| /* |
| * Copyright (C) 2009 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "Dalvik.h" |
| #include "libdex/OpCode.h" |
| #include "libdex/OpCodeNames.h" |
| |
| #include "../../CompilerInternals.h" |
| #include "ArmLIR.h" |
| #include <unistd.h> /* for cacheflush */ |
| #include <sys/mman.h> /* for protection change */ |
| |
| /* |
| * opcode: ArmOpCode enum |
| * skeleton: pre-designated bit-pattern for this opcode |
| * k0: key to applying ds/de |
| * ds: dest start bit position |
| * de: dest end bit position |
| * k1: key to applying s1s/s1e |
| * s1s: src1 start bit position |
| * s1e: src1 end bit position |
| * k2: key to applying s2s/s2e |
| * s2s: src2 start bit position |
| * s2e: src2 end bit position |
| * operands: number of operands (for sanity check purposes) |
| * name: mnemonic name |
| * fmt: for pretty-printing |
| */ |
| #define ENCODING_MAP(opcode, skeleton, k0, ds, de, k1, s1s, s1e, k2, s2s, s2e, \ |
| k3, k3s, k3e, flags, name, fmt, size) \ |
| {skeleton, {{k0, ds, de}, {k1, s1s, s1e}, {k2, s2s, s2e}, \ |
| {k3, k3s, k3e}}, opcode, flags, name, fmt, size} |
| |
| /* Instruction dump string format keys: !pf, where "!" is the start |
| * of the key, "p" is which numeric operand to use and "f" is the |
| * print format. |
| * |
| * [p]ositions: |
| * 0 -> operands[0] (dest) |
| * 1 -> operands[1] (src1) |
| * 2 -> operands[2] (src2) |
| * 3 -> operands[3] (extra) |
| * |
| * [f]ormats: |
| * h -> 4-digit hex |
| * d -> decimal |
| * E -> decimal*4 |
| * F -> decimal*2 |
| * c -> branch condition (beq, bne, etc.) |
| * t -> pc-relative target |
| * u -> 1st half of bl[x] target |
| * v -> 2nd half ob bl[x] target |
| * R -> register list |
| * s -> single precision floating point register |
| * S -> double precision floating point register |
| * m -> Thumb2 modified immediate |
| * n -> complimented Thumb2 modified immediate |
| * M -> Thumb2 16-bit zero-extended immediate |
| * b -> 4-digit binary |
| * |
| * [!] escape. To insert "!", use "!!" |
| */ |
| /* NOTE: must be kept in sync with enum ArmOpcode from ArmLIR.h */ |
| ArmEncodingMap EncodingMap[kArmLast] = { |
| ENCODING_MAP(kArm16BitData, 0x0000, |
| kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_UNARY_OP, "data", "0x!0h(!0d)", 1), |
| ENCODING_MAP(kThumbAdcRR, 0x4140, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES | USES_CCODES, |
| "adcs", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbAddRRI3, 0x1c00, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, |
| "adds", "r!0d, r!1d, #!2d", 1), |
| ENCODING_MAP(kThumbAddRI8, 0x3000, |
| kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, |
| "adds", "r!0d, r!0d, #!1d", 1), |
| ENCODING_MAP(kThumbAddRRR, 0x1800, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE12 | SETS_CCODES, |
| "adds", "r!0d, r!1d, r!2d", 1), |
| ENCODING_MAP(kThumbAddRRLH, 0x4440, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01, |
| "add", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbAddRRHL, 0x4480, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01, |
| "add", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbAddRRHH, 0x44c0, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE01, |
| "add", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbAddPcRel, 0xa000, |
| kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | IS_BRANCH, |
| "add", "r!0d, pc, #!1E", 1), |
| ENCODING_MAP(kThumbAddSpRel, 0xa800, |
| kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF_SP | REG_USE_SP, |
| "add", "r!0d, sp, #!2E", 1), |
| ENCODING_MAP(kThumbAddSpI7, 0xb000, |
| kFmtBitBlt, 6, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_UNARY_OP | REG_DEF_SP | REG_USE_SP, |
| "add", "sp, #!0d*4", 1), |
| ENCODING_MAP(kThumbAndRR, 0x4000, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, |
| "ands", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbAsrRRI5, 0x1000, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, |
| "asrs", "r!0d, r!1d, #!2d", 1), |
| ENCODING_MAP(kThumbAsrRR, 0x4100, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, |
| "asrs", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbBCond, 0xd000, |
| kFmtBitBlt, 7, 0, kFmtBitBlt, 11, 8, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | USES_CCODES, |
| "b!1c", "!0t", 1), |
| ENCODING_MAP(kThumbBUncond, 0xe000, |
| kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, NO_OPERAND | IS_BRANCH, |
| "b", "!0t", 1), |
| ENCODING_MAP(kThumbBicRR, 0x4380, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, |
| "bics", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbBkpt, 0xbe00, |
| kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH, |
| "bkpt", "!0d", 1), |
| ENCODING_MAP(kThumbBlx1, 0xf000, |
| kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF_LR, |
| "blx_1", "!0u", 1), |
| ENCODING_MAP(kThumbBlx2, 0xe800, |
| kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF_LR, |
| "blx_2", "!0v", 1), |
| ENCODING_MAP(kThumbBl1, 0xf000, |
| kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR, |
| "bl_1", "!0u", 1), |
| ENCODING_MAP(kThumbBl2, 0xf800, |
| kFmtBitBlt, 10, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR, |
| "bl_2", "!0v", 1), |
| ENCODING_MAP(kThumbBlxR, 0x4780, |
| kFmtBitBlt, 6, 3, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_UNARY_OP | REG_USE0 | IS_BRANCH | REG_DEF_LR, |
| "blx", "r!0d", 1), |
| ENCODING_MAP(kThumbBx, 0x4700, |
| kFmtBitBlt, 6, 3, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH, |
| "bx", "r!0d", 1), |
| ENCODING_MAP(kThumbCmnRR, 0x42c0, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES, |
| "cmn", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbCmpRI8, 0x2800, |
| kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | SETS_CCODES, |
| "cmp", "r!0d, #!1d", 1), |
| ENCODING_MAP(kThumbCmpRR, 0x4280, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES, |
| "cmp", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbCmpLH, 0x4540, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES, |
| "cmp", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbCmpHL, 0x4580, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES, |
| "cmp", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbCmpHH, 0x45c0, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01 | SETS_CCODES, |
| "cmp", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbEorRR, 0x4040, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, |
| "eors", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbLdmia, 0xc800, |
| kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE0 | REG_DEF_LIST1 | IS_LOAD, |
| "ldmia", "r!0d!!, <!1R>", 1), |
| ENCODING_MAP(kThumbLdrRRI5, 0x6800, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, |
| "ldr", "r!0d, [r!1d, #!2E]", 1), |
| ENCODING_MAP(kThumbLdrRRR, 0x5800, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD, |
| "ldr", "r!0d, [r!1d, r!2d]", 1), |
| ENCODING_MAP(kThumbLdrPcRel, 0x4800, |
| kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0 | REG_USE_PC |
| | IS_LOAD, "ldr", "r!0d, [pc, #!1E]", 1), |
| ENCODING_MAP(kThumbLdrSpRel, 0x9800, |
| kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0 | REG_USE_SP |
| | IS_LOAD, "ldr", "r!0d, [sp, #!2E]", 1), |
| ENCODING_MAP(kThumbLdrbRRI5, 0x7800, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, |
| "ldrb", "r!0d, [r!1d, #2d]", 1), |
| ENCODING_MAP(kThumbLdrbRRR, 0x5c00, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD, |
| "ldrb", "r!0d, [r!1d, r!2d]", 1), |
| ENCODING_MAP(kThumbLdrhRRI5, 0x8800, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, |
| "ldrh", "r!0d, [r!1d, #!2F]", 1), |
| ENCODING_MAP(kThumbLdrhRRR, 0x5a00, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD, |
| "ldrh", "r!0d, [r!1d, r!2d]", 1), |
| ENCODING_MAP(kThumbLdrsbRRR, 0x5600, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD, |
| "ldrsb", "r!0d, [r!1d, r!2d]", 1), |
| ENCODING_MAP(kThumbLdrshRRR, 0x5e00, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12 | IS_LOAD, |
| "ldrsh", "r!0d, [r!1d, r!2d]", 1), |
| ENCODING_MAP(kThumbLslRRI5, 0x0000, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, |
| "lsls", "r!0d, r!1d, #!2d", 1), |
| ENCODING_MAP(kThumbLslRR, 0x4080, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, |
| "lsls", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbLsrRRI5, 0x0800, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, |
| "lsrs", "r!0d, r!1d, #!2d", 1), |
| ENCODING_MAP(kThumbLsrRR, 0x40c0, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, |
| "lsrs", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbMovImm, 0x2000, |
| kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0 | SETS_CCODES, |
| "movs", "r!0d, #!1d", 1), |
| ENCODING_MAP(kThumbMovRR, 0x1c00, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES, |
| "movs", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbMovRR_H2H, 0x46c0, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "mov", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbMovRR_H2L, 0x4640, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "mov", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbMovRR_L2H, 0x4680, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "mov", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbMul, 0x4340, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, |
| "muls", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbMvn, 0x43c0, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES, |
| "mvns", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbNeg, 0x4240, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES, |
| "negs", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbOrr, 0x4300, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, |
| "orrs", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbPop, 0xbc00, |
| kFmtBitBlt, 8, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_DEF_LIST0 |
| | IS_LOAD, "pop", "<!0R>", 1), |
| ENCODING_MAP(kThumbPush, 0xb400, |
| kFmtBitBlt, 8, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_USE_LIST0 |
| | IS_STORE, "push", "<!0R>", 1), |
| ENCODING_MAP(kThumbRorRR, 0x41c0, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE01 | SETS_CCODES, |
| "rors", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbSbc, 0x4180, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE01 | USES_CCODES | SETS_CCODES, |
| "sbcs", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumbStmia, 0xc000, |
| kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0 | REG_USE0 | REG_USE_LIST1 | IS_STORE, |
| "stmia", "r!0d!!, <!1R>", 1), |
| ENCODING_MAP(kThumbStrRRI5, 0x6000, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, |
| "str", "r!0d, [r!1d, #!2E]", 1), |
| ENCODING_MAP(kThumbStrRRR, 0x5000, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE, |
| "str", "r!0d, [r!1d, r!2d]", 1), |
| ENCODING_MAP(kThumbStrSpRel, 0x9000, |
| kFmtBitBlt, 10, 8, kFmtUnused, -1, -1, kFmtBitBlt, 7, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE0 | REG_USE_SP |
| | IS_STORE, "str", "r!0d, [sp, #!2E]", 1), |
| ENCODING_MAP(kThumbStrbRRI5, 0x7000, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, |
| "strb", "r!0d, [r!1d, #!2d]", 1), |
| ENCODING_MAP(kThumbStrbRRR, 0x5400, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE, |
| "strb", "r!0d, [r!1d, r!2d]", 1), |
| ENCODING_MAP(kThumbStrhRRI5, 0x8000, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 10, 6, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, |
| "strh", "r!0d, [r!1d, #!2F]", 1), |
| ENCODING_MAP(kThumbStrhRRR, 0x5200, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE012 | IS_STORE, |
| "strh", "r!0d, [r!1d, r!2d]", 1), |
| ENCODING_MAP(kThumbSubRRI3, 0x1e00, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, |
| "subs", "r!0d, r!1d, #!2d]", 1), |
| ENCODING_MAP(kThumbSubRI8, 0x3800, |
| kFmtBitBlt, 10, 8, kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE0 | SETS_CCODES, |
| "subs", "r!0d, #!1d", 1), |
| ENCODING_MAP(kThumbSubRRR, 0x1a00, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtBitBlt, 8, 6, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE12 | SETS_CCODES, |
| "subs", "r!0d, r!1d, r!2d", 1), |
| ENCODING_MAP(kThumbSubSpI7, 0xb080, |
| kFmtBitBlt, 6, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_UNARY_OP | REG_DEF_SP | REG_USE_SP, |
| "sub", "sp, #!0d", 1), |
| ENCODING_MAP(kThumbSwi, 0xdf00, |
| kFmtBitBlt, 7, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH, |
| "swi", "!0d", 1), |
| ENCODING_MAP(kThumbTst, 0x4200, |
| kFmtBitBlt, 2, 0, kFmtBitBlt, 5, 3, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_UNARY_OP | REG_USE01 | SETS_CCODES, |
| "tst", "r!0d, r!1d", 1), |
| ENCODING_MAP(kThumb2Vldrs, 0xed900a00, |
| kFmtSfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, |
| "vldr", "!0s, [r!1d, #!2E]", 2), |
| ENCODING_MAP(kThumb2Vldrd, 0xed900b00, |
| kFmtDfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, |
| "vldr", "!0S, [r!1d, #!2E]", 2), |
| ENCODING_MAP(kThumb2Vmuls, 0xee200a00, |
| kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE12, |
| "vmuls", "!0s, !1s, !2s", 2), |
| ENCODING_MAP(kThumb2Vmuld, 0xee200b00, |
| kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, |
| "vmuld", "!0S, !1S, !2S", 2), |
| ENCODING_MAP(kThumb2Vstrs, 0xed800a00, |
| kFmtSfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, |
| "vstr", "!0s, [r!1d, #!2E]", 2), |
| ENCODING_MAP(kThumb2Vstrd, 0xed800b00, |
| kFmtDfp, 22, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, |
| "vstr", "!0S, [r!1d, #!2E]", 2), |
| ENCODING_MAP(kThumb2Vsubs, 0xee300a40, |
| kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, |
| "vsub", "!0s, !1s, !2s", 2), |
| ENCODING_MAP(kThumb2Vsubd, 0xee300b40, |
| kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, |
| "vsub", "!0S, !1S, !2S", 2), |
| ENCODING_MAP(kThumb2Vadds, 0xee300a00, |
| kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, |
| "vadd", "!0s, !1s, !2s", 2), |
| ENCODING_MAP(kThumb2Vaddd, 0xee300b00, |
| kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, |
| "vadd", "!0S, !1S, !2S", 2), |
| ENCODING_MAP(kThumb2Vdivs, 0xee800a00, |
| kFmtSfp, 22, 12, kFmtSfp, 7, 16, kFmtSfp, 5, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, |
| "vdivs", "!0s, !1s, !2s", 2), |
| ENCODING_MAP(kThumb2Vdivd, 0xee800b00, |
| kFmtDfp, 22, 12, kFmtDfp, 7, 16, kFmtDfp, 5, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, |
| "vdivd", "!0S, !1S, !2S", 2), |
| ENCODING_MAP(kThumb2VcvtIF, 0xeeb80ac0, |
| kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vcvt.f32", "!0s, !1s", 2), |
| ENCODING_MAP(kThumb2VcvtID, 0xeeb80bc0, |
| kFmtDfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vcvt.f64", "!0S, !1s", 2), |
| ENCODING_MAP(kThumb2VcvtFI, 0xeebd0ac0, |
| kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vcvt.s32.f32 ", "!0s, !1s", 2), |
| ENCODING_MAP(kThumb2VcvtDI, 0xeebd0bc0, |
| kFmtSfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vcvt.s32.f64 ", "!0s, !1S", 2), |
| ENCODING_MAP(kThumb2VcvtFd, 0xeeb70ac0, |
| kFmtDfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vcvt.f64.f32 ", "!0S, !1s", 2), |
| ENCODING_MAP(kThumb2VcvtDF, 0xeeb70bc0, |
| kFmtSfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vcvt.f32.f64 ", "!0s, !1S", 2), |
| ENCODING_MAP(kThumb2Vsqrts, 0xeeb10ac0, |
| kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vsqrt.f32 ", "!0s, !1s", 2), |
| ENCODING_MAP(kThumb2Vsqrtd, 0xeeb10bc0, |
| kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vsqrt.f64 ", "!0S, !1S", 2), |
| ENCODING_MAP(kThumb2MovImmShift, 0xf04f0000, /* no setflags encoding */ |
| kFmtBitBlt, 11, 8, kFmtModImm, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0, |
| "mov", "r!0d, #!1m", 2), |
| ENCODING_MAP(kThumb2MovImm16, 0xf2400000, |
| kFmtBitBlt, 11, 8, kFmtImm16, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0, |
| "mov", "r!0d, #!1M", 2), |
| ENCODING_MAP(kThumb2StrRRI12, 0xf8c00000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, |
| "str", "r!0d, [r!1d, #!2d]", 2), |
| ENCODING_MAP(kThumb2LdrRRI12, 0xf8d00000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, |
| "ldr", "r!0d, [r!1d, #!2d]", 2), |
| ENCODING_MAP(kThumb2StrRRI8Predec, 0xf8400c00, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 8, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, |
| "str", "r!0d, [r!1d, #-!2d]", 2), |
| ENCODING_MAP(kThumb2LdrRRI8Predec, 0xf8500c00, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 8, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, |
| "ldr", "r!0d, [r!1d, #-!2d]", 2), |
| ENCODING_MAP(kThumb2Cbnz, 0xb900, /* Note: does not affect flags */ |
| kFmtBitBlt, 2, 0, kFmtImm6, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | IS_BRANCH, |
| "cbnz", "r!0d,!1t", 1), |
| ENCODING_MAP(kThumb2Cbz, 0xb100, /* Note: does not affect flags */ |
| kFmtBitBlt, 2, 0, kFmtImm6, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | IS_BRANCH, |
| "cbz", "r!0d,!1t", 1), |
| ENCODING_MAP(kThumb2AddRRI12, 0xf2000000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtImm12, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE1,/* Note: doesn't affect flags */ |
| "add", "r!0d,r!1d,#!2d", 2), |
| ENCODING_MAP(kThumb2MovRR, 0xea4f0000, /* no setflags encoding */ |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "mov", "r!0d, r!1d", 2), |
| ENCODING_MAP(kThumb2Vmovs, 0xeeb00a40, |
| kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vmov.f32 ", " !0s, !1s", 2), |
| ENCODING_MAP(kThumb2Vmovd, 0xeeb00b40, |
| kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vmov.f64 ", " !0S, !1S", 2), |
| ENCODING_MAP(kThumb2Ldmia, 0xe8900000, |
| kFmtBitBlt, 19, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE0 | REG_DEF_LIST1 | IS_LOAD, |
| "ldmia", "r!0d!!, <!1R>", 2), |
| ENCODING_MAP(kThumb2Stmia, 0xe8800000, |
| kFmtBitBlt, 19, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE0 | REG_USE_LIST1 | IS_STORE, |
| "stmia", "r!0d!!, <!1R>", 2), |
| ENCODING_MAP(kThumb2AddRRR, 0xeb100000, /* setflags encoding */ |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtShift, -1, -1, |
| IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES, |
| "adds", "r!0d, r!1d, r!2d", 2), |
| ENCODING_MAP(kThumb2SubRRR, 0xebb00000, /* setflags enconding */ |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtShift, -1, -1, |
| IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES, |
| "subs", "r!0d, r!1d, r!2d", 2), |
| ENCODING_MAP(kThumb2SbcRRR, 0xeb700000, /* setflags encoding */ |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtShift, -1, -1, |
| IS_QUAD_OP | REG_DEF0_USE12 | USES_CCODES | SETS_CCODES, |
| "sbcs", "r!0d, r!1d, r!2d", 2), |
| ENCODING_MAP(kThumb2CmpRR, 0xebb00f00, |
| kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_USE01 | SETS_CCODES, |
| "cmp", "r!0d, r!1d", 2), |
| ENCODING_MAP(kThumb2SubRRI12, 0xf2a00000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtImm12, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE1,/* Note: doesn't affect flags */ |
| "sub", "r!0d,r!1d,#!2d", 2), |
| ENCODING_MAP(kThumb2MvnImmShift, 0xf06f0000, /* no setflags encoding */ |
| kFmtBitBlt, 11, 8, kFmtModImm, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0, |
| "mvn", "r!0d, #!1n", 2), |
| ENCODING_MAP(kThumb2Sel, 0xfaa0f080, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE12 | USES_CCODES, |
| "sel", "r!0d, r!1d, r!2d", 2), |
| ENCODING_MAP(kThumb2Ubfx, 0xf3c00000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtLsb, -1, -1, |
| kFmtBWidth, 4, 0, IS_QUAD_OP | REG_DEF0_USE1, |
| "ubfx", "r!0d, r!1d, #!2d, #!3d", 2), |
| ENCODING_MAP(kThumb2Sbfx, 0xf3400000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtLsb, -1, -1, |
| kFmtBWidth, 4, 0, IS_QUAD_OP | REG_DEF0_USE1, |
| "sbfx", "r!0d, r!1d, #!2d, #!3d", 2), |
| ENCODING_MAP(kThumb2LdrRRR, 0xf8500000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD, |
| "ldr", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), |
| ENCODING_MAP(kThumb2LdrhRRR, 0xf8300000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD, |
| "ldrh", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), |
| ENCODING_MAP(kThumb2LdrshRRR, 0xf9300000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD, |
| "ldrsh", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), |
| ENCODING_MAP(kThumb2LdrbRRR, 0xf8100000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD, |
| "ldrb", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), |
| ENCODING_MAP(kThumb2LdrsbRRR, 0xf9100000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_DEF0_USE12 | IS_LOAD, |
| "ldrsb", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), |
| ENCODING_MAP(kThumb2StrRRR, 0xf8400000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE, |
| "str", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), |
| ENCODING_MAP(kThumb2StrhRRR, 0xf8200000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE, |
| "strh", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), |
| ENCODING_MAP(kThumb2StrbRRR, 0xf8000000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtBitBlt, 5, 4, IS_QUAD_OP | REG_USE012 | IS_STORE, |
| "strb", "r!0d, [r!1d, r!2d, LSL #!3d]", 2), |
| ENCODING_MAP(kThumb2LdrhRRI12, 0xf8b00000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, |
| "ldrh", "r!0d, [r!1d, #!2d]", 2), |
| ENCODING_MAP(kThumb2LdrshRRI12, 0xf9b00000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, |
| "ldrsh", "r!0d, [r!1d, #!2d]", 2), |
| ENCODING_MAP(kThumb2LdrbRRI12, 0xf8900000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, |
| "ldrb", "r!0d, [r!1d, #!2d]", 2), |
| ENCODING_MAP(kThumb2LdrsbRRI12, 0xf9900000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, |
| "ldrsb", "r!0d, [r!1d, #!2d]", 2), |
| ENCODING_MAP(kThumb2StrhRRI12, 0xf8a00000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, |
| "strh", "r!0d, [r!1d, #!2d]", 2), |
| ENCODING_MAP(kThumb2StrbRRI12, 0xf8800000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 11, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE01 | IS_STORE, |
| "strb", "r!0d, [r!1d, #!2d]", 2), |
| ENCODING_MAP(kThumb2Pop, 0xe8bd0000, |
| kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_DEF_LIST0 |
| | IS_LOAD, "pop", "<!0R>", 2), |
| ENCODING_MAP(kThumb2Push, 0xe8ad0000, |
| kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_UNARY_OP | REG_DEF_SP | REG_USE_SP | REG_USE_LIST0 |
| | IS_STORE, "push", "<!0R>", 2), |
| ENCODING_MAP(kThumb2CmpRI8, 0xf1b00f00, |
| kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_USE0 | SETS_CCODES, |
| "cmp", "r!0d, #!1m", 2), |
| ENCODING_MAP(kThumb2AdcRRR, 0xeb500000, /* setflags encoding */ |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtShift, -1, -1, |
| IS_QUAD_OP | REG_DEF0_USE12 | SETS_CCODES, |
| "adcs", "r!0d, r!1d, r!2d, shift !3d", 2), |
| ENCODING_MAP(kThumb2AndRRR, 0xea000000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12, |
| "and", "r!0d, r!1d, r!2d, shift !3d", 2), |
| ENCODING_MAP(kThumb2BicRRR, 0xea200000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12, |
| "bic", "r!0d, r!1d, r!2d, shift !3d", 2), |
| ENCODING_MAP(kThumb2CmnRR, 0xeb000000, |
| kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, |
| "cmn", "r!0d, r!1d, shift !2d", 2), |
| ENCODING_MAP(kThumb2EorRRR, 0xea800000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12, |
| "eor", "r!0d, r!1d, r!2d, shift !3d", 2), |
| ENCODING_MAP(kThumb2MulRRR, 0xfb00f000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, |
| "mul", "r!0d, r!1d, r!2d", 2), |
| ENCODING_MAP(kThumb2MnvRR, 0xea6f0000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift, -1, -1, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, |
| "mvn", "r!0d, r!1d, shift !2d", 2), |
| ENCODING_MAP(kThumb2RsubRRI8, 0xf1d00000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, |
| "rsb", "r!0d,r!1d,#!2m", 2), |
| ENCODING_MAP(kThumb2NegRR, 0xf1d00000, /* instance of rsub */ |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | REG_DEF0_USE1 | SETS_CCODES, |
| "neg", "r!0d,r!1d", 2), |
| ENCODING_MAP(kThumb2OrrRRR, 0xea400000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtShift, -1, -1, IS_QUAD_OP | REG_DEF0_USE12, |
| "orr", "r!0d, r!1d, r!2d, shift !3d", 2), |
| ENCODING_MAP(kThumb2TstRR, 0xea100f00, |
| kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, kFmtShift, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_USE01 | SETS_CCODES, |
| "tst", "r!0d, r!1d, shift !2d", 2), |
| ENCODING_MAP(kThumb2LslRRR, 0xfa00f000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, |
| "lsl", "r!0d, r!1d, r!2d", 2), |
| ENCODING_MAP(kThumb2LsrRRR, 0xfa20f000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, |
| "lsr", "r!0d, r!1d, r!2d", 2), |
| ENCODING_MAP(kThumb2AsrRRR, 0xfa40f000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, |
| "asr", "r!0d, r!1d, r!2d", 2), |
| ENCODING_MAP(kThumb2RorRRR, 0xfa60f000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, |
| "ror", "r!0d, r!1d, r!2d", 2), |
| ENCODING_MAP(kThumb2LslRRI5, 0xea4f0000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, |
| "lsl", "r!0d, r!1d, #!2d", 2), |
| ENCODING_MAP(kThumb2LsrRRI5, 0xea4f0010, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, |
| "lsr", "r!0d, r!1d, #!2d", 2), |
| ENCODING_MAP(kThumb2AsrRRI5, 0xea4f0020, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, |
| "asr", "r!0d, r!1d, #!2d", 2), |
| ENCODING_MAP(kThumb2RorRRI5, 0xea4f0030, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 3, 0, kFmtShift5, -1, -1, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, |
| "ror", "r!0d, r!1d, #!2d", 2), |
| ENCODING_MAP(kThumb2BicRRI8, 0xf0200000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, |
| "bic", "r!0d, r!1d, #!2m", 2), |
| ENCODING_MAP(kThumb2AndRRI8, 0xf0000000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, |
| "and", "r!0d, r!1d, #!2m", 2), |
| ENCODING_MAP(kThumb2OrrRRI8, 0xf0400000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, |
| "orr", "r!0d, r!1d, #!2m", 2), |
| ENCODING_MAP(kThumb2EorRRI8, 0xf0800000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, |
| "eor", "r!0d, r!1d, #!2m", 2), |
| ENCODING_MAP(kThumb2AddRRI8, 0xf1100000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, |
| "adds", "r!0d, r!1d, #!2m", 2), |
| ENCODING_MAP(kThumb2AdcRRI8, 0xf1500000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES | USES_CCODES, |
| "adcs", "r!0d, r!1d, #!2m", 2), |
| ENCODING_MAP(kThumb2SubRRI8, 0xf1b00000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES, |
| "subs", "r!0d, r!1d, #!2m", 2), |
| ENCODING_MAP(kThumb2SbcRRI8, 0xf1700000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtModImm, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0_USE1 | SETS_CCODES | USES_CCODES, |
| "sbcs", "r!0d, r!1d, #!2m", 2), |
| ENCODING_MAP(kThumb2It, 0xbf00, |
| kFmtBitBlt, 7, 4, kFmtBitBlt, 3, 0, kFmtModImm, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | IS_IT | USES_CCODES, |
| "it:!1b", "!0c", 1), |
| ENCODING_MAP(kThumb2Fmstat, 0xeef1fa10, |
| kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, NO_OPERAND | SETS_CCODES, |
| "fmstat", "", 2), |
| ENCODING_MAP(kThumb2Vcmpd, 0xeeb40b40, |
| kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01, |
| "vcmp.f64", "!0S, !1S", 2), |
| ENCODING_MAP(kThumb2Vcmps, 0xeeb40a40, |
| kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE01, |
| "vcmp.f32", "!0s, !1s", 2), |
| ENCODING_MAP(kThumb2LdrPcRel12, 0xf8df0000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_TERTIARY_OP | REG_DEF0 | REG_USE_PC | IS_LOAD, |
| "ldr", "r!0d, [rpc, #!1d]", 2), |
| ENCODING_MAP(kThumb2BCond, 0xf0008000, |
| kFmtBrOffset, -1, -1, kFmtBitBlt, 25, 22, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, |
| IS_BINARY_OP | IS_BRANCH | USES_CCODES, |
| "b!1c", "!0t", 2), |
| ENCODING_MAP(kThumb2Vmovd_RR, 0xeeb00b40, |
| kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vmov.f64", "!0S, !1S", 2), |
| ENCODING_MAP(kThumb2Vmovs_RR, 0xeeb00a40, |
| kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vmov.f32", "!0s, !1s", 2), |
| ENCODING_MAP(kThumb2Fmrs, 0xee100a10, |
| kFmtBitBlt, 15, 12, kFmtSfp, 7, 16, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "fmrs", "r!0d, !1s", 2), |
| ENCODING_MAP(kThumb2Fmsr, 0xee000a10, |
| kFmtSfp, 7, 16, kFmtBitBlt, 15, 12, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "fmsr", "!0s, r!1d", 2), |
| ENCODING_MAP(kThumb2Fmrrd, 0xec500b10, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtDfp, 5, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF01_USE2, |
| "fmrrd", "r!0d, r!1d, !2S", 2), |
| ENCODING_MAP(kThumb2Fmdrr, 0xec400b10, |
| kFmtDfp, 5, 0, kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, |
| "fmdrr", "!0S, r!1d, r!2d", 2), |
| ENCODING_MAP(kThumb2Vabsd, 0xeeb00bc0, |
| kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vabs.f64", "!0S, !1S", 2), |
| ENCODING_MAP(kThumb2Vabss, 0xeeb00ac0, |
| kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vabs.f32", "!0s, !1s", 2), |
| ENCODING_MAP(kThumb2Vnegd, 0xeeb10b40, |
| kFmtDfp, 22, 12, kFmtDfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vneg.f64", "!0S, !1S", 2), |
| ENCODING_MAP(kThumb2Vnegs, 0xeeb10a40, |
| kFmtSfp, 22, 12, kFmtSfp, 5, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, |
| "vneg.f32", "!0s, !1s", 2), |
| ENCODING_MAP(kThumb2Vmovs_IMM8, 0xeeb00a00, |
| kFmtSfp, 22, 12, kFmtFPImm, 16, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0, |
| "vmov.f32", "!0s, #0x!1h", 2), |
| ENCODING_MAP(kThumb2Vmovd_IMM8, 0xeeb00b00, |
| kFmtDfp, 22, 12, kFmtFPImm, 16, 0, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0, |
| "vmov.f64", "!0S, #0x!1h", 2), |
| ENCODING_MAP(kThumb2Mla, 0xfb000000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtBitBlt, 3, 0, |
| kFmtBitBlt, 15, 12, |
| IS_QUAD_OP | REG_DEF0 | REG_USE1 | REG_USE2 | REG_USE3, |
| "mla", "r!0d, r!1d, r!2d, r!3d", 2), |
| ENCODING_MAP(kThumb2Umull, 0xfba00000, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, |
| kFmtBitBlt, 3, 0, |
| IS_QUAD_OP | REG_DEF0 | REG_DEF1 | REG_USE2 | REG_USE3, |
| "umull", "r!0d, r!1d, r!2d, r!3d", 2), |
| ENCODING_MAP(kThumb2Ldrex, 0xe8500f00, |
| kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, kFmtBitBlt, 7, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1 | IS_LOAD, |
| "ldrex", "r!0d, [r!1d, #!2E]", 2), |
| ENCODING_MAP(kThumb2Strex, 0xe8400000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 15, 12, kFmtBitBlt, 19, 16, |
| kFmtBitBlt, 7, 0, IS_QUAD_OP | REG_DEF0_USE12 | IS_STORE, |
| "strex", "r!0d,r!1d, [r!2d, #!2E]", 2), |
| ENCODING_MAP(kThumb2Clrex, 0xf3bf8f2f, |
| kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, |
| kFmtUnused, -1, -1, NO_OPERAND, |
| "clrex", "", 2), |
| ENCODING_MAP(kThumb2Bfi, 0xf3600000, |
| kFmtBitBlt, 11, 8, kFmtBitBlt, 19, 16, kFmtShift5, -1, -1, |
| kFmtBitBlt, 4, 0, IS_QUAD_OP | REG_DEF0_USE1, |
| "bfi", "r!0d,r!1d,#!2d,#!3d", 2), |
| ENCODING_MAP(kThumb2Bfc, 0xf36f0000, |
| kFmtBitBlt, 11, 8, kFmtShift5, -1, -1, kFmtBitBlt, 4, 0, |
| kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0, |
| "bfc", "r!0d,#!1d,#!2d", 2), |
| }; |
| |
| /* |
| * The fake NOP of moving r0 to r0 actually will incur data stalls if r0 is |
| * not ready. Since r5 (rFP) is not updated often, it is less likely to |
| * generate unnecessary stall cycles. |
| */ |
| #define PADDING_MOV_R5_R5 0x1C2D |
| |
| /* Track the number of times that the code cache is patched */ |
| #if defined(WITH_JIT_TUNING) |
| #define UPDATE_CODE_CACHE_PATCHES() (gDvmJit.codeCachePatches++) |
| #else |
| #define UPDATE_CODE_CACHE_PATCHES() |
| #endif |
| |
| /* Write the numbers in the literal pool to the codegen stream */ |
| static void installDataContent(CompilationUnit *cUnit) |
| { |
| int *dataPtr = (int *) ((char *) cUnit->baseAddr + cUnit->dataOffset); |
| ArmLIR *dataLIR = (ArmLIR *) cUnit->wordList; |
| while (dataLIR) { |
| *dataPtr++ = dataLIR->operands[0]; |
| dataLIR = NEXT_LIR(dataLIR); |
| } |
| } |
| |
| /* Returns the size of a Jit trace description */ |
| static int jitTraceDescriptionSize(const JitTraceDescription *desc) |
| { |
| int runCount; |
| for (runCount = 0; ; runCount++) { |
| if (desc->trace[runCount].frag.runEnd) |
| break; |
| } |
| return sizeof(JitCodeDesc) + ((runCount+1) * sizeof(JitTraceRun)); |
| } |
| |
| /* Return TRUE if error happens */ |
| static bool assembleInstructions(CompilationUnit *cUnit, intptr_t startAddr) |
| { |
| short *bufferAddr = (short *) cUnit->codeBuffer; |
| ArmLIR *lir; |
| |
| for (lir = (ArmLIR *) cUnit->firstLIRInsn; lir; lir = NEXT_LIR(lir)) { |
| if (lir->opCode < 0) { |
| if ((lir->opCode == kArmPseudoPseudoAlign4) && |
| /* 1 means padding is needed */ |
| (lir->operands[0] == 1)) { |
| *bufferAddr++ = PADDING_MOV_R5_R5; |
| } |
| continue; |
| } |
| |
| if (lir->isNop) { |
| continue; |
| } |
| |
| if (lir->opCode == kThumbLdrPcRel || |
| lir->opCode == kThumb2LdrPcRel12 || |
| lir->opCode == kThumbAddPcRel || |
| ((lir->opCode == kThumb2Vldrs) && (lir->operands[1] == rpc))) { |
| ArmLIR *lirTarget = (ArmLIR *) lir->generic.target; |
| intptr_t pc = (lir->generic.offset + 4) & ~3; |
| /* |
| * Allow an offset (stored in operands[2] to be added to the |
| * PC-relative target. Useful to get to a fixed field inside a |
| * chaining cell. |
| */ |
| intptr_t target = lirTarget->generic.offset + lir->operands[2]; |
| int delta = target - pc; |
| if (delta & 0x3) { |
| LOGE("PC-rel distance is not multiples of 4: %d\n", delta); |
| dvmCompilerAbort(cUnit); |
| } |
| if ((lir->opCode == kThumb2LdrPcRel12) && (delta > 4091)) { |
| return true; |
| } else if (delta > 1020) { |
| return true; |
| } |
| if (lir->opCode == kThumb2Vldrs) { |
| lir->operands[2] = delta >> 2; |
| } else { |
| lir->operands[1] = (lir->opCode == kThumb2LdrPcRel12) ? |
| delta : delta >> 2; |
| } |
| } else if (lir->opCode == kThumb2Cbnz || lir->opCode == kThumb2Cbz) { |
| ArmLIR *targetLIR = (ArmLIR *) lir->generic.target; |
| intptr_t pc = lir->generic.offset + 4; |
| intptr_t target = targetLIR->generic.offset; |
| int delta = target - pc; |
| if (delta > 126 || delta < 0) { |
| /* |
| * TODO: allow multiple kinds of assembler failure to allow |
| * change of code patterns when things don't fit. |
| */ |
| return true; |
| } else { |
| lir->operands[1] = delta >> 1; |
| } |
| } else if (lir->opCode == kThumbBCond || |
| lir->opCode == kThumb2BCond) { |
| ArmLIR *targetLIR = (ArmLIR *) lir->generic.target; |
| intptr_t pc = lir->generic.offset + 4; |
| intptr_t target = targetLIR->generic.offset; |
| int delta = target - pc; |
| if ((lir->opCode == kThumbBCond) && (delta > 254 || delta < -256)) { |
| return true; |
| } |
| lir->operands[0] = delta >> 1; |
| } else if (lir->opCode == kThumbBUncond) { |
| ArmLIR *targetLIR = (ArmLIR *) lir->generic.target; |
| intptr_t pc = lir->generic.offset + 4; |
| intptr_t target = targetLIR->generic.offset; |
| int delta = target - pc; |
| if (delta > 2046 || delta < -2048) { |
| LOGE("Unconditional branch distance out of range: %d\n", delta); |
| dvmCompilerAbort(cUnit); |
| } |
| lir->operands[0] = delta >> 1; |
| } else if (lir->opCode == kThumbBlx1) { |
| assert(NEXT_LIR(lir)->opCode == kThumbBlx2); |
| /* curPC is Thumb */ |
| intptr_t curPC = (startAddr + lir->generic.offset + 4) & ~3; |
| intptr_t target = lir->operands[1]; |
| |
| /* Match bit[1] in target with base */ |
| if (curPC & 0x2) { |
| target |= 0x2; |
| } |
| int delta = target - curPC; |
| assert((delta >= -(1<<22)) && (delta <= ((1<<22)-2))); |
| |
| lir->operands[0] = (delta >> 12) & 0x7ff; |
| NEXT_LIR(lir)->operands[0] = (delta>> 1) & 0x7ff; |
| } |
| |
| ArmEncodingMap *encoder = &EncodingMap[lir->opCode]; |
| u4 bits = encoder->skeleton; |
| int i; |
| for (i = 0; i < 4; i++) { |
| u4 operand; |
| u4 value; |
| operand = lir->operands[i]; |
| switch(encoder->fieldLoc[i].kind) { |
| case kFmtUnused: |
| break; |
| case kFmtFPImm: |
| value = ((operand & 0xF0) >> 4) << encoder->fieldLoc[i].end; |
| value |= (operand & 0x0F) << encoder->fieldLoc[i].start; |
| bits |= value; |
| break; |
| case kFmtBrOffset: |
| /* |
| * NOTE: branch offsets are not handled here, but |
| * in the main assembly loop (where label values |
| * are known). For reference, here is what the |
| * encoder handing would be: |
| value = ((operand & 0x80000) >> 19) << 26; |
| value |= ((operand & 0x40000) >> 18) << 11; |
| value |= ((operand & 0x20000) >> 17) << 13; |
| value |= ((operand & 0x1f800) >> 11) << 16; |
| value |= (operand & 0x007ff); |
| bits |= value; |
| */ |
| break; |
| case kFmtShift5: |
| value = ((operand & 0x1c) >> 2) << 12; |
| value |= (operand & 0x03) << 6; |
| bits |= value; |
| break; |
| case kFmtShift: |
| value = ((operand & 0x70) >> 4) << 12; |
| value |= (operand & 0x0f) << 4; |
| bits |= value; |
| break; |
| case kFmtBWidth: |
| value = operand - 1; |
| bits |= value; |
| break; |
| case kFmtLsb: |
| value = ((operand & 0x1c) >> 2) << 12; |
| value |= (operand & 0x03) << 6; |
| bits |= value; |
| break; |
| case kFmtImm6: |
| value = ((operand & 0x20) >> 5) << 9; |
| value |= (operand & 0x1f) << 3; |
| bits |= value; |
| break; |
| case kFmtBitBlt: |
| value = (operand << encoder->fieldLoc[i].start) & |
| ((1 << (encoder->fieldLoc[i].end + 1)) - 1); |
| bits |= value; |
| break; |
| case kFmtDfp: { |
| assert(DOUBLEREG(operand)); |
| assert((operand & 0x1) == 0); |
| int regName = (operand & FP_REG_MASK) >> 1; |
| /* Snag the 1-bit slice and position it */ |
| value = ((regName & 0x10) >> 4) << |
| encoder->fieldLoc[i].end; |
| /* Extract and position the 4-bit slice */ |
| value |= (regName & 0x0f) << |
| encoder->fieldLoc[i].start; |
| bits |= value; |
| break; |
| } |
| case kFmtSfp: |
| assert(SINGLEREG(operand)); |
| /* Snag the 1-bit slice and position it */ |
| value = (operand & 0x1) << |
| encoder->fieldLoc[i].end; |
| /* Extract and position the 4-bit slice */ |
| value |= ((operand & 0x1e) >> 1) << |
| encoder->fieldLoc[i].start; |
| bits |= value; |
| break; |
| case kFmtImm12: |
| case kFmtModImm: |
| value = ((operand & 0x800) >> 11) << 26; |
| value |= ((operand & 0x700) >> 8) << 12; |
| value |= operand & 0x0ff; |
| bits |= value; |
| break; |
| case kFmtImm16: |
| value = ((operand & 0x0800) >> 11) << 26; |
| value |= ((operand & 0xf000) >> 12) << 16; |
| value |= ((operand & 0x0700) >> 8) << 12; |
| value |= operand & 0x0ff; |
| bits |= value; |
| break; |
| default: |
| assert(0); |
| } |
| } |
| if (encoder->size == 2) { |
| *bufferAddr++ = (bits >> 16) & 0xffff; |
| } |
| *bufferAddr++ = bits & 0xffff; |
| } |
| return false; |
| } |
| |
| #if defined(SIGNATURE_BREAKPOINT) |
| /* Inspect the assembled instruction stream to find potential matches */ |
| static void matchSignatureBreakpoint(const CompilationUnit *cUnit, |
| unsigned int size) |
| { |
| unsigned int i, j; |
| u4 *ptr = (u4 *) cUnit->codeBuffer; |
| |
| for (i = 0; i < size - gDvmJit.signatureBreakpointSize + 1; i++) { |
| if (ptr[i] == gDvmJit.signatureBreakpoint[0]) { |
| for (j = 1; j < gDvmJit.signatureBreakpointSize; j++) { |
| if (ptr[i+j] != gDvmJit.signatureBreakpoint[j]) { |
| break; |
| } |
| } |
| if (j == gDvmJit.signatureBreakpointSize) { |
| LOGD("Signature match starting from offset %#x (%d words)", |
| i*4, gDvmJit.signatureBreakpointSize); |
| int descSize = jitTraceDescriptionSize(cUnit->traceDesc); |
| JitTraceDescription *newCopy = |
| (JitTraceDescription *) malloc(descSize); |
| memcpy(newCopy, cUnit->traceDesc, descSize); |
| dvmCompilerWorkEnqueue(NULL, kWorkOrderTraceDebug, newCopy); |
| break; |
| } |
| } |
| } |
| } |
| #endif |
| |
| /* |
| * Translation layout in the code cache. Note that the codeAddress pointer |
| * in JitTable will point directly to the code body (field codeAddress). The |
| * chain cell offset codeAddress - 2, and (if present) executionCount is at |
| * codeAddress - 6. |
| * |
| * +----------------------------+ |
| * | Execution count | -> [Optional] 4 bytes |
| * +----------------------------+ |
| * +--| Offset to chain cell counts| -> 2 bytes |
| * | +----------------------------+ |
| * | | Code body | -> Start address for translation |
| * | | | variable in 2-byte chunks |
| * | . . (JitTable's codeAddress points here) |
| * | . . |
| * | | | |
| * | +----------------------------+ |
| * | | Chaining Cells | -> 12/16 bytes each, must be 4 byte aligned |
| * | . . |
| * | . . |
| * | | | |
| * | +----------------------------+ |
| * | | Gap for large switch stmt | -> # cases >= MAX_CHAINED_SWITCH_CASES |
| * | +----------------------------+ |
| * +->| Chaining cell counts | -> 8 bytes, chain cell counts by type |
| * +----------------------------+ |
| * | Trace description | -> variable sized |
| * . . |
| * | | |
| * +----------------------------+ |
| * | Literal pool | -> 4-byte aligned, variable size |
| * . . |
| * . . |
| * | | |
| * +----------------------------+ |
| * |
| * Go over each instruction in the list and calculate the offset from the top |
| * before sending them off to the assembler. If out-of-range branch distance is |
| * seen rearrange the instructions a bit to correct it. |
| */ |
| void dvmCompilerAssembleLIR(CompilationUnit *cUnit, JitTranslationInfo *info) |
| { |
| LIR *lir; |
| ArmLIR *armLIR; |
| int offset = 0; |
| int i; |
| ChainCellCounts chainCellCounts; |
| int descSize = jitTraceDescriptionSize(cUnit->traceDesc); |
| int chainingCellGap; |
| |
| info->instructionSet = cUnit->instructionSet; |
| |
| /* Beginning offset needs to allow space for chain cell offset */ |
| for (armLIR = (ArmLIR *) cUnit->firstLIRInsn; |
| armLIR; |
| armLIR = NEXT_LIR(armLIR)) { |
| armLIR->generic.offset = offset; |
| if (armLIR->opCode >= 0 && !armLIR->isNop) { |
| armLIR->size = EncodingMap[armLIR->opCode].size * 2; |
| offset += armLIR->size; |
| } else if (armLIR->opCode == kArmPseudoPseudoAlign4) { |
| if (offset & 0x2) { |
| offset += 2; |
| armLIR->operands[0] = 1; |
| } else { |
| armLIR->operands[0] = 0; |
| } |
| } |
| /* Pseudo opcodes don't consume space */ |
| } |
| |
| /* Const values have to be word aligned */ |
| offset = (offset + 3) & ~3; |
| |
| /* |
| * Get the gap (# of u4) between the offset of chaining cell count and |
| * the bottom of real chaining cells. If the translation has chaining |
| * cells, the gap is guaranteed to be multiples of 4. |
| */ |
| chainingCellGap = (offset - cUnit->chainingCellBottom->offset) >> 2; |
| |
| /* Add space for chain cell counts & trace description */ |
| u4 chainCellOffset = offset; |
| ArmLIR *chainCellOffsetLIR = (ArmLIR *) cUnit->chainCellOffsetLIR; |
| assert(chainCellOffsetLIR); |
| assert(chainCellOffset < 0x10000); |
| assert(chainCellOffsetLIR->opCode == kArm16BitData && |
| chainCellOffsetLIR->operands[0] == CHAIN_CELL_OFFSET_TAG); |
| |
| /* |
| * Replace the CHAIN_CELL_OFFSET_TAG with the real value. If trace |
| * profiling is enabled, subtract 4 (occupied by the counter word) from |
| * the absolute offset as the value stored in chainCellOffsetLIR is the |
| * delta from &chainCellOffsetLIR to &ChainCellCounts. |
| */ |
| chainCellOffsetLIR->operands[0] = |
| gDvmJit.profile ? (chainCellOffset - 4) : chainCellOffset; |
| |
| offset += sizeof(chainCellCounts) + descSize; |
| |
| assert((offset & 0x3) == 0); /* Should still be word aligned */ |
| |
| /* Set up offsets for literals */ |
| cUnit->dataOffset = offset; |
| |
| for (lir = cUnit->wordList; lir; lir = lir->next) { |
| lir->offset = offset; |
| offset += 4; |
| } |
| |
| cUnit->totalSize = offset; |
| |
| if (gDvmJit.codeCacheByteUsed + cUnit->totalSize > gDvmJit.codeCacheSize) { |
| gDvmJit.codeCacheFull = true; |
| cUnit->baseAddr = NULL; |
| return; |
| } |
| |
| /* Allocate enough space for the code block */ |
| cUnit->codeBuffer = dvmCompilerNew(chainCellOffset, true); |
| if (cUnit->codeBuffer == NULL) { |
| LOGE("Code buffer allocation failure\n"); |
| cUnit->baseAddr = NULL; |
| return; |
| } |
| |
| bool assemblerFailure = assembleInstructions( |
| cUnit, (intptr_t) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed); |
| |
| /* |
| * Currently the only reason that can cause the assembler to fail is due to |
| * trace length - cut it in half and retry. |
| */ |
| if (assemblerFailure) { |
| cUnit->halveInstCount = true; |
| return; |
| } |
| |
| #if defined(SIGNATURE_BREAKPOINT) |
| if (info->discardResult == false && gDvmJit.signatureBreakpoint != NULL && |
| chainCellOffset/4 >= gDvmJit.signatureBreakpointSize) { |
| matchSignatureBreakpoint(cUnit, chainCellOffset/4); |
| } |
| #endif |
| |
| /* Don't go all the way if the goal is just to get the verbose output */ |
| if (info->discardResult) return; |
| |
| cUnit->baseAddr = (char *) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed; |
| gDvmJit.codeCacheByteUsed += offset; |
| |
| UNPROTECT_CODE_CACHE(cUnit->baseAddr, offset); |
| |
| /* Install the code block */ |
| memcpy((char*)cUnit->baseAddr, cUnit->codeBuffer, chainCellOffset); |
| gDvmJit.numCompilations++; |
| |
| /* Install the chaining cell counts */ |
| for (i=0; i< kChainingCellGap; i++) { |
| chainCellCounts.u.count[i] = cUnit->numChainingCells[i]; |
| } |
| |
| /* Set the gap number in the chaining cell count structure */ |
| chainCellCounts.u.count[kChainingCellGap] = chainingCellGap; |
| |
| memcpy((char*)cUnit->baseAddr + chainCellOffset, &chainCellCounts, |
| sizeof(chainCellCounts)); |
| |
| /* Install the trace description */ |
| memcpy((char*)cUnit->baseAddr + chainCellOffset + sizeof(chainCellCounts), |
| cUnit->traceDesc, descSize); |
| |
| /* Write the literals directly into the code cache */ |
| installDataContent(cUnit); |
| |
| /* Flush dcache and invalidate the icache to maintain coherence */ |
| cacheflush((long)cUnit->baseAddr, |
| (long)((char *) cUnit->baseAddr + offset), 0); |
| UPDATE_CODE_CACHE_PATCHES(); |
| |
| PROTECT_CODE_CACHE(cUnit->baseAddr, offset); |
| |
| /* Record code entry point and instruction set */ |
| info->codeAddress = (char*)cUnit->baseAddr + cUnit->headerSize; |
| /* If applicable, mark low bit to denote thumb */ |
| if (info->instructionSet != DALVIK_JIT_ARM) |
| info->codeAddress = (char*)info->codeAddress + 1; |
| } |
| |
| /* |
| * Returns the skeleton bit pattern associated with an opcode. All |
| * variable fields are zeroed. |
| */ |
| static u4 getSkeleton(ArmOpCode op) |
| { |
| return EncodingMap[op].skeleton; |
| } |
| |
| static u4 assembleChainingBranch(int branchOffset, bool thumbTarget) |
| { |
| u4 thumb1, thumb2; |
| |
| if (!thumbTarget) { |
| thumb1 = (getSkeleton(kThumbBlx1) | ((branchOffset>>12) & 0x7ff)); |
| thumb2 = (getSkeleton(kThumbBlx2) | ((branchOffset>> 1) & 0x7ff)); |
| } else if ((branchOffset < -2048) | (branchOffset > 2046)) { |
| thumb1 = (getSkeleton(kThumbBl1) | ((branchOffset>>12) & 0x7ff)); |
| thumb2 = (getSkeleton(kThumbBl2) | ((branchOffset>> 1) & 0x7ff)); |
| } else { |
| thumb1 = (getSkeleton(kThumbBUncond) | ((branchOffset>> 1) & 0x7ff)); |
| thumb2 = getSkeleton(kThumbOrr); /* nop -> or r0, r0 */ |
| } |
| |
| return thumb2<<16 | thumb1; |
| } |
| |
| /* |
| * Perform translation chain operation. |
| * For ARM, we'll use a pair of thumb instructions to generate |
| * an unconditional chaining branch of up to 4MB in distance. |
| * Use a BL, because the generic "interpret" translation needs |
| * the link register to find the dalvik pc of teh target. |
| * 111HHooooooooooo |
| * Where HH is 10 for the 1st inst, and 11 for the second and |
| * the "o" field is each instruction's 11-bit contribution to the |
| * 22-bit branch offset. |
| * If the target is nearby, use a single-instruction bl. |
| * If one or more threads is suspended, don't chain. |
| */ |
| void* dvmJitChain(void* tgtAddr, u4* branchAddr) |
| { |
| int baseAddr = (u4) branchAddr + 4; |
| int branchOffset = (int) tgtAddr - baseAddr; |
| u4 newInst; |
| bool thumbTarget; |
| |
| /* |
| * Only chain translations when there is no urge to ask all threads to |
| * suspend themselves via the interpreter. |
| */ |
| if ((gDvmJit.pProfTable != NULL) && (gDvm.sumThreadSuspendCount == 0) && |
| (gDvmJit.codeCacheFull == false)) { |
| assert((branchOffset >= -(1<<22)) && (branchOffset <= ((1<<22)-2))); |
| |
| gDvmJit.translationChains++; |
| |
| COMPILER_TRACE_CHAINING( |
| LOGD("Jit Runtime: chaining 0x%x to 0x%x\n", |
| (int) branchAddr, (int) tgtAddr & -2)); |
| |
| /* |
| * NOTE: normally, all translations are Thumb[2] mode, with |
| * a single exception: the default TEMPLATE_INTERPRET |
| * pseudo-translation. If the need ever arises to |
| * mix Arm & Thumb[2] translations, the following code should be |
| * generalized. |
| */ |
| thumbTarget = (tgtAddr != dvmCompilerGetInterpretTemplate()); |
| |
| newInst = assembleChainingBranch(branchOffset, thumbTarget); |
| |
| /* |
| * The second half-word instruction of the chaining cell must |
| * either be a nop (which represents initial state), or is the |
| * same exact branch halfword that we are trying to install. |
| */ |
| assert( ((*branchAddr >> 16) == getSkeleton(kThumbOrr)) || |
| ((*branchAddr >> 16) == (newInst >> 16))); |
| |
| UNPROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr)); |
| |
| *branchAddr = newInst; |
| cacheflush((long)branchAddr, (long)branchAddr + 4, 0); |
| UPDATE_CODE_CACHE_PATCHES(); |
| |
| PROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr)); |
| |
| gDvmJit.hasNewChain = true; |
| } |
| |
| return tgtAddr; |
| } |
| |
| #if !defined(WITH_SELF_VERIFICATION) |
| /* |
| * Attempt to enqueue a work order to patch an inline cache for a predicted |
| * chaining cell for virtual/interface calls. |
| */ |
| static void inlineCachePatchEnqueue(PredictedChainingCell *cellAddr, |
| PredictedChainingCell *newContent) |
| { |
| /* |
| * Make sure only one thread gets here since updating the cell (ie fast |
| * path and queueing the request (ie the queued path) have to be done |
| * in an atomic fashion. |
| */ |
| dvmLockMutex(&gDvmJit.compilerICPatchLock); |
| |
| /* Fast path for uninitialized chaining cell */ |
| if (cellAddr->clazz == NULL && |
| cellAddr->branch == PREDICTED_CHAIN_BX_PAIR_INIT) { |
| |
| UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); |
| |
| cellAddr->method = newContent->method; |
| cellAddr->branch = newContent->branch; |
| /* |
| * The update order matters - make sure clazz is updated last since it |
| * will bring the uninitialized chaining cell to life. |
| */ |
| ANDROID_MEMBAR_FULL(); |
| cellAddr->clazz = newContent->clazz; |
| cacheflush((intptr_t) cellAddr, (intptr_t) (cellAddr+1), 0); |
| UPDATE_CODE_CACHE_PATCHES(); |
| |
| PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); |
| |
| #if defined(WITH_JIT_TUNING) |
| gDvmJit.icPatchInit++; |
| #endif |
| /* Check if this is a frequently missed clazz */ |
| } else if (cellAddr->stagedClazz != newContent->clazz) { |
| /* Not proven to be frequent yet - build up the filter cache */ |
| UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); |
| |
| cellAddr->stagedClazz = newContent->clazz; |
| |
| UPDATE_CODE_CACHE_PATCHES(); |
| PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); |
| |
| #if defined(WITH_JIT_TUNING) |
| gDvmJit.icPatchRejected++; |
| #endif |
| /* |
| * Different classes but same method implementation - it is safe to just |
| * patch the class value without the need to stop the world. |
| */ |
| } else if (cellAddr->method == newContent->method) { |
| UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); |
| |
| cellAddr->clazz = newContent->clazz; |
| /* No need to flush the cache here since the branch is not patched */ |
| UPDATE_CODE_CACHE_PATCHES(); |
| |
| PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); |
| |
| #if defined(WITH_JIT_TUNING) |
| gDvmJit.icPatchLockFree++; |
| #endif |
| /* |
| * Cannot patch the chaining cell inline - queue it until the next safe |
| * point. |
| */ |
| } else if (gDvmJit.compilerICPatchIndex < COMPILER_IC_PATCH_QUEUE_SIZE) { |
| int index = gDvmJit.compilerICPatchIndex++; |
| gDvmJit.compilerICPatchQueue[index].cellAddr = cellAddr; |
| gDvmJit.compilerICPatchQueue[index].cellContent = *newContent; |
| #if defined(WITH_JIT_TUNING) |
| gDvmJit.icPatchQueued++; |
| #endif |
| } else { |
| /* Queue is full - just drop this patch request */ |
| #if defined(WITH_JIT_TUNING) |
| gDvmJit.icPatchDropped++; |
| #endif |
| } |
| |
| dvmUnlockMutex(&gDvmJit.compilerICPatchLock); |
| } |
| #endif |
| |
| /* |
| * This method is called from the invoke templates for virtual and interface |
| * methods to speculatively setup a chain to the callee. The templates are |
| * written in assembly and have setup method, cell, and clazz at r0, r2, and |
| * r3 respectively, so there is a unused argument in the list. Upon return one |
| * of the following three results may happen: |
| * 1) Chain is not setup because the callee is native. Reset the rechain |
| * count to a big number so that it will take a long time before the next |
| * rechain attempt to happen. |
| * 2) Chain is not setup because the callee has not been created yet. Reset |
| * the rechain count to a small number and retry in the near future. |
| * 3) Ask all other threads to stop before patching this chaining cell. |
| * This is required because another thread may have passed the class check |
| * but hasn't reached the chaining cell yet to follow the chain. If we |
| * patch the content before halting the other thread, there could be a |
| * small window for race conditions to happen that it may follow the new |
| * but wrong chain to invoke a different method. |
| */ |
| const Method *dvmJitToPatchPredictedChain(const Method *method, |
| InterpState *interpState, |
| PredictedChainingCell *cell, |
| const ClassObject *clazz) |
| { |
| int newRechainCount = PREDICTED_CHAIN_COUNTER_RECHAIN; |
| #if defined(WITH_SELF_VERIFICATION) |
| newRechainCount = PREDICTED_CHAIN_COUNTER_AVOID; |
| goto done; |
| #else |
| if (dvmIsNativeMethod(method)) { |
| UNPROTECT_CODE_CACHE(cell, sizeof(*cell)); |
| |
| /* |
| * Put a non-zero/bogus value in the clazz field so that it won't |
| * trigger immediate patching and will continue to fail to match with |
| * a real clazz pointer. |
| */ |
| cell->clazz = (void *) PREDICTED_CHAIN_FAKE_CLAZZ; |
| |
| UPDATE_CODE_CACHE_PATCHES(); |
| PROTECT_CODE_CACHE(cell, sizeof(*cell)); |
| goto done; |
| } |
| int tgtAddr = (int) dvmJitGetCodeAddr(method->insns); |
| |
| /* |
| * Compilation not made yet for the callee. Reset the counter to a small |
| * value and come back to check soon. |
| */ |
| if ((tgtAddr == 0) || |
| ((void*)tgtAddr == dvmCompilerGetInterpretTemplate())) { |
| COMPILER_TRACE_CHAINING( |
| LOGD("Jit Runtime: predicted chain %p to method %s%s delayed", |
| cell, method->clazz->descriptor, method->name)); |
| goto done; |
| } |
| |
| PredictedChainingCell newCell; |
| |
| if (cell->clazz == NULL) { |
| newRechainCount = interpState->icRechainCount; |
| } |
| |
| int baseAddr = (int) cell + 4; // PC is cur_addr + 4 |
| int branchOffset = tgtAddr - baseAddr; |
| |
| newCell.branch = assembleChainingBranch(branchOffset, true); |
| newCell.clazz = clazz; |
| newCell.method = method; |
| |
| /* |
| * Enter the work order to the queue and the chaining cell will be patched |
| * the next time a safe point is entered. |
| * |
| * If the enqueuing fails reset the rechain count to a normal value so that |
| * it won't get indefinitely delayed. |
| */ |
| inlineCachePatchEnqueue(cell, &newCell); |
| #endif |
| done: |
| interpState->icRechainCount = newRechainCount; |
| return method; |
| } |
| |
| /* |
| * Patch the inline cache content based on the content passed from the work |
| * order. |
| */ |
| void dvmCompilerPatchInlineCache(void) |
| { |
| int i; |
| PredictedChainingCell *minAddr, *maxAddr; |
| |
| /* Nothing to be done */ |
| if (gDvmJit.compilerICPatchIndex == 0) return; |
| |
| /* |
| * Since all threads are already stopped we don't really need to acquire |
| * the lock. But race condition can be easily introduced in the future w/o |
| * paying attention so we still acquire the lock here. |
| */ |
| dvmLockMutex(&gDvmJit.compilerICPatchLock); |
| |
| UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); |
| |
| //LOGD("Number of IC patch work orders: %d", gDvmJit.compilerICPatchIndex); |
| |
| /* Initialize the min/max address range */ |
| minAddr = (PredictedChainingCell *) |
| ((char *) gDvmJit.codeCache + gDvmJit.codeCacheSize); |
| maxAddr = (PredictedChainingCell *) gDvmJit.codeCache; |
| |
| for (i = 0; i < gDvmJit.compilerICPatchIndex; i++) { |
| PredictedChainingCell *cellAddr = |
| gDvmJit.compilerICPatchQueue[i].cellAddr; |
| PredictedChainingCell *cellContent = |
| &gDvmJit.compilerICPatchQueue[i].cellContent; |
| |
| COMPILER_TRACE_CHAINING( |
| LOGD("Jit Runtime: predicted chain %p from %s to %s (%s) " |
| "patched", |
| cellAddr, |
| cellAddr->clazz->descriptor, |
| cellContent->clazz->descriptor, |
| cellContent->method->name)); |
| |
| /* Patch the chaining cell */ |
| *cellAddr = *cellContent; |
| minAddr = (cellAddr < minAddr) ? cellAddr : minAddr; |
| maxAddr = (cellAddr > maxAddr) ? cellAddr : maxAddr; |
| } |
| |
| /* Then synchronize the I/D cache */ |
| cacheflush((long) minAddr, (long) (maxAddr+1), 0); |
| UPDATE_CODE_CACHE_PATCHES(); |
| |
| PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); |
| |
| gDvmJit.compilerICPatchIndex = 0; |
| dvmUnlockMutex(&gDvmJit.compilerICPatchLock); |
| } |
| |
| /* |
| * Unchain a trace given the starting address of the translation |
| * in the code cache. Refer to the diagram in dvmCompilerAssembleLIR. |
| * Returns the address following the last cell unchained. Note that |
| * the incoming codeAddr is a thumb code address, and therefore has |
| * the low bit set. |
| */ |
| u4* dvmJitUnchain(void* codeAddr) |
| { |
| u2* pChainCellOffset = (u2*)((char*)codeAddr - 3); |
| u2 chainCellOffset = *pChainCellOffset; |
| ChainCellCounts *pChainCellCounts = |
| (ChainCellCounts*)((char*)codeAddr + chainCellOffset - 3); |
| int cellSize; |
| u4* pChainCells; |
| u4* pStart; |
| u4 newInst; |
| int i,j; |
| PredictedChainingCell *predChainCell; |
| |
| /* Get total count of chain cells */ |
| for (i = 0, cellSize = 0; i < kChainingCellGap; i++) { |
| if (i != kChainingCellInvokePredicted) { |
| cellSize += pChainCellCounts->u.count[i] * (CHAIN_CELL_NORMAL_SIZE >> 2); |
| } else { |
| cellSize += pChainCellCounts->u.count[i] * |
| (CHAIN_CELL_PREDICTED_SIZE >> 2); |
| } |
| } |
| |
| if (cellSize == 0) |
| return (u4 *) pChainCellCounts; |
| |
| /* Locate the beginning of the chain cell region */ |
| pStart = pChainCells = ((u4 *) pChainCellCounts) - cellSize - |
| pChainCellCounts->u.count[kChainingCellGap]; |
| |
| /* The cells are sorted in order - walk through them and reset */ |
| for (i = 0; i < kChainingCellGap; i++) { |
| int elemSize = CHAIN_CELL_NORMAL_SIZE >> 2; /* In 32-bit words */ |
| if (i == kChainingCellInvokePredicted) { |
| elemSize = CHAIN_CELL_PREDICTED_SIZE >> 2; |
| } |
| |
| for (j = 0; j < pChainCellCounts->u.count[i]; j++) { |
| switch(i) { |
| case kChainingCellNormal: |
| case kChainingCellHot: |
| case kChainingCellInvokeSingleton: |
| case kChainingCellBackwardBranch: |
| /* |
| * Replace the 1st half-word of the cell with an |
| * unconditional branch, leaving the 2nd half-word |
| * untouched. This avoids problems with a thread |
| * that is suspended between the two halves when |
| * this unchaining takes place. |
| */ |
| newInst = *pChainCells; |
| newInst &= 0xFFFF0000; |
| newInst |= getSkeleton(kThumbBUncond); /* b offset is 0 */ |
| *pChainCells = newInst; |
| break; |
| case kChainingCellInvokePredicted: |
| predChainCell = (PredictedChainingCell *) pChainCells; |
| /* |
| * There could be a race on another mutator thread to use |
| * this particular predicted cell and the check has passed |
| * the clazz comparison. So we cannot safely wipe the |
| * method and branch but it is safe to clear the clazz, |
| * which serves as the key. |
| */ |
| predChainCell->clazz = PREDICTED_CHAIN_CLAZZ_INIT; |
| break; |
| default: |
| LOGE("Unexpected chaining type: %d", i); |
| dvmAbort(); // dvmAbort OK here - can't safely recover |
| } |
| COMPILER_TRACE_CHAINING( |
| LOGD("Jit Runtime: unchaining 0x%x", (int)pChainCells)); |
| pChainCells += elemSize; /* Advance by a fixed number of words */ |
| } |
| } |
| return pChainCells; |
| } |
| |
| /* Unchain all translation in the cache. */ |
| void dvmJitUnchainAll() |
| { |
| u4* lowAddress = NULL; |
| u4* highAddress = NULL; |
| unsigned int i; |
| if (gDvmJit.pJitEntryTable != NULL) { |
| COMPILER_TRACE_CHAINING(LOGD("Jit Runtime: unchaining all")); |
| dvmLockMutex(&gDvmJit.tableLock); |
| |
| UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); |
| |
| for (i = 0; i < gDvmJit.jitTableSize; i++) { |
| if (gDvmJit.pJitEntryTable[i].dPC && |
| gDvmJit.pJitEntryTable[i].codeAddress && |
| (gDvmJit.pJitEntryTable[i].codeAddress != |
| dvmCompilerGetInterpretTemplate())) { |
| u4* lastAddress; |
| lastAddress = |
| dvmJitUnchain(gDvmJit.pJitEntryTable[i].codeAddress); |
| if (lowAddress == NULL || |
| (u4*)gDvmJit.pJitEntryTable[i].codeAddress < lowAddress) |
| lowAddress = lastAddress; |
| if (lastAddress > highAddress) |
| highAddress = lastAddress; |
| } |
| } |
| cacheflush((long)lowAddress, (long)highAddress, 0); |
| UPDATE_CODE_CACHE_PATCHES(); |
| |
| PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); |
| |
| dvmUnlockMutex(&gDvmJit.tableLock); |
| gDvmJit.translationChains = 0; |
| } |
| gDvmJit.hasNewChain = false; |
| } |
| |
| typedef struct jitProfileAddrToLine { |
| u4 lineNum; |
| u4 bytecodeOffset; |
| } jitProfileAddrToLine; |
| |
| |
| /* Callback function to track the bytecode offset/line number relationiship */ |
| static int addrToLineCb (void *cnxt, u4 bytecodeOffset, u4 lineNum) |
| { |
| jitProfileAddrToLine *addrToLine = (jitProfileAddrToLine *) cnxt; |
| |
| /* Best match so far for this offset */ |
| if (addrToLine->bytecodeOffset >= bytecodeOffset) { |
| addrToLine->lineNum = lineNum; |
| } |
| return 0; |
| } |
| |
| static char *getTraceBase(const JitEntry *p) |
| { |
| return (char*)p->codeAddress - |
| (6 + (p->u.info.instructionSet == DALVIK_JIT_ARM ? 0 : 1)); |
| } |
| |
| /* Dumps profile info for a single trace */ |
| static int dumpTraceProfile(JitEntry *p, bool silent, bool reset, |
| unsigned long sum) |
| { |
| ChainCellCounts* pCellCounts; |
| char* traceBase; |
| u4* pExecutionCount; |
| u4 executionCount; |
| u2* pCellOffset; |
| JitTraceDescription *desc; |
| const Method* method; |
| |
| traceBase = getTraceBase(p); |
| |
| if (p->codeAddress == NULL) { |
| if (!silent) |
| LOGD("TRACEPROFILE 0x%08x 0 NULL 0 0", (int)traceBase); |
| return 0; |
| } |
| if (p->codeAddress == dvmCompilerGetInterpretTemplate()) { |
| if (!silent) |
| LOGD("TRACEPROFILE 0x%08x 0 INTERPRET_ONLY 0 0", (int)traceBase); |
| return 0; |
| } |
| |
| pExecutionCount = (u4*) (traceBase); |
| executionCount = *pExecutionCount; |
| if (reset) { |
| *pExecutionCount =0; |
| } |
| if (silent) { |
| return executionCount; |
| } |
| pCellOffset = (u2*) (traceBase + 4); |
| pCellCounts = (ChainCellCounts*) ((char *)pCellOffset + *pCellOffset); |
| desc = (JitTraceDescription*) ((char*)pCellCounts + sizeof(*pCellCounts)); |
| method = desc->method; |
| char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype); |
| jitProfileAddrToLine addrToLine = {0, desc->trace[0].frag.startOffset}; |
| |
| /* |
| * We may end up decoding the debug information for the same method |
| * multiple times, but the tradeoff is we don't need to allocate extra |
| * space to store the addr/line mapping. Since this is a debugging feature |
| * and done infrequently so the slower but simpler mechanism should work |
| * just fine. |
| */ |
| dexDecodeDebugInfo(method->clazz->pDvmDex->pDexFile, |
| dvmGetMethodCode(method), |
| method->clazz->descriptor, |
| method->prototype.protoIdx, |
| method->accessFlags, |
| addrToLineCb, NULL, &addrToLine); |
| |
| LOGD("TRACEPROFILE 0x%08x % 10d %5.2f%% [%#x(+%d), %d] %s%s;%s", |
| (int)traceBase, |
| executionCount, |
| ((float ) executionCount) / sum * 100.0, |
| desc->trace[0].frag.startOffset, |
| desc->trace[0].frag.numInsts, |
| addrToLine.lineNum, |
| method->clazz->descriptor, method->name, methodDesc); |
| free(methodDesc); |
| |
| return executionCount; |
| } |
| |
| /* Create a copy of the trace descriptor of an existing compilation */ |
| JitTraceDescription *dvmCopyTraceDescriptor(const u2 *pc, |
| const JitEntry *knownEntry) |
| { |
| const JitEntry *jitEntry = knownEntry ? knownEntry : dvmFindJitEntry(pc); |
| if (jitEntry == NULL) return NULL; |
| |
| /* Find out the startint point */ |
| char *traceBase = getTraceBase(jitEntry); |
| |
| /* Then find out the starting point of the chaining cell */ |
| u2 *pCellOffset = (u2*) (traceBase + 4); |
| ChainCellCounts *pCellCounts = |
| (ChainCellCounts*) ((char *)pCellOffset + *pCellOffset); |
| |
| /* From there we can find out the starting point of the trace descriptor */ |
| JitTraceDescription *desc = |
| (JitTraceDescription*) ((char*)pCellCounts + sizeof(*pCellCounts)); |
| |
| /* Now make a copy and return */ |
| int descSize = jitTraceDescriptionSize(desc); |
| JitTraceDescription *newCopy = (JitTraceDescription *) malloc(descSize); |
| memcpy(newCopy, desc, descSize); |
| return newCopy; |
| } |
| |
| /* Handy function to retrieve the profile count */ |
| static inline int getProfileCount(const JitEntry *entry) |
| { |
| if (entry->dPC == 0 || entry->codeAddress == 0 || |
| entry->codeAddress == dvmCompilerGetInterpretTemplate()) |
| return 0; |
| |
| u4 *pExecutionCount = (u4 *) getTraceBase(entry); |
| |
| return *pExecutionCount; |
| } |
| |
| |
| /* qsort callback function */ |
| static int sortTraceProfileCount(const void *entry1, const void *entry2) |
| { |
| const JitEntry *jitEntry1 = entry1; |
| const JitEntry *jitEntry2 = entry2; |
| |
| int count1 = getProfileCount(jitEntry1); |
| int count2 = getProfileCount(jitEntry2); |
| return (count1 == count2) ? 0 : ((count1 > count2) ? -1 : 1); |
| } |
| |
| /* Sort the trace profile counts and dump them */ |
| void dvmCompilerSortAndPrintTraceProfiles() |
| { |
| JitEntry *sortedEntries; |
| int numTraces = 0; |
| unsigned long sum = 0; |
| unsigned int i; |
| |
| /* Make sure that the table is not changing */ |
| dvmLockMutex(&gDvmJit.tableLock); |
| |
| /* Sort the entries by descending order */ |
| sortedEntries = malloc(sizeof(JitEntry) * gDvmJit.jitTableSize); |
| if (sortedEntries == NULL) |
| goto done; |
| memcpy(sortedEntries, gDvmJit.pJitEntryTable, |
| sizeof(JitEntry) * gDvmJit.jitTableSize); |
| qsort(sortedEntries, gDvmJit.jitTableSize, sizeof(JitEntry), |
| sortTraceProfileCount); |
| |
| /* Analyze the sorted entries */ |
| for (i=0; i < gDvmJit.jitTableSize; i++) { |
| if (sortedEntries[i].dPC != 0) { |
| sum += dumpTraceProfile(&sortedEntries[i], |
| true /* silent */, |
| false /* reset */, |
| 0); |
| numTraces++; |
| } |
| } |
| if (numTraces == 0) |
| numTraces = 1; |
| if (sum == 0) { |
| sum = 1; |
| } |
| |
| LOGD("JIT: Average execution count -> %d",(int)(sum / numTraces)); |
| |
| /* Dump the sorted entries. The count of each trace will be reset to 0. */ |
| for (i=0; i < gDvmJit.jitTableSize; i++) { |
| if (sortedEntries[i].dPC != 0) { |
| dumpTraceProfile(&sortedEntries[i], |
| false /* silent */, |
| true /* reset */, |
| sum); |
| } |
| } |
| |
| for (i=0; i < gDvmJit.jitTableSize && i < 10; i++) { |
| /* Stip interpreter stubs */ |
| if (sortedEntries[i].codeAddress == dvmCompilerGetInterpretTemplate()) { |
| continue; |
| } |
| JitTraceDescription* desc = |
| dvmCopyTraceDescriptor(NULL, &sortedEntries[i]); |
| dvmCompilerWorkEnqueue(sortedEntries[i].dPC, |
| kWorkOrderTraceDebug, desc); |
| } |
| |
| free(sortedEntries); |
| done: |
| dvmUnlockMutex(&gDvmJit.tableLock); |
| return; |
| } |
| |
| #if defined(WITH_SELF_VERIFICATION) |
| /* |
| * The following are used to keep compiled loads and stores from modifying |
| * memory during self verification mode. |
| * |
| * Stores do not modify memory. Instead, the address and value pair are stored |
| * into heapSpace. Addresses within heapSpace are unique. For accesses smaller |
| * than a word, the word containing the address is loaded first before being |
| * updated. |
| * |
| * Loads check heapSpace first and return data from there if an entry exists. |
| * Otherwise, data is loaded from memory as usual. |
| */ |
| |
| /* Used to specify sizes of memory operations */ |
| enum { |
| kSVByte, |
| kSVSignedByte, |
| kSVHalfword, |
| kSVSignedHalfword, |
| kSVWord, |
| kSVDoubleword, |
| kSVVariable, |
| }; |
| |
| /* Load the value of a decoded register from the stack */ |
| static int selfVerificationMemRegLoad(int* sp, int reg) |
| { |
| return *(sp + reg); |
| } |
| |
| /* Load the value of a decoded doubleword register from the stack */ |
| static s8 selfVerificationMemRegLoadDouble(int* sp, int reg) |
| { |
| return *((s8*)(sp + reg)); |
| } |
| |
| /* Store the value of a decoded register out to the stack */ |
| static void selfVerificationMemRegStore(int* sp, int data, int reg) |
| { |
| *(sp + reg) = data; |
| } |
| |
| /* Store the value of a decoded doubleword register out to the stack */ |
| static void selfVerificationMemRegStoreDouble(int* sp, s8 data, int reg) |
| { |
| *((s8*)(sp + reg)) = data; |
| } |
| |
| /* |
| * Load the specified size of data from the specified address, checking |
| * heapSpace first if Self Verification mode wrote to it previously, and |
| * falling back to actual memory otherwise. |
| */ |
| static int selfVerificationLoad(int addr, int size) |
| { |
| Thread *self = dvmThreadSelf(); |
| ShadowSpace *shadowSpace = self->shadowSpace; |
| ShadowHeap *heapSpacePtr; |
| |
| int data; |
| int maskedAddr = addr & 0xFFFFFFFC; |
| int alignment = addr & 0x3; |
| |
| for (heapSpacePtr = shadowSpace->heapSpace; |
| heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { |
| if (heapSpacePtr->addr == maskedAddr) { |
| addr = ((unsigned int) &(heapSpacePtr->data)) | alignment; |
| break; |
| } |
| } |
| |
| switch (size) { |
| case kSVByte: |
| data = *((u1*) addr); |
| break; |
| case kSVSignedByte: |
| data = *((s1*) addr); |
| break; |
| case kSVHalfword: |
| data = *((u2*) addr); |
| break; |
| case kSVSignedHalfword: |
| data = *((s2*) addr); |
| break; |
| case kSVWord: |
| data = *((u4*) addr); |
| break; |
| default: |
| LOGE("*** ERROR: BAD SIZE IN selfVerificationLoad: %d", size); |
| data = 0; |
| dvmAbort(); |
| } |
| |
| //LOGD("*** HEAP LOAD: Addr: 0x%x Data: 0x%x Size: %d", addr, data, size); |
| return data; |
| } |
| |
| /* Like selfVerificationLoad, but specifically for doublewords */ |
| static s8 selfVerificationLoadDoubleword(int addr) |
| { |
| Thread *self = dvmThreadSelf(); |
| ShadowSpace* shadowSpace = self->shadowSpace; |
| ShadowHeap* heapSpacePtr; |
| |
| int addr2 = addr+4; |
| unsigned int data = *((unsigned int*) addr); |
| unsigned int data2 = *((unsigned int*) addr2); |
| |
| for (heapSpacePtr = shadowSpace->heapSpace; |
| heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { |
| if (heapSpacePtr->addr == addr) { |
| data = heapSpacePtr->data; |
| } else if (heapSpacePtr->addr == addr2) { |
| data2 = heapSpacePtr->data; |
| } |
| } |
| |
| //LOGD("*** HEAP LOAD DOUBLEWORD: Addr: 0x%x Data: 0x%x Data2: 0x%x", |
| // addr, data, data2); |
| return (((s8) data2) << 32) | data; |
| } |
| |
| /* |
| * Handles a store of a specified size of data to a specified address. |
| * This gets logged as an addr/data pair in heapSpace instead of modifying |
| * memory. Addresses in heapSpace are unique, and accesses smaller than a |
| * word pull the entire word from memory first before updating. |
| */ |
| static void selfVerificationStore(int addr, int data, int size) |
| { |
| Thread *self = dvmThreadSelf(); |
| ShadowSpace *shadowSpace = self->shadowSpace; |
| ShadowHeap *heapSpacePtr; |
| |
| int maskedAddr = addr & 0xFFFFFFFC; |
| int alignment = addr & 0x3; |
| |
| //LOGD("*** HEAP STORE: Addr: 0x%x Data: 0x%x Size: %d", addr, data, size); |
| |
| for (heapSpacePtr = shadowSpace->heapSpace; |
| heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { |
| if (heapSpacePtr->addr == maskedAddr) break; |
| } |
| |
| if (heapSpacePtr == shadowSpace->heapSpaceTail) { |
| heapSpacePtr->addr = maskedAddr; |
| heapSpacePtr->data = *((unsigned int*) maskedAddr); |
| shadowSpace->heapSpaceTail++; |
| } |
| |
| addr = ((unsigned int) &(heapSpacePtr->data)) | alignment; |
| switch (size) { |
| case kSVByte: |
| *((u1*) addr) = data; |
| break; |
| case kSVSignedByte: |
| *((s1*) addr) = data; |
| break; |
| case kSVHalfword: |
| *((u2*) addr) = data; |
| break; |
| case kSVSignedHalfword: |
| *((s2*) addr) = data; |
| break; |
| case kSVWord: |
| *((u4*) addr) = data; |
| break; |
| default: |
| LOGE("*** ERROR: BAD SIZE IN selfVerificationSave: %d", size); |
| dvmAbort(); |
| } |
| } |
| |
| /* Like selfVerificationStore, but specifically for doublewords */ |
| static void selfVerificationStoreDoubleword(int addr, s8 double_data) |
| { |
| Thread *self = dvmThreadSelf(); |
| ShadowSpace *shadowSpace = self->shadowSpace; |
| ShadowHeap *heapSpacePtr; |
| |
| int addr2 = addr+4; |
| int data = double_data; |
| int data2 = double_data >> 32; |
| bool store1 = false, store2 = false; |
| |
| //LOGD("*** HEAP STORE DOUBLEWORD: Addr: 0x%x Data: 0x%x, Data2: 0x%x", |
| // addr, data, data2); |
| |
| for (heapSpacePtr = shadowSpace->heapSpace; |
| heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { |
| if (heapSpacePtr->addr == addr) { |
| heapSpacePtr->data = data; |
| store1 = true; |
| } else if (heapSpacePtr->addr == addr2) { |
| heapSpacePtr->data = data2; |
| store2 = true; |
| } |
| } |
| |
| if (!store1) { |
| shadowSpace->heapSpaceTail->addr = addr; |
| shadowSpace->heapSpaceTail->data = data; |
| shadowSpace->heapSpaceTail++; |
| } |
| if (!store2) { |
| shadowSpace->heapSpaceTail->addr = addr2; |
| shadowSpace->heapSpaceTail->data = data2; |
| shadowSpace->heapSpaceTail++; |
| } |
| } |
| |
| /* |
| * Decodes the memory instruction at the address specified in the link |
| * register. All registers (r0-r12,lr) and fp registers (d0-d15) are stored |
| * consecutively on the stack beginning at the specified stack pointer. |
| * Calls the proper Self Verification handler for the memory instruction and |
| * updates the link register to point past the decoded memory instruction. |
| */ |
| void dvmSelfVerificationMemOpDecode(int lr, int* sp) |
| { |
| enum { |
| kMemOpLdrPcRel = 0x09, // ldr(3) [01001] rd[10..8] imm_8[7..0] |
| kMemOpRRR = 0x0A, // Full opcode is 7 bits |
| kMemOp2Single = 0x0A, // Used for Vstrs and Vldrs |
| kMemOpRRR2 = 0x0B, // Full opcode is 7 bits |
| kMemOp2Double = 0x0B, // Used for Vstrd and Vldrd |
| kMemOpStrRRI5 = 0x0C, // str(1) [01100] imm_5[10..6] rn[5..3] rd[2..0] |
| kMemOpLdrRRI5 = 0x0D, // ldr(1) [01101] imm_5[10..6] rn[5..3] rd[2..0] |
| kMemOpStrbRRI5 = 0x0E, // strb(1) [01110] imm_5[10..6] rn[5..3] rd[2..0] |
| kMemOpLdrbRRI5 = 0x0F, // ldrb(1) [01111] imm_5[10..6] rn[5..3] rd[2..0] |
| kMemOpStrhRRI5 = 0x10, // strh(1) [10000] imm_5[10..6] rn[5..3] rd[2..0] |
| kMemOpLdrhRRI5 = 0x11, // ldrh(1) [10001] imm_5[10..6] rn[5..3] rd[2..0] |
| kMemOpLdrSpRel = 0x13, // ldr(4) [10011] rd[10..8] imm_8[7..0] |
| kMemOpStmia = 0x18, // stmia [11000] rn[10..8] reglist [7..0] |
| kMemOpLdmia = 0x19, // ldmia [11001] rn[10..8] reglist [7..0] |
| kMemOpStrRRR = 0x28, // str(2) [0101000] rm[8..6] rn[5..3] rd[2..0] |
| kMemOpStrhRRR = 0x29, // strh(2) [0101001] rm[8..6] rn[5..3] rd[2..0] |
| kMemOpStrbRRR = 0x2A, // strb(2) [0101010] rm[8..6] rn[5..3] rd[2..0] |
| kMemOpLdrsbRRR = 0x2B, // ldrsb [0101011] rm[8..6] rn[5..3] rd[2..0] |
| kMemOpLdrRRR = 0x2C, // ldr(2) [0101100] rm[8..6] rn[5..3] rd[2..0] |
| kMemOpLdrhRRR = 0x2D, // ldrh(2) [0101101] rm[8..6] rn[5..3] rd[2..0] |
| kMemOpLdrbRRR = 0x2E, // ldrb(2) [0101110] rm[8..6] rn[5..3] rd[2..0] |
| kMemOpLdrshRRR = 0x2F, // ldrsh [0101111] rm[8..6] rn[5..3] rd[2..0] |
| kMemOp2Stmia = 0xE88, // stmia [111010001000[ rn[19..16] mask[15..0] |
| kMemOp2Ldmia = 0xE89, // ldmia [111010001001[ rn[19..16] mask[15..0] |
| kMemOp2Stmia2 = 0xE8A, // stmia [111010001010[ rn[19..16] mask[15..0] |
| kMemOp2Ldmia2 = 0xE8B, // ldmia [111010001011[ rn[19..16] mask[15..0] |
| kMemOp2Vstr = 0xED8, // Used for Vstrs and Vstrd |
| kMemOp2Vldr = 0xED9, // Used for Vldrs and Vldrd |
| kMemOp2Vstr2 = 0xEDC, // Used for Vstrs and Vstrd |
| kMemOp2Vldr2 = 0xEDD, // Used for Vstrs and Vstrd |
| kMemOp2StrbRRR = 0xF80, /* str rt,[rn,rm,LSL #imm] [111110000000] |
| rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ |
| kMemOp2LdrbRRR = 0xF81, /* ldrb rt,[rn,rm,LSL #imm] [111110000001] |
| rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ |
| kMemOp2StrhRRR = 0xF82, /* str rt,[rn,rm,LSL #imm] [111110000010] |
| rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ |
| kMemOp2LdrhRRR = 0xF83, /* ldrh rt,[rn,rm,LSL #imm] [111110000011] |
| rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ |
| kMemOp2StrRRR = 0xF84, /* str rt,[rn,rm,LSL #imm] [111110000100] |
| rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ |
| kMemOp2LdrRRR = 0xF85, /* ldr rt,[rn,rm,LSL #imm] [111110000101] |
| rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ |
| kMemOp2StrbRRI12 = 0xF88, /* strb rt,[rn,#imm12] [111110001000] |
| rt[15..12] rn[19..16] imm12[11..0] */ |
| kMemOp2LdrbRRI12 = 0xF89, /* ldrb rt,[rn,#imm12] [111110001001] |
| rt[15..12] rn[19..16] imm12[11..0] */ |
| kMemOp2StrhRRI12 = 0xF8A, /* strh rt,[rn,#imm12] [111110001010] |
| rt[15..12] rn[19..16] imm12[11..0] */ |
| kMemOp2LdrhRRI12 = 0xF8B, /* ldrh rt,[rn,#imm12] [111110001011] |
| rt[15..12] rn[19..16] imm12[11..0] */ |
| kMemOp2StrRRI12 = 0xF8C, /* str(Imm,T3) rd,[rn,#imm12] [111110001100] |
| rn[19..16] rt[15..12] imm12[11..0] */ |
| kMemOp2LdrRRI12 = 0xF8D, /* ldr(Imm,T3) rd,[rn,#imm12] [111110001101] |
| rn[19..16] rt[15..12] imm12[11..0] */ |
| kMemOp2LdrsbRRR = 0xF91, /* ldrsb rt,[rn,rm,LSL #imm] [111110010001] |
| rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ |
| kMemOp2LdrshRRR = 0xF93, /* ldrsh rt,[rn,rm,LSL #imm] [111110010011] |
| rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ |
| kMemOp2LdrsbRRI12 = 0xF99, /* ldrsb rt,[rn,#imm12] [111110011001] |
| rt[15..12] rn[19..16] imm12[11..0] */ |
| kMemOp2LdrshRRI12 = 0xF9B, /* ldrsh rt,[rn,#imm12] [111110011011] |
| rt[15..12] rn[19..16] imm12[11..0] */ |
| kMemOp2 = 0xE000, // top 3 bits set indicates Thumb2 |
| }; |
| |
| int addr, offset, data; |
| long long double_data; |
| int size = kSVWord; |
| bool store = false; |
| unsigned int *lr_masked = (unsigned int *) (lr & 0xFFFFFFFE); |
| unsigned int insn = *lr_masked; |
| |
| int old_lr; |
| old_lr = selfVerificationMemRegLoad(sp, 13); |
| |
| if ((insn & kMemOp2) == kMemOp2) { |
| insn = (insn << 16) | (insn >> 16); |
| //LOGD("*** THUMB2 - Addr: 0x%x Insn: 0x%x", lr, insn); |
| |
| int opcode12 = (insn >> 20) & 0xFFF; |
| int opcode4 = (insn >> 8) & 0xF; |
| int imm2 = (insn >> 4) & 0x3; |
| int imm8 = insn & 0xFF; |
| int imm12 = insn & 0xFFF; |
| int rd = (insn >> 12) & 0xF; |
| int rm = insn & 0xF; |
| int rn = (insn >> 16) & 0xF; |
| int rt = (insn >> 12) & 0xF; |
| bool wBack = true; |
| |
| // Update the link register |
| selfVerificationMemRegStore(sp, old_lr+4, 13); |
| |
| // Determine whether the mem op is a store or load |
| switch (opcode12) { |
| case kMemOp2Stmia: |
| case kMemOp2Stmia2: |
| case kMemOp2Vstr: |
| case kMemOp2Vstr2: |
| case kMemOp2StrbRRR: |
| case kMemOp2StrhRRR: |
| case kMemOp2StrRRR: |
| case kMemOp2StrbRRI12: |
| case kMemOp2StrhRRI12: |
| case kMemOp2StrRRI12: |
| store = true; |
| } |
| |
| // Determine the size of the mem access |
| switch (opcode12) { |
| case kMemOp2StrbRRR: |
| case kMemOp2LdrbRRR: |
| case kMemOp2StrbRRI12: |
| case kMemOp2LdrbRRI12: |
| size = kSVByte; |
| break; |
| case kMemOp2LdrsbRRR: |
| case kMemOp2LdrsbRRI12: |
| size = kSVSignedByte; |
| break; |
| case kMemOp2StrhRRR: |
| case kMemOp2LdrhRRR: |
| case kMemOp2StrhRRI12: |
| case kMemOp2LdrhRRI12: |
| size = kSVHalfword; |
| break; |
| case kMemOp2LdrshRRR: |
| case kMemOp2LdrshRRI12: |
| size = kSVSignedHalfword; |
| break; |
| case kMemOp2Vstr: |
| case kMemOp2Vstr2: |
| case kMemOp2Vldr: |
| case kMemOp2Vldr2: |
| if (opcode4 == kMemOp2Double) size = kSVDoubleword; |
| break; |
| case kMemOp2Stmia: |
| case kMemOp2Ldmia: |
| case kMemOp2Stmia2: |
| case kMemOp2Ldmia2: |
| size = kSVVariable; |
| break; |
| } |
| |
| // Load the value of the address |
| addr = selfVerificationMemRegLoad(sp, rn); |
| |
| // Figure out the offset |
| switch (opcode12) { |
| case kMemOp2Vstr: |
| case kMemOp2Vstr2: |
| case kMemOp2Vldr: |
| case kMemOp2Vldr2: |
| offset = imm8 << 2; |
| if (opcode4 == kMemOp2Single) { |
| rt = rd << 1; |
| if (insn & 0x400000) rt |= 0x1; |
| } else if (opcode4 == kMemOp2Double) { |
| if (insn & 0x400000) rt |= 0x10; |
| rt = rt << 1; |
| } else { |
| LOGE("*** ERROR: UNRECOGNIZED VECTOR MEM OP: %x", opcode4); |
| dvmAbort(); |
| } |
| rt += 14; |
| break; |
| case kMemOp2StrbRRR: |
| case kMemOp2LdrbRRR: |
| case kMemOp2StrhRRR: |
| case kMemOp2LdrhRRR: |
| case kMemOp2StrRRR: |
| case kMemOp2LdrRRR: |
| case kMemOp2LdrsbRRR: |
| case kMemOp2LdrshRRR: |
| offset = selfVerificationMemRegLoad(sp, rm) << imm2; |
| break; |
| case kMemOp2StrbRRI12: |
| case kMemOp2LdrbRRI12: |
| case kMemOp2StrhRRI12: |
| case kMemOp2LdrhRRI12: |
| case kMemOp2StrRRI12: |
| case kMemOp2LdrRRI12: |
| case kMemOp2LdrsbRRI12: |
| case kMemOp2LdrshRRI12: |
| offset = imm12; |
| break; |
| case kMemOp2Stmia: |
| case kMemOp2Ldmia: |
| wBack = false; |
| case kMemOp2Stmia2: |
| case kMemOp2Ldmia2: |
| offset = 0; |
| break; |
| default: |
| LOGE("*** ERROR: UNRECOGNIZED THUMB2 MEM OP: %x", opcode12); |
| offset = 0; |
| dvmAbort(); |
| } |
| |
| // Handle the decoded mem op accordingly |
| if (store) { |
| if (size == kSVVariable) { |
| LOGD("*** THUMB2 STMIA CURRENTLY UNUSED (AND UNTESTED)"); |
| int i; |
| int regList = insn & 0xFFFF; |
| for (i = 0; i < 16; i++) { |
| if (regList & 0x1) { |
| data = selfVerificationMemRegLoad(sp, i); |
| selfVerificationStore(addr, data, kSVWord); |
| addr += 4; |
| } |
| regList = regList >> 1; |
| } |
| if (wBack) selfVerificationMemRegStore(sp, addr, rn); |
| } else if (size == kSVDoubleword) { |
| double_data = selfVerificationMemRegLoadDouble(sp, rt); |
| selfVerificationStoreDoubleword(addr+offset, double_data); |
| } else { |
| data = selfVerificationMemRegLoad(sp, rt); |
| selfVerificationStore(addr+offset, data, size); |
| } |
| } else { |
| if (size == kSVVariable) { |
| LOGD("*** THUMB2 LDMIA CURRENTLY UNUSED (AND UNTESTED)"); |
| int i; |
| int regList = insn & 0xFFFF; |
| for (i = 0; i < 16; i++) { |
| if (regList & 0x1) { |
| data = selfVerificationLoad(addr, kSVWord); |
| selfVerificationMemRegStore(sp, data, i); |
| addr += 4; |
| } |
| regList = regList >> 1; |
| } |
| if (wBack) selfVerificationMemRegStore(sp, addr, rn); |
| } else if (size == kSVDoubleword) { |
| double_data = selfVerificationLoadDoubleword(addr+offset); |
| selfVerificationMemRegStoreDouble(sp, double_data, rt); |
| } else { |
| data = selfVerificationLoad(addr+offset, size); |
| selfVerificationMemRegStore(sp, data, rt); |
| } |
| } |
| } else { |
| //LOGD("*** THUMB - Addr: 0x%x Insn: 0x%x", lr, insn); |
| |
| // Update the link register |
| selfVerificationMemRegStore(sp, old_lr+2, 13); |
| |
| int opcode5 = (insn >> 11) & 0x1F; |
| int opcode7 = (insn >> 9) & 0x7F; |
| int imm = (insn >> 6) & 0x1F; |
| int rd = (insn >> 8) & 0x7; |
| int rm = (insn >> 6) & 0x7; |
| int rn = (insn >> 3) & 0x7; |
| int rt = insn & 0x7; |
| |
| // Determine whether the mem op is a store or load |
| switch (opcode5) { |
| case kMemOpRRR: |
| switch (opcode7) { |
| case kMemOpStrRRR: |
| case kMemOpStrhRRR: |
| case kMemOpStrbRRR: |
| store = true; |
| } |
| break; |
| case kMemOpStrRRI5: |
| case kMemOpStrbRRI5: |
| case kMemOpStrhRRI5: |
| case kMemOpStmia: |
| store = true; |
| } |
| |
| // Determine the size of the mem access |
| switch (opcode5) { |
| case kMemOpRRR: |
| case kMemOpRRR2: |
| switch (opcode7) { |
| case kMemOpStrbRRR: |
| case kMemOpLdrbRRR: |
| size = kSVByte; |
| break; |
| case kMemOpLdrsbRRR: |
| size = kSVSignedByte; |
| break; |
| case kMemOpStrhRRR: |
| case kMemOpLdrhRRR: |
| size = kSVHalfword; |
| break; |
| case kMemOpLdrshRRR: |
| size = kSVSignedHalfword; |
| break; |
| } |
| break; |
| case kMemOpStrbRRI5: |
| case kMemOpLdrbRRI5: |
| size = kSVByte; |
| break; |
| case kMemOpStrhRRI5: |
| case kMemOpLdrhRRI5: |
| size = kSVHalfword; |
| break; |
| case kMemOpStmia: |
| case kMemOpLdmia: |
| size = kSVVariable; |
| break; |
| } |
| |
| // Load the value of the address |
| if (opcode5 == kMemOpLdrPcRel) |
| addr = selfVerificationMemRegLoad(sp, 4); |
| else if (opcode5 == kMemOpStmia || opcode5 == kMemOpLdmia) |
| addr = selfVerificationMemRegLoad(sp, rd); |
| else |
| addr = selfVerificationMemRegLoad(sp, rn); |
| |
| // Figure out the offset |
| switch (opcode5) { |
| case kMemOpLdrPcRel: |
| offset = (insn & 0xFF) << 2; |
| rt = rd; |
| break; |
| case kMemOpRRR: |
| case kMemOpRRR2: |
| offset = selfVerificationMemRegLoad(sp, rm); |
| break; |
| case kMemOpStrRRI5: |
| case kMemOpLdrRRI5: |
| offset = imm << 2; |
| break; |
| case kMemOpStrhRRI5: |
| case kMemOpLdrhRRI5: |
| offset = imm << 1; |
| break; |
| case kMemOpStrbRRI5: |
| case kMemOpLdrbRRI5: |
| offset = imm; |
| break; |
| case kMemOpStmia: |
| case kMemOpLdmia: |
| offset = 0; |
| break; |
| default: |
| LOGE("*** ERROR: UNRECOGNIZED THUMB MEM OP: %x", opcode5); |
| offset = 0; |
| dvmAbort(); |
| } |
| |
| // Handle the decoded mem op accordingly |
| if (store) { |
| if (size == kSVVariable) { |
| int i; |
| int regList = insn & 0xFF; |
| for (i = 0; i < 8; i++) { |
| if (regList & 0x1) { |
| data = selfVerificationMemRegLoad(sp, i); |
| selfVerificationStore(addr, data, kSVWord); |
| addr += 4; |
| } |
| regList = regList >> 1; |
| } |
| selfVerificationMemRegStore(sp, addr, rd); |
| } else { |
| data = selfVerificationMemRegLoad(sp, rt); |
| selfVerificationStore(addr+offset, data, size); |
| } |
| } else { |
| if (size == kSVVariable) { |
| bool wBack = true; |
| int i; |
| int regList = insn & 0xFF; |
| for (i = 0; i < 8; i++) { |
| if (regList & 0x1) { |
| if (i == rd) wBack = false; |
| data = selfVerificationLoad(addr, kSVWord); |
| selfVerificationMemRegStore(sp, data, i); |
| addr += 4; |
| } |
| regList = regList >> 1; |
| } |
| if (wBack) selfVerificationMemRegStore(sp, addr, rd); |
| } else { |
| data = selfVerificationLoad(addr+offset, size); |
| selfVerificationMemRegStore(sp, data, rt); |
| } |
| } |
| } |
| } |
| #endif |