Currently if the previous |
| * block ends with a goto, we continue adding instructions and don't |
| * reset the register allocation pool. |
| */ |
| for (BasicBlock *nextBB = bb; nextBB != NULL; nextBB = cUnit->nextCodegenBlock) { |
| bb = nextBB; |
| bb->visited = true; |
| cUnit->nextCodegenBlock = NULL; |
| |
| for (mir = bb->firstMIRInsn; mir; mir = mir->next) { |
| |
| dvmCompilerResetRegPool(cUnit); |
| if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) { |
| dvmCompilerClobberAllRegs(cUnit); |
| } |
| |
| if (gDvmJit.disableOpt & (1 << kSuppressLoads)) { |
| dvmCompilerResetDefTracking(cUnit); |
| } |
| |
| if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) { |
| handleExtendedMIR(cUnit, mir); |
| continue; |
| } |
| |
| Opcode dalvikOpcode = mir->dalvikInsn.opcode; |
| InstructionFormat dalvikFormat = |
| dexGetFormatFromOpcode(dalvikOpcode); |
| const char *note; |
| if (mir->OptimizationFlags & MIR_INLINED) { |
| note = " (I)"; |
| } else if (mir->OptimizationFlags & MIR_INLINED_PRED) { |
| note = " (PI)"; |
| } else if (mir->OptimizationFlags & MIR_CALLEE) { |
| note = " (C)"; |
| } else { |
| note = NULL; |
| } |
| |
| ArmLIR *boundaryLIR; |
| |
| /* |
| * Don't generate the boundary LIR unless we are debugging this |
| * trace or we need a scheduling barrier. |
| */ |
| if (headLIR == NULL || cUnit->printMe == true) { |
| boundaryLIR = |
| newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary, |
| mir->offset, |
| (int) dvmCompilerGetDalvikDisassembly( |
| &mir->dalvikInsn, note)); |
| /* Remember the first LIR for this block */ |
| if (headLIR == NULL) { |
| headLIR = boundaryLIR; |
| /* Set the first boundaryLIR as a scheduling barrier */ |
| headLIR->defMask = ENCODE_ALL; |
| } |
| } |
| |
| /* |
| * Don't generate the SSA annotation unless verbose mode is on |
| */ |
| if (cUnit->printMe && mir->ssaRep) { |
| char *ssaString = dvmCompilerGetSSAString(cUnit, |
| mir->ssaRep); |
| newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString); |
| } |
| |
| bool notHandled; |
| /* |
| * Debugging: screen the opcode first to see if it is in the |
| * do[-not]-compile list |
| */ |
| bool singleStepMe = SINGLE_STEP_OP(dalvikOpcode); |
| #if defined(WITH_SELF_VERIFICATION) |
| if (singleStepMe == false) { |
| singleStepMe = selfVerificationPuntOps(mir); |
| } |
| #endif |
| if (singleStepMe || cUnit->allSingleStep) { |
| notHandled = false; |
| genInterpSingleStep(cUnit, mir); |
| } else { |
| opcodeCoverage[dalvikOpcode]++; |
| switch (dalvikFormat) { |
| case kFmt10t: |
| case kFmt20t: |
| case kFmt30t: |
| notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit, |
| mir, bb, labelList); |
| break; |
| case kFmt10x: |
| notHandled = handleFmt10x(cUnit, mir); |
| break; |
| case kFmt11n: |
| case kFmt31i: |
| notHandled = handleFmt11n_Fmt31i(cUnit, mir); |
| break; |
| case kFmt11x: |
| notHandled = handleFmt11x(cUnit, mir); |
| break; |
| case kFmt12x: |
| notHandled = handleFmt12x(cUnit, mir); |
| break; |
| case kFmt20bc: |
| notHandled = handleFmt20bc(cUnit, mir); |
| break; |
| case kFmt21c: |
| case kFmt31c: |
| notHandled = handleFmt21c_Fmt31c(cUnit, mir); |
| break; |
| case kFmt21h: |
| notHandled = handleFmt21h(cUnit, mir); |
| break; |
| case kFmt21s: |
| notHandled = handleFmt21s(cUnit, mir); |
| break; |
| case kFmt21t: |
| notHandled = handleFmt21t(cUnit, mir, bb, |
| labelList); |
| break; |
| case kFmt22b: |
| case kFmt22s: |
| notHandled = handleFmt22b_Fmt22s(cUnit, mir); |
| break; |
| case kFmt22c: |
| notHandled = handleFmt22c(cUnit, mir); |
| break; |
| case kFmt22cs: |
| notHandled = handleFmt22cs(cUnit, mir); |
| break; |
| case kFmt22t: |
| notHandled = handleFmt22t(cUnit, mir, bb, |
| labelList); |
| break; |
| case kFmt22x: |
| case kFmt32x: |
| notHandled = handleFmt22x_Fmt32x(cUnit, mir); |
| break; |
| case kFmt23x: |
| notHandled = handleFmt23x(cUnit, mir); |
| break; |
| case kFmt31t: |
| notHandled = handleFmt31t(cUnit, mir); |
| break; |
| case kFmt3rc: |
| case kFmt35c: |
| notHandled = handleFmt35c_3rc(cUnit, mir, bb, |
| labelList); |
| break; |
| case kFmt3rms: |
| case kFmt35ms: |
| notHandled = handleFmt35ms_3rms(cUnit, mir, bb, |
| labelList); |
| break; |
| case kFmt35mi: |
| case kFmt3rmi: |
| notHandled = handleExecuteInline(cUnit, mir); |
| break; |
| case kFmt51l: |
| notHandled = handleFmt51l(cUnit, mir); |
| break; |
| default: |
| notHandled = true; |
| break; |
| } |
| } |
| if (notHandled) { |
| ALOGE("%#06x: Opcode %#x (%s) / Fmt %d not handled", |
| mir->offset, |
| dalvikOpcode, dexGetOpcodeName(dalvikOpcode), |
| dalvikFormat); |
| dvmCompilerAbort(cUnit); |
| break; |
| } |
| } |
| } |
| |
| if (bb->blockType == kEntryBlock) { |
| dvmCompilerAppendLIR(cUnit, |
| (LIR *) cUnit->loopAnalysis->branchToBody); |
| dvmCompilerAppendLIR(cUnit, |
| (LIR *) cUnit->loopAnalysis->branchToPCR); |
| } |
| |
| if (headLIR) { |
| /* |
| * Eliminate redundant loads/stores and delay stores into later |
| * slots |
| */ |
| dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR, |
| cUnit->lastLIRInsn); |
| /* Reset headLIR which is also the optimization boundary */ |
| headLIR = NULL; |
| } |
| |
| gen_fallthrough: |
| /* |
| * Check if the block is terminated due to trace length constraint - |
| * insert an unconditional branch to the chaining cell. |
| */ |
| if (bb->needFallThroughBranch) { |
| genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]); |
| } |
| } |
| |
| /* Handle the chaining cells in predefined order */ |
| for (i = 0; i < kChainingCellGap; i++) { |
| size_t j; |
| int *blockIdList = (int *) chainingListByType[i].elemList; |
| |
| cUnit->numChainingCells[i] = chainingListByType[i].numUsed; |
| |
| /* No chaining cells of this type */ |
| if (cUnit->numChainingCells[i] == 0) |
| continue; |
| |
| /* Record the first LIR for a new type of chaining cell */ |
| cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]]; |
| |
| for (j = 0; j < chainingListByType[i].numUsed; j++) { |
| int blockId = blockIdList[j]; |
| BasicBlock *chainingBlock = |
| (BasicBlock *) dvmGrowableListGetElement(&cUnit->blockList, |
| blockId); |
| |
| /* Align this chaining cell first */ |
| newLIR0(cUnit, kArmPseudoPseudoAlign4); |
| |
| /* Insert the pseudo chaining instruction */ |
| dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]); |
| |
| |
| switch (chainingBlock->blockType) { |
| case kChainingCellNormal: |
| handleNormalChainingCell(cUnit, chainingBlock->startOffset); |
| break; |
| case kChainingCellInvokeSingleton: |
| handleInvokeSingletonChainingCell(cUnit, |
| chainingBlock->containingMethod); |
| break; |
| case kChainingCellInvokePredicted: |
| handleInvokePredictedChainingCell(cUnit); |
| break; |
| case kChainingCellHot: |
| handleHotChainingCell(cUnit, chainingBlock->startOffset); |
| break; |
| case kChainingCellBackwardBranch: |
| handleBackwardBranchChainingCell(cUnit, |
| chainingBlock->startOffset); |
| break; |
| default: |
| ALOGE("Bad blocktype %d", chainingBlock->blockType); |
| dvmCompilerAbort(cUnit); |
| } |
| } |
| } |
| |
| /* Mark the bottom of chaining cells */ |
| cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kArmChainingCellBottom); |
| |
| /* |
| * Generate the branch to the dvmJitToInterpNoChain entry point at the end |
| * of all chaining cells for the overflow cases. |
| */ |
| if (cUnit->switchOverflowPad) { |
| loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad); |
| loadWordDisp(cUnit, r6SELF, offsetof(Thread, |
| jitToInterpEntries.dvmJitToInterpNoChain), r2); |
| opRegReg(cUnit, kOpAdd, r1, r1); |
| opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1); |
| #if defined(WITH_JIT_TUNING) |
| loadConstant(cUnit, r0, kSwitchOverflow); |
| #endif |
| opReg(cUnit, kOpBlx, r2); |
| } |
| |
| dvmCompilerApplyGlobalOptimizations(cUnit); |
| |
| #if defined(WITH_SELF_VERIFICATION) |
| selfVerificationBranchInsertPass(cUnit); |
| #endif |
| } |
| |
| /* |
| * Accept the work and start compiling. Returns true if compilation |
| * is attempted. |
| */ |
| bool dvmCompilerDoWork(CompilerWorkOrder *work) |
| { |
| JitTraceDescription *desc; |
| bool isCompile; |
| bool success = true; |
| |
| if (gDvmJit.codeCacheFull) { |
| return false; |
| } |
| |
| switch (work->kind) { |
| case kWorkOrderTrace: |
| isCompile = true; |
| /* Start compilation with maximally allowed trace length */ |
| desc = (JitTraceDescription *)work->info; |
| success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result, |
| work->bailPtr, 0 /* no hints */); |
| break; |
| case kWorkOrderTraceDebug: { |
| bool oldPrintMe = gDvmJit.printMe; |
| gDvmJit.printMe = true; |
| isCompile = true; |
| /* Start compilation with maximally allowed trace length */ |
| desc = (JitTraceDescription *)work->info; |
| success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result, |
| work->bailPtr, 0 /* no hints */); |
| gDvmJit.printMe = oldPrintMe; |
| break; |
| } |
| case kWorkOrderProfileMode: |
| dvmJitChangeProfileMode((TraceProfilingModes)(int)work->info); |
| isCompile = false; |
| break; |
| default: |
| isCompile = false; |
| ALOGE("Jit: unknown work order type"); |
| assert(0); // Bail if debug build, discard otherwise |
| } |
| if (!success) |
| work->result.codeAddress = NULL; |
| return isCompile; |
| } |
| |
| /* Architectural-specific debugging helpers go here */ |
| void dvmCompilerArchDump(void) |
| { |
| /* Print compiled opcode in this VM instance */ |
| int i, start, streak; |
| char buf[1024]; |
| |
| streak = i = 0; |
| buf[0] = 0; |
| while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) { |
| i++; |
| } |
| if (i == kNumPackedOpcodes) { |
| return; |
| } |
| for (start = i++, streak = 1; i < kNumPackedOpcodes; i++) { |
| if (opcodeCoverage[i]) { |
| streak++; |
| } else { |
| if (streak == 1) { |
| sprintf(buf+strlen(buf), "%x,", start); |
| } else { |
| sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1); |
| } |
| streak = 0; |
| while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) { |
| i++; |
| } |
| if (i < kNumPackedOpcodes) { |
| streak = 1; |
| start = i; |
| } |
| } |
| } |
| if (streak) { |
| if (streak == 1) { |
| sprintf(buf+strlen(buf), "%x", start); |
| } else { |
| sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1); |
| } |
| } |
| if (strlen(buf)) { |
| ALOGD("dalvik.vm.jit.op = %s", buf); |
| } |
| } |
| |
| /* Common initialization routine for an architecture family */ |
| bool dvmCompilerArchInit() |
| { |
| int i; |
| |
| for (i = 0; i < kArmLast; i++) { |
| if (EncodingMap[i].opcode != i) { |
| ALOGE("Encoding order for %s is wrong: expecting %d, seeing %d", |
| EncodingMap[i].name, i, EncodingMap[i].opcode); |
| dvmAbort(); // OK to dvmAbort - build error |
| } |
| } |
| |
| return dvmCompilerArchVariantInit(); |
| } |
| |
| void *dvmCompilerGetInterpretTemplate() |
| { |
| return (void*) ((int)gDvmJit.codeCache + |
| templateEntryOffsets[TEMPLATE_INTERPRET]); |
| } |
| |
| JitInstructionSetType dvmCompilerGetInterpretTemplateSet() |
| { |
| return DALVIK_JIT_ARM; |
| } |
| |
| /* Needed by the Assembler */ |
| void dvmCompilerSetupResourceMasks(ArmLIR *lir) |
| { |
| setupResourceMasks(lir); |
| } |
| |
| /* Needed by the ld/st optmizatons */ |
| ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc) |
| { |
| return genRegCopyNoInsert(cUnit, rDest, rSrc); |
| } |
| |
| /* Needed by the register allocator */ |
| ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc) |
| { |
| return genRegCopy(cUnit, rDest, rSrc); |
| } |
| |
| /* Needed by the register allocator */ |
| void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi, |
| int srcLo, int srcHi) |
| { |
| genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi); |
| } |
| |
| void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase, |
| int displacement, int rSrc, OpSize size) |
| { |
| storeBaseDisp(cUnit, rBase, displacement, rSrc, size); |
| } |
| |
| void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase, |
| int displacement, int rSrcLo, int rSrcHi) |
| { |
| storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi); |
| } |