blob: 2307fb4a023aaecee870d92527858d1ce1f72a13 [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* UTF-8 and Unicode string manipulation, plus java/lang/String convenience
* functions.
*
* In most cases we populate the fields in the String object directly,
* rather than going through an instance field lookup.
*/
#include "Dalvik.h"
#include <stdlib.h>
/*
* Allocate a new instance of the class String, performing first-use
* initialization of the class if necessary. Upon success, the
* returned value will have all its fields except hashCode already
* filled in, including a reference to a newly-allocated char[] for
* the contents, sized as given. Additionally, a reference to the
* chars array is stored to the pChars pointer. Callers must
* subsequently call dvmReleaseTrackedAlloc() on the result pointer.
* This function returns NULL on failure.
*/
static StringObject* makeStringObject(u4 charsLength, ArrayObject** pChars)
{
/*
* The String class should have already gotten found (but not
* necessarily initialized) before making it here. We assert it
* explicitly, since historically speaking, we have had bugs with
* regard to when the class String gets set up. The assert helps
* make any regressions easier to diagnose.
*/
assert(gDvm.classJavaLangString != NULL);
if (!dvmIsClassInitialized(gDvm.classJavaLangString)) {
/* Perform first-time use initialization of the class. */
if (!dvmInitClass(gDvm.classJavaLangString)) {
ALOGE("FATAL: Could not initialize class String");
dvmAbort();
}
}
Object* result = dvmAllocObject(gDvm.classJavaLangString, ALLOC_DEFAULT);
if (result == NULL) {
return NULL;
}
ArrayObject* chars = dvmAllocPrimitiveArray('C', charsLength, ALLOC_DEFAULT);
if (chars == NULL) {
dvmReleaseTrackedAlloc(result, NULL);
return NULL;
}
dvmSetFieldInt(result, STRING_FIELDOFF_COUNT, charsLength);
dvmSetFieldObject(result, STRING_FIELDOFF_VALUE, (Object*) chars);
dvmReleaseTrackedAlloc((Object*) chars, NULL);
/* Leave offset and hashCode set to zero. */
*pChars = chars;
return (StringObject*) result;
}
/*
* Compute a hash code on a UTF-8 string, for use with internal hash tables.
*
* This may or may not yield the same results as the java/lang/String
* computeHashCode() function. (To make sure this doesn't get abused,
* I'm initializing the hash code to 1 so they *don't* match up.)
*
* It would be more correct to invoke dexGetUtf16FromUtf8() here and compute
* the hash with the result. That way, if something encoded the same
* character in two different ways, the hash value would be the same. For
* our purposes that isn't necessary.
*/
u4 dvmComputeUtf8Hash(const char* utf8Str)
{
u4 hash = 1;
while (*utf8Str != '\0')
hash = hash * 31 + *utf8Str++;
return hash;
}
/*
* Like "strlen", but for strings encoded with "modified" UTF-8.
*
* The value returned is the number of characters, which may or may not
* be the same as the number of bytes.
*
* (If this needs optimizing, try: mask against 0xa0, shift right 5,
* get increment {1-3} from table of 8 values.)
*/
size_t dvmUtf8Len(const char* utf8Str)
{
size_t len = 0;
int ic;
while ((ic = *utf8Str++) != '\0') {
len++;
if ((ic & 0x80) != 0) {
/* two- or three-byte encoding */
utf8Str++;
if ((ic & 0x20) != 0) {
/* three-byte encoding */
utf8Str++;
}
}
}
return len;
}
/*
* Convert a "modified" UTF-8 string to UTF-16.
*/
void dvmConvertUtf8ToUtf16(u2* utf16Str, const char* utf8Str)
{
while (*utf8Str != '\0')
*utf16Str++ = dexGetUtf16FromUtf8(&utf8Str);
}
/*
* Given a UTF-16 string, compute the length of the corresponding UTF-8
* string in bytes.
*/
static int utf16_utf8ByteLen(const u2* utf16Str, int len)
{
int utf8Len = 0;
while (len--) {
unsigned int uic = *utf16Str++;
/*
* The most common case is (uic > 0 && uic <= 0x7f).
*/
if (uic == 0 || uic > 0x7f) {
if (uic > 0x07ff)
utf8Len += 3;
else /*(uic > 0x7f || uic == 0) */
utf8Len += 2;
} else
utf8Len++;
}
return utf8Len;
}
/*
* Convert a UTF-16 string to UTF-8.
*
* Make sure you allocate "utf8Str" with the result of utf16_utf8ByteLen(),
* not just "len".
*/
static void convertUtf16ToUtf8(char* utf8Str, const u2* utf16Str, int len)
{
assert(len >= 0);
while (len--) {
unsigned int uic = *utf16Str++;
/*
* The most common case is (uic > 0 && uic <= 0x7f).
*/
if (uic == 0 || uic > 0x7f) {
if (uic > 0x07ff) {
*utf8Str++ = (uic >> 12) | 0xe0;
*utf8Str++ = ((uic >> 6) & 0x3f) | 0x80;
*utf8Str++ = (uic & 0x3f) | 0x80;
} else /*(uic > 0x7f || uic == 0)*/ {
*utf8Str++ = (uic >> 6) | 0xc0;
*utf8Str++ = (uic & 0x3f) | 0x80;
}
} else {
*utf8Str++ = uic;
}
}
*utf8Str = '\0';
}
/*
* Use the java/lang/String.computeHashCode() algorithm.
*/
static inline u4 computeUtf16Hash(const u2* utf16Str, size_t len)
{
u4 hash = 0;
while (len--)
hash = hash * 31 + *utf16Str++;
return hash;
}
u4 dvmComputeStringHash(StringObject* strObj) {
int hashCode = dvmGetFieldInt(strObj, STRING_FIELDOFF_HASHCODE);
if (hashCode != 0) {
return hashCode;
}
int len = dvmGetFieldInt(strObj, STRING_FIELDOFF_COUNT);
int offset = dvmGetFieldInt(strObj, STRING_FIELDOFF_OFFSET);
ArrayObject* chars =
(ArrayObject*) dvmGetFieldObject(strObj, STRING_FIELDOFF_VALUE);
hashCode = computeUtf16Hash((u2*)(void*)chars->contents + offset, len);
dvmSetFieldInt(strObj, STRING_FIELDOFF_HASHCODE, hashCode);
return hashCode;
}
StringObject* dvmCreateStringFromCstr(const char* utf8Str) {
assert(utf8Str != NULL);
return dvmCreateStringFromCstrAndLength(utf8Str, dvmUtf8Len(utf8Str));
}
StringObject* dvmCreateStringFromCstr(const std::string& utf8Str) {
return dvmCreateStringFromCstr(utf8Str.c_str());
}
/*
* Create a java/lang/String from a C string, given its UTF-16 length
* (number of UTF-16 code points).
*
* The caller must call dvmReleaseTrackedAlloc() on the return value.
*
* Returns NULL and throws an exception on failure.
*/
StringObject* dvmCreateStringFromCstrAndLength(const char* utf8Str,
size_t utf16Length)
{
assert(utf8Str != NULL);
ArrayObject* chars;
StringObject* newObj = makeStringObject(utf16Length, &chars);
if (newObj == NULL) {
return NULL;
}
dvmConvertUtf8ToUtf16((u2*)(void*)chars->contents, utf8Str);
u4 hashCode = computeUtf16Hash((u2*)(void*)chars->contents, utf16Length);
dvmSetFieldInt((Object*) newObj, STRING_FIELDOFF_HASHCODE, hashCode);
return newObj;
}
/*
* Create a new java/lang/String object, using the given Unicode data.
*/
StringObject* dvmCreateStringFromUnicode(const u2* unichars, int len)
{
/* We allow a NULL pointer if the length is zero. */
assert(len == 0 || unichars != NULL);
ArrayObject* chars;
StringObject* newObj = makeStringObject(len, &chars);
if (newObj == NULL) {
return NULL;
}
if (len > 0) memcpy(chars->contents, unichars, len * sizeof(u2));
u4 hashCode = computeUtf16Hash((u2*)(void*)chars->contents, len);
dvmSetFieldInt((Object*)newObj, STRING_FIELDOFF_HASHCODE, hashCode);
return newObj;
}
/*
* Create a new C string from a java/lang/String object.
*
* Returns NULL if the object is NULL.
*/
char* dvmCreateCstrFromString(const StringObject* jstr)
{
assert(gDvm.classJavaLangString != NULL);
if (jstr == NULL) {
return NULL;
}
int len = dvmGetFieldInt(jstr, STRING_FIELDOFF_COUNT);
int offset = dvmGetFieldInt(jstr, STRING_FIELDOFF_OFFSET);
ArrayObject* chars =
(ArrayObject*) dvmGetFieldObject(jstr, STRING_FIELDOFF_VALUE);
const u2* data = (const u2*)(void*)chars->contents + offset;
assert(offset + len <= (int) chars->length);
int byteLen = utf16_utf8ByteLen(data, len);
char* newStr = (char*) malloc(byteLen+1);
if (newStr == NULL) {
return NULL;
}
convertUtf16ToUtf8(newStr, data, len);
return newStr;
}
void dvmGetStringUtfRegion(const StringObject* jstr,
int start, int len, char* buf)
{
const u2* data = jstr->chars() + start;
convertUtf16ToUtf8(buf, data, len);
}
int StringObject::utfLength() const
{
assert(gDvm.classJavaLangString != NULL);
int len = dvmGetFieldInt(this, STRING_FIELDOFF_COUNT);
int offset = dvmGetFieldInt(this, STRING_FIELDOFF_OFFSET);
ArrayObject* chars =
(ArrayObject*) dvmGetFieldObject(this, STRING_FIELDOFF_VALUE);
const u2* data = (const u2*)(void*)chars->contents + offset;
assert(offset + len <= (int) chars->length);
return utf16_utf8ByteLen(data, len);
}
int StringObject::length() const
{
return dvmGetFieldInt(this, STRING_FIELDOFF_COUNT);
}
ArrayObject* StringObject::array() const
{
return (ArrayObject*) dvmGetFieldObject(this, STRING_FIELDOFF_VALUE);
}
const u2* StringObject::chars() const
{
int offset = dvmGetFieldInt(this, STRING_FIELDOFF_OFFSET);
ArrayObject* chars =
(ArrayObject*) dvmGetFieldObject(this, STRING_FIELDOFF_VALUE);
return (const u2*)(void*)chars->contents + offset;
}
/*
* Compare two String objects.
*
* This is a dvmHashTableLookup() callback. The function has already
* compared their hash values; we need to do a full compare to ensure
* that the strings really match.
*/
int dvmHashcmpStrings(const void* vstrObj1, const void* vstrObj2)
{
const StringObject* strObj1 = (const StringObject*) vstrObj1;
const StringObject* strObj2 = (const StringObject*) vstrObj2;
assert(gDvm.classJavaLangString != NULL);
/* get offset and length into char array; all values are in 16-bit units */
int len1 = dvmGetFieldInt(strObj1, STRING_FIELDOFF_COUNT);
int offset1 = dvmGetFieldInt(strObj1, STRING_FIELDOFF_OFFSET);
int len2 = dvmGetFieldInt(strObj2, STRING_FIELDOFF_COUNT);
int offset2 = dvmGetFieldInt(strObj2, STRING_FIELDOFF_OFFSET);
if (len1 != len2) {
return len1 - len2;
}
ArrayObject* chars1 =
(ArrayObject*) dvmGetFieldObject(strObj1, STRING_FIELDOFF_VALUE);
ArrayObject* chars2 =
(ArrayObject*) dvmGetFieldObject(strObj2, STRING_FIELDOFF_VALUE);
/* damage here actually indicates a broken java/lang/String */
assert(offset1 + len1 <= (int) chars1->length);
assert(offset2 + len2 <= (int) chars2->length);
return memcmp((const u2*)(void*)chars1->contents + offset1,
(const u2*)(void*)chars2->contents + offset2,
len1 * sizeof(u2));
}
ArrayObject* dvmCreateStringArray(const std::vector<std::string>& strings) {
Thread* self = dvmThreadSelf();
// Allocate an array to hold the String objects.
ClassObject* elementClass = dvmFindArrayClassForElement(gDvm.classJavaLangString);
ArrayObject* stringArray = dvmAllocArrayByClass(elementClass, strings.size(), ALLOC_DEFAULT);
if (stringArray == NULL) {
// Probably OOM.
assert(dvmCheckException(self));
return NULL;
}
// Create the individual String objects and add them to the array.
for (size_t i = 0; i < strings.size(); i++) {
Object* str = (Object*) dvmCreateStringFromCstr(strings[i]);
if (str == NULL) {
// Probably OOM; drop out now.
assert(dvmCheckException(self));
dvmReleaseTrackedAlloc((Object*) stringArray, self);
return NULL;
}
dvmSetObjectArrayElement(stringArray, i, str);
/* stored in tracked array, okay to release */
dvmReleaseTrackedAlloc(str, self);
}
return stringArray;
}