| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "Dalvik.h" |
| #include "alloc/HeapBitmap.h" |
| #include "alloc/HeapInternal.h" |
| #include "alloc/HeapSource.h" |
| #include "alloc/MarkSweep.h" |
| #include <limits.h> // for ULONG_MAX |
| #include <sys/mman.h> // for madvise(), mmap() |
| #include <cutils/ashmem.h> |
| #include <errno.h> |
| |
| #define GC_DEBUG_PARANOID 2 |
| #define GC_DEBUG_BASIC 1 |
| #define GC_DEBUG_OFF 0 |
| #define GC_DEBUG(l) (GC_DEBUG_LEVEL >= (l)) |
| |
| #if 1 |
| #define GC_DEBUG_LEVEL GC_DEBUG_PARANOID |
| #else |
| #define GC_DEBUG_LEVEL GC_DEBUG_OFF |
| #endif |
| |
| #define VERBOSE_GC 0 |
| |
| #define GC_LOG_TAG LOG_TAG "-gc" |
| |
| #if LOG_NDEBUG |
| #define LOGV_GC(...) ((void)0) |
| #define LOGD_GC(...) ((void)0) |
| #else |
| #define LOGV_GC(...) LOG(LOG_VERBOSE, GC_LOG_TAG, __VA_ARGS__) |
| #define LOGD_GC(...) LOG(LOG_DEBUG, GC_LOG_TAG, __VA_ARGS__) |
| #endif |
| |
| #if VERBOSE_GC |
| #define LOGVV_GC(...) LOGV_GC(__VA_ARGS__) |
| #else |
| #define LOGVV_GC(...) ((void)0) |
| #endif |
| |
| #define LOGI_GC(...) LOG(LOG_INFO, GC_LOG_TAG, __VA_ARGS__) |
| #define LOGW_GC(...) LOG(LOG_WARN, GC_LOG_TAG, __VA_ARGS__) |
| #define LOGE_GC(...) LOG(LOG_ERROR, GC_LOG_TAG, __VA_ARGS__) |
| |
| #define LOG_SCAN(...) LOGV_GC("SCAN: " __VA_ARGS__) |
| #define LOG_MARK(...) LOGV_GC("MARK: " __VA_ARGS__) |
| #define LOG_SWEEP(...) LOGV_GC("SWEEP: " __VA_ARGS__) |
| #define LOG_REF(...) LOGV_GC("REF: " __VA_ARGS__) |
| |
| #define LOGV_SCAN(...) LOGVV_GC("SCAN: " __VA_ARGS__) |
| #define LOGV_MARK(...) LOGVV_GC("MARK: " __VA_ARGS__) |
| #define LOGV_SWEEP(...) LOGVV_GC("SWEEP: " __VA_ARGS__) |
| #define LOGV_REF(...) LOGVV_GC("REF: " __VA_ARGS__) |
| |
| #if WITH_OBJECT_HEADERS |
| u2 gGeneration = 0; |
| static const Object *gMarkParent = NULL; |
| #endif |
| |
| #ifndef PAGE_SIZE |
| #define PAGE_SIZE 4096 |
| #endif |
| #define ALIGN_UP_TO_PAGE_SIZE(p) \ |
| (((size_t)(p) + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1)) |
| |
| /* Do not cast the result of this to a boolean; the only set bit |
| * may be > 1<<8. |
| */ |
| static inline long isMarked(const DvmHeapChunk *hc, const GcMarkContext *ctx) |
| __attribute__((always_inline)); |
| static inline long isMarked(const DvmHeapChunk *hc, const GcMarkContext *ctx) |
| { |
| return dvmHeapBitmapIsObjectBitSetInList(ctx->bitmaps, ctx->numBitmaps, hc); |
| } |
| |
| static bool |
| createMarkStack(GcMarkStack *stack) |
| { |
| const Object **limit; |
| size_t size; |
| int fd, err; |
| |
| /* Create a stack big enough for the worst possible case, |
| * where the heap is perfectly full of the smallest object. |
| * TODO: be better about memory usage; use a smaller stack with |
| * overflow detection and recovery. |
| */ |
| size = dvmHeapSourceGetIdealFootprint() * sizeof(Object*) / |
| (sizeof(Object) + HEAP_SOURCE_CHUNK_OVERHEAD); |
| size = ALIGN_UP_TO_PAGE_SIZE(size); |
| fd = ashmem_create_region("dalvik-heap-markstack", size); |
| if (fd < 0) { |
| LOGE_GC("Could not create %d-byte ashmem mark stack: %s\n", |
| size, strerror(errno)); |
| return false; |
| } |
| limit = (const Object **)mmap(NULL, size, PROT_READ | PROT_WRITE, |
| MAP_PRIVATE, fd, 0); |
| err = errno; |
| close(fd); |
| if (limit == MAP_FAILED) { |
| LOGE_GC("Could not mmap %d-byte ashmem mark stack: %s\n", |
| size, strerror(err)); |
| return false; |
| } |
| |
| memset(stack, 0, sizeof(*stack)); |
| stack->limit = limit; |
| stack->base = (const Object **)((uintptr_t)limit + size); |
| stack->top = stack->base; |
| |
| return true; |
| } |
| |
| static void |
| destroyMarkStack(GcMarkStack *stack) |
| { |
| munmap((char *)stack->limit, |
| (uintptr_t)stack->base - (uintptr_t)stack->limit); |
| memset(stack, 0, sizeof(*stack)); |
| } |
| |
| #define MARK_STACK_PUSH(stack, obj) \ |
| do { \ |
| *--(stack).top = (obj); \ |
| } while (false) |
| |
| bool |
| dvmHeapBeginMarkStep() |
| { |
| GcMarkContext *mc = &gDvm.gcHeap->markContext; |
| HeapBitmap objectBitmaps[HEAP_SOURCE_MAX_HEAP_COUNT]; |
| size_t numBitmaps; |
| |
| if (!createMarkStack(&mc->stack)) { |
| return false; |
| } |
| |
| numBitmaps = dvmHeapSourceGetObjectBitmaps(objectBitmaps, |
| HEAP_SOURCE_MAX_HEAP_COUNT); |
| if (numBitmaps <= 0) { |
| return false; |
| } |
| |
| /* Create mark bitmaps that cover the same ranges as the |
| * current object bitmaps. |
| */ |
| if (!dvmHeapBitmapInitListFromTemplates(mc->bitmaps, objectBitmaps, |
| numBitmaps, "mark")) |
| { |
| return false; |
| } |
| |
| mc->numBitmaps = numBitmaps; |
| mc->finger = NULL; |
| |
| #if WITH_OBJECT_HEADERS |
| gGeneration++; |
| #endif |
| |
| return true; |
| } |
| |
| static long setAndReturnMarkBit(GcMarkContext *ctx, const DvmHeapChunk *hc) |
| __attribute__((always_inline)); |
| static long |
| setAndReturnMarkBit(GcMarkContext *ctx, const DvmHeapChunk *hc) |
| { |
| return dvmHeapBitmapSetAndReturnObjectBitInList(ctx->bitmaps, |
| ctx->numBitmaps, hc); |
| } |
| |
| static void _markObjectNonNullCommon(const Object *obj, GcMarkContext *ctx, |
| bool checkFinger, bool forceStack) |
| __attribute__((always_inline)); |
| static void |
| _markObjectNonNullCommon(const Object *obj, GcMarkContext *ctx, |
| bool checkFinger, bool forceStack) |
| { |
| DvmHeapChunk *hc; |
| |
| assert(obj != NULL); |
| |
| #if GC_DEBUG(GC_DEBUG_PARANOID) |
| //TODO: make sure we're locked |
| assert(obj != (Object *)gDvm.unlinkedJavaLangClass); |
| assert(dvmIsValidObject(obj)); |
| #endif |
| |
| hc = ptr2chunk(obj); |
| if (!setAndReturnMarkBit(ctx, hc)) { |
| /* This object was not previously marked. |
| */ |
| if (forceStack || (checkFinger && (void *)hc < ctx->finger)) { |
| /* This object will need to go on the mark stack. |
| */ |
| MARK_STACK_PUSH(ctx->stack, obj); |
| } |
| |
| #if WITH_OBJECT_HEADERS |
| if (hc->scanGeneration != hc->markGeneration) { |
| LOGE("markObject(0x%08x): wasn't scanned last time\n", (uint)obj); |
| dvmAbort(); |
| } |
| if (hc->markGeneration == gGeneration) { |
| LOGE("markObject(0x%08x): already marked this generation\n", |
| (uint)obj); |
| dvmAbort(); |
| } |
| hc->oldMarkGeneration = hc->markGeneration; |
| hc->markGeneration = gGeneration; |
| hc->markFingerOld = hc->markFinger; |
| hc->markFinger = ctx->finger; |
| if (gMarkParent != NULL) { |
| hc->parentOld = hc->parent; |
| hc->parent = gMarkParent; |
| } else { |
| hc->parent = (const Object *)((uintptr_t)hc->parent | 1); |
| } |
| hc->markCount++; |
| #endif |
| #if WITH_HPROF |
| if (gDvm.gcHeap->hprofContext != NULL) { |
| hprofMarkRootObject(gDvm.gcHeap->hprofContext, obj, 0); |
| } |
| #endif |
| #if DVM_TRACK_HEAP_MARKING |
| gDvm.gcHeap->markCount++; |
| gDvm.gcHeap->markSize += dvmHeapSourceChunkSize((void *)hc) + |
| HEAP_SOURCE_CHUNK_OVERHEAD; |
| #endif |
| |
| /* obj->clazz can be NULL if we catch an object between |
| * dvmMalloc() and DVM_OBJECT_INIT(). This is ok. |
| */ |
| LOGV_MARK("0x%08x %s\n", (uint)obj, |
| obj->clazz == NULL ? "<null class>" : obj->clazz->name); |
| } |
| } |
| |
| /* Used to mark objects when recursing. Recursion is done by moving |
| * the finger across the bitmaps in address order and marking child |
| * objects. Any newly-marked objects whose addresses are lower than |
| * the finger won't be visited by the bitmap scan, so those objects |
| * need to be added to the mark stack. |
| */ |
| static void |
| markObjectNonNull(const Object *obj, GcMarkContext *ctx) |
| { |
| _markObjectNonNullCommon(obj, ctx, true, false); |
| } |
| |
| #define markObject(obj, ctx) \ |
| do { \ |
| Object *MO_obj_ = (Object *)(obj); \ |
| if (MO_obj_ != NULL) { \ |
| markObjectNonNull(MO_obj_, (ctx)); \ |
| } \ |
| } while (false) |
| |
| /* If the object hasn't already been marked, mark it and |
| * schedule it to be scanned for references. |
| * |
| * obj may not be NULL. The macro dvmMarkObject() should |
| * be used in situations where a reference may be NULL. |
| * |
| * This function may only be called when marking the root |
| * set. When recursing, use the internal markObject[NonNull](). |
| */ |
| void |
| dvmMarkObjectNonNull(const Object *obj) |
| { |
| _markObjectNonNullCommon(obj, &gDvm.gcHeap->markContext, false, false); |
| } |
| |
| /* Mark the set of root objects. |
| * |
| * Things we need to scan: |
| * - System classes defined by root classloader |
| * - For each thread: |
| * - Interpreted stack, from top to "curFrame" |
| * - Dalvik registers (args + local vars) |
| * - JNI local references |
| * - Automatic VM local references (TrackedAlloc) |
| * - Associated Thread/VMThread object |
| * - ThreadGroups (could track & start with these instead of working |
| * upward from Threads) |
| * - Exception currently being thrown, if present |
| * - JNI global references |
| * - Interned string table |
| * - Primitive classes |
| * - Special objects |
| * - gDvm.outOfMemoryObj |
| * - Objects allocated with ALLOC_NO_GC |
| * - Objects pending finalization (but not yet finalized) |
| * - Objects in debugger object registry |
| * |
| * Don't need: |
| * - Native stack (for in-progress stuff in the VM) |
| * - The TrackedAlloc stuff watches all native VM references. |
| */ |
| void dvmHeapMarkRootSet() |
| { |
| HeapRefTable *refs; |
| GcHeap *gcHeap; |
| Object **op; |
| |
| gcHeap = gDvm.gcHeap; |
| |
| HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_STICKY_CLASS, 0); |
| |
| LOG_SCAN("root class loader\n"); |
| dvmGcScanRootClassLoader(); |
| LOG_SCAN("primitive classes\n"); |
| dvmGcScanPrimitiveClasses(); |
| |
| /* dvmGcScanRootThreadGroups() sets a bunch of |
| * different scan states internally. |
| */ |
| HPROF_CLEAR_GC_SCAN_STATE(); |
| |
| LOG_SCAN("root thread groups\n"); |
| dvmGcScanRootThreadGroups(); |
| |
| HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_INTERNED_STRING, 0); |
| |
| LOG_SCAN("interned strings\n"); |
| dvmGcScanInternedStrings(); |
| |
| HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_JNI_GLOBAL, 0); |
| |
| LOG_SCAN("JNI global refs\n"); |
| dvmGcMarkJniGlobalRefs(); |
| |
| HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_REFERENCE_CLEANUP, 0); |
| |
| LOG_SCAN("pending reference operations\n"); |
| dvmHeapMarkLargeTableRefs(gcHeap->referenceOperations, true); |
| |
| HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_FINALIZING, 0); |
| |
| LOG_SCAN("pending finalizations\n"); |
| dvmHeapMarkLargeTableRefs(gcHeap->pendingFinalizationRefs, false); |
| |
| HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_DEBUGGER, 0); |
| |
| LOG_SCAN("debugger refs\n"); |
| dvmGcMarkDebuggerRefs(); |
| |
| HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_VM_INTERNAL, 0); |
| |
| /* Mark all ALLOC_NO_GC objects. |
| */ |
| LOG_SCAN("ALLOC_NO_GC objects\n"); |
| refs = &gcHeap->nonCollectableRefs; |
| op = refs->table; |
| while ((uintptr_t)op < (uintptr_t)refs->nextEntry) { |
| dvmMarkObjectNonNull(*(op++)); |
| } |
| |
| /* Mark any special objects we have sitting around. |
| */ |
| LOG_SCAN("special objects\n"); |
| dvmMarkObjectNonNull(gDvm.outOfMemoryObj); |
| dvmMarkObjectNonNull(gDvm.internalErrorObj); |
| //TODO: scan object references sitting in gDvm; use pointer begin & end |
| |
| HPROF_CLEAR_GC_SCAN_STATE(); |
| } |
| |
| /* |
| * Nothing past this point is allowed to use dvmMarkObject*(). |
| * Scanning/recursion must use markObject*(), which takes the |
| * finger into account. |
| */ |
| #define dvmMarkObjectNonNull __dont_use_dvmMarkObjectNonNull__ |
| |
| |
| /* Mark all of a ClassObject's interfaces. |
| */ |
| static void markInterfaces(const ClassObject *clazz, GcMarkContext *ctx) |
| { |
| ClassObject **interfaces; |
| int interfaceCount; |
| int i; |
| |
| /* Mark all interfaces. |
| */ |
| interfaces = clazz->interfaces; |
| interfaceCount = clazz->interfaceCount; |
| for (i = 0; i < interfaceCount; i++) { |
| markObjectNonNull((Object *)*interfaces, ctx); |
| interfaces++; |
| } |
| } |
| |
| /* Mark all objects referred to by a ClassObject's static fields. |
| */ |
| static void scanStaticFields(const ClassObject *clazz, GcMarkContext *ctx) |
| { |
| StaticField *f; |
| int i; |
| |
| //TODO: Optimize this with a bit vector or something |
| f = clazz->sfields; |
| for (i = 0; i < clazz->sfieldCount; i++) { |
| char c = f->field.signature[0]; |
| if (c == '[' || c == 'L') { |
| /* It's an array or class reference. |
| */ |
| markObject((Object *)f->value.l, ctx); |
| } |
| f++; |
| } |
| } |
| |
| /* Mark all objects referred to by a DataObject's instance fields. |
| */ |
| static void scanInstanceFields(const DataObject *obj, ClassObject *clazz, |
| GcMarkContext *ctx) |
| { |
| //TODO: Optimize this by avoiding walking the superclass chain |
| while (clazz != NULL) { |
| InstField *f; |
| int i; |
| |
| /* All of the fields that contain object references |
| * are guaranteed to be at the beginning of the ifields list. |
| */ |
| f = clazz->ifields; |
| for (i = 0; i < clazz->ifieldRefCount; i++) { |
| /* Mark the array or object reference. |
| * May be NULL. |
| * |
| * Note that, per the comment on struct InstField, |
| * f->byteOffset is the offset from the beginning of |
| * obj, not the offset into obj->instanceData. |
| */ |
| markObject(dvmGetFieldObject((Object*)obj, f->byteOffset), ctx); |
| f++; |
| } |
| |
| /* This will be NULL when we hit java.lang.Object |
| */ |
| clazz = clazz->super; |
| } |
| } |
| |
| /* Mark all objects referred to by the array's contents. |
| */ |
| static void scanObjectArray(const ArrayObject *array, GcMarkContext *ctx) |
| { |
| Object **contents; |
| u4 length; |
| u4 i; |
| |
| contents = (Object **)array->contents; |
| length = array->length; |
| |
| for (i = 0; i < length; i++) { |
| markObject(*contents, ctx); // may be NULL |
| contents++; |
| } |
| } |
| |
| /* Mark all objects referred to by the ClassObject. |
| */ |
| static void scanClassObject(const ClassObject *clazz, GcMarkContext *ctx) |
| { |
| LOGV_SCAN("---------> %s\n", clazz->name); |
| |
| if (IS_CLASS_FLAG_SET(clazz, CLASS_ISARRAY)) { |
| /* We're an array; mark the class object of the contents |
| * of the array. |
| * |
| * Note that we won't necessarily reach the array's element |
| * class by scanning the array contents; the array may be |
| * zero-length, or may only contain null objects. |
| */ |
| markObjectNonNull((Object *)clazz->elementClass, ctx); |
| } |
| |
| /* We scan these explicitly in case the only remaining |
| * reference to a particular class object is via a data |
| * object; we may not be guaranteed to reach all |
| * live class objects via a classloader. |
| */ |
| markObject((Object *)clazz->super, ctx); // may be NULL (java.lang.Object) |
| markObject(clazz->classLoader, ctx); // may be NULL |
| |
| scanStaticFields(clazz, ctx); |
| markInterfaces(clazz, ctx); |
| } |
| |
| /* Mark all objects that obj refers to. |
| * |
| * Called on every object in markList. |
| */ |
| static void scanObject(const Object *obj, GcMarkContext *ctx) |
| { |
| ClassObject *clazz; |
| |
| assert(dvmIsValidObject(obj)); |
| LOGV_SCAN("0x%08x %s\n", (uint)obj, obj->clazz->name); |
| |
| #if WITH_HPROF |
| if (gDvm.gcHeap->hprofContext != NULL) { |
| hprofDumpHeapObject(gDvm.gcHeap->hprofContext, obj); |
| } |
| #endif |
| |
| #if WITH_OBJECT_HEADERS |
| if (ptr2chunk(obj)->scanGeneration == gGeneration) { |
| LOGE("object 0x%08x was already scanned this generation\n", |
| (uintptr_t)obj); |
| dvmAbort(); |
| } |
| ptr2chunk(obj)->oldScanGeneration = ptr2chunk(obj)->scanGeneration; |
| ptr2chunk(obj)->scanGeneration = gGeneration; |
| ptr2chunk(obj)->scanCount++; |
| #endif |
| |
| /* Get and mark the class object for this particular instance. |
| */ |
| clazz = obj->clazz; |
| if (clazz == NULL) { |
| /* This can happen if we catch an object between |
| * dvmMalloc() and DVM_OBJECT_INIT(). The object |
| * won't contain any references yet, so we can |
| * just skip it. |
| */ |
| return; |
| } else if (clazz == gDvm.unlinkedJavaLangClass) { |
| /* This class hasn't been linked yet. We're guaranteed |
| * that the object doesn't contain any references that |
| * aren't already tracked, so we can skip scanning it. |
| * |
| * NOTE: unlinkedJavaLangClass is not on the heap, so |
| * it's very important that we don't try marking it. |
| */ |
| return; |
| } |
| |
| #if WITH_OBJECT_HEADERS |
| gMarkParent = obj; |
| #endif |
| |
| assert(dvmIsValidObject((Object *)clazz)); |
| markObjectNonNull((Object *)clazz, ctx); |
| |
| /* Mark any references in this object. |
| */ |
| if (IS_CLASS_FLAG_SET(clazz, CLASS_ISARRAY)) { |
| /* It's an array object. |
| */ |
| if (IS_CLASS_FLAG_SET(clazz, CLASS_ISOBJECTARRAY)) { |
| /* It's an array of object references. |
| */ |
| scanObjectArray((ArrayObject *)obj, ctx); |
| } |
| // else there's nothing else to scan |
| } else { |
| /* It's a DataObject-compatible object. |
| */ |
| scanInstanceFields((DataObject *)obj, clazz, ctx); |
| |
| if (IS_CLASS_FLAG_SET(clazz, CLASS_ISREFERENCE)) { |
| GcHeap *gcHeap = gDvm.gcHeap; |
| Object *referent; |
| |
| /* It's a subclass of java/lang/ref/Reference. |
| * The fields in this class have been arranged |
| * such that scanInstanceFields() did not actually |
| * mark the "referent" field; we need to handle |
| * it specially. |
| * |
| * If the referent already has a strong mark (isMarked(referent)), |
| * we don't care about its reference status. |
| */ |
| referent = dvmGetFieldObject(obj, |
| gDvm.offJavaLangRefReference_referent); |
| if (referent != NULL && |
| !isMarked(ptr2chunk(referent), &gcHeap->markContext)) |
| { |
| u4 refFlags; |
| |
| if (gcHeap->markAllReferents) { |
| LOG_REF("Hard-marking a reference\n"); |
| |
| /* Don't bother with normal reference-following |
| * behavior, just mark the referent. This should |
| * only be used when following objects that just |
| * became scheduled for finalization. |
| */ |
| markObjectNonNull(referent, ctx); |
| goto skip_reference; |
| } |
| |
| /* See if this reference was handled by a previous GC. |
| */ |
| if (dvmGetFieldObject(obj, |
| gDvm.offJavaLangRefReference_vmData) == |
| SCHEDULED_REFERENCE_MAGIC) |
| { |
| LOG_REF("Skipping scheduled reference\n"); |
| |
| /* Don't reschedule it, but make sure that its |
| * referent doesn't get collected (in case it's |
| * a PhantomReference and wasn't cleared automatically). |
| */ |
| //TODO: Mark these after handling all new refs of |
| // this strength, in case the new refs refer |
| // to the same referent. Not a very common |
| // case, though. |
| markObjectNonNull(referent, ctx); |
| goto skip_reference; |
| } |
| |
| /* Find out what kind of reference is pointing |
| * to referent. |
| */ |
| refFlags = GET_CLASS_FLAG_GROUP(clazz, |
| CLASS_ISREFERENCE | |
| CLASS_ISWEAKREFERENCE | |
| CLASS_ISPHANTOMREFERENCE); |
| |
| /* We use the vmData field of Reference objects |
| * as a next pointer in a singly-linked list. |
| * That way, we don't need to allocate any memory |
| * while we're doing a GC. |
| */ |
| #define ADD_REF_TO_LIST(list, ref) \ |
| do { \ |
| Object *ARTL_ref_ = (/*de-const*/Object *)(ref); \ |
| dvmSetFieldObject(ARTL_ref_, \ |
| gDvm.offJavaLangRefReference_vmData, list); \ |
| list = ARTL_ref_; \ |
| } while (false) |
| |
| /* At this stage, we just keep track of all of |
| * the live references that we've seen. Later, |
| * we'll walk through each of these lists and |
| * deal with the referents. |
| */ |
| if (refFlags == CLASS_ISREFERENCE) { |
| /* It's a soft reference. Depending on the state, |
| * we'll attempt to collect all of them, some of |
| * them, or none of them. |
| */ |
| if (gcHeap->softReferenceCollectionState == |
| SR_COLLECT_NONE) |
| { |
| sr_collect_none: |
| markObjectNonNull(referent, ctx); |
| } else if (gcHeap->softReferenceCollectionState == |
| SR_COLLECT_ALL) |
| { |
| sr_collect_all: |
| ADD_REF_TO_LIST(gcHeap->softReferences, obj); |
| } else { |
| /* We'll only try to collect half of the |
| * referents. |
| */ |
| if (gcHeap->softReferenceColor++ & 1) { |
| goto sr_collect_none; |
| } |
| goto sr_collect_all; |
| } |
| } else { |
| /* It's a weak or phantom reference. |
| * Clearing CLASS_ISREFERENCE will reveal which. |
| */ |
| refFlags &= ~CLASS_ISREFERENCE; |
| if (refFlags == CLASS_ISWEAKREFERENCE) { |
| ADD_REF_TO_LIST(gcHeap->weakReferences, obj); |
| } else if (refFlags == CLASS_ISPHANTOMREFERENCE) { |
| ADD_REF_TO_LIST(gcHeap->phantomReferences, obj); |
| } else { |
| assert(!"Unknown reference type"); |
| } |
| } |
| #undef ADD_REF_TO_LIST |
| } |
| } |
| |
| skip_reference: |
| /* If this is a class object, mark various other things that |
| * its internals point to. |
| * |
| * All class objects are instances of java.lang.Class, |
| * including the java.lang.Class class object. |
| */ |
| if (clazz == gDvm.classJavaLangClass) { |
| scanClassObject((ClassObject *)obj, ctx); |
| } |
| } |
| |
| #if WITH_OBJECT_HEADERS |
| gMarkParent = NULL; |
| #endif |
| } |
| |
| static void |
| processMarkStack(GcMarkContext *ctx) |
| { |
| const Object **const base = ctx->stack.base; |
| |
| /* Scan anything that's on the mark stack. |
| * We can't use the bitmaps anymore, so use |
| * a finger that points past the end of them. |
| */ |
| ctx->finger = (void *)ULONG_MAX; |
| while (ctx->stack.top != base) { |
| scanObject(*ctx->stack.top++, ctx); |
| } |
| } |
| |
| #ifndef NDEBUG |
| static uintptr_t gLastFinger = 0; |
| #endif |
| |
| static bool |
| scanBitmapCallback(size_t numPtrs, void **ptrs, const void *finger, void *arg) |
| { |
| GcMarkContext *ctx = (GcMarkContext *)arg; |
| size_t i; |
| |
| #ifndef NDEBUG |
| assert((uintptr_t)finger >= gLastFinger); |
| gLastFinger = (uintptr_t)finger; |
| #endif |
| |
| ctx->finger = finger; |
| for (i = 0; i < numPtrs; i++) { |
| /* The pointers we're getting back are DvmHeapChunks, |
| * not Objects. |
| */ |
| scanObject(chunk2ptr(*ptrs++), ctx); |
| } |
| |
| return true; |
| } |
| |
| /* Given bitmaps with the root set marked, find and mark all |
| * reachable objects. When this returns, the entire set of |
| * live objects will be marked and the mark stack will be empty. |
| */ |
| void dvmHeapScanMarkedObjects() |
| { |
| GcMarkContext *ctx = &gDvm.gcHeap->markContext; |
| |
| assert(ctx->finger == NULL); |
| |
| /* The bitmaps currently have bits set for the root set. |
| * Walk across the bitmaps and scan each object. |
| */ |
| #ifndef NDEBUG |
| gLastFinger = 0; |
| #endif |
| dvmHeapBitmapWalkList(ctx->bitmaps, ctx->numBitmaps, |
| scanBitmapCallback, ctx); |
| |
| /* We've walked the mark bitmaps. Scan anything that's |
| * left on the mark stack. |
| */ |
| processMarkStack(ctx); |
| |
| LOG_SCAN("done with marked objects\n"); |
| } |
| |
| /** @return true if we need to schedule a call to clear(). |
| */ |
| static bool clearReference(Object *reference) |
| { |
| /* This is what the default implementation of Reference.clear() |
| * does. We're required to clear all references to a given |
| * referent atomically, so we can't pop in and out of interp |
| * code each time. |
| * |
| * Also, someone may have subclassed one of the basic Reference |
| * types, overriding clear(). We can't trust the clear() |
| * implementation to call super.clear(); we cannot let clear() |
| * resurrect the referent. If we clear it here, we can safely |
| * call any overriding implementations. |
| */ |
| dvmSetFieldObject(reference, |
| gDvm.offJavaLangRefReference_referent, NULL); |
| |
| #if FANCY_REFERENCE_SUBCLASS |
| /* See if clear() has actually been overridden. If so, |
| * we need to schedule a call to it before calling enqueue(). |
| */ |
| if (reference->clazz->vtable[gDvm.voffJavaLangRefReference_clear]->clazz != |
| gDvm.classJavaLangRefReference) |
| { |
| /* clear() has been overridden; return true to indicate |
| * that we need to schedule a call to the real clear() |
| * implementation. |
| */ |
| return true; |
| } |
| #endif |
| |
| return false; |
| } |
| |
| /** @return true if we need to schedule a call to enqueue(). |
| */ |
| static bool enqueueReference(Object *reference) |
| { |
| #if FANCY_REFERENCE_SUBCLASS |
| /* See if this reference class has overridden enqueue(); |
| * if not, we can take a shortcut. |
| */ |
| if (reference->clazz->vtable[gDvm.voffJavaLangRefReference_enqueue]->clazz |
| == gDvm.classJavaLangRefReference) |
| #endif |
| { |
| Object *queue = dvmGetFieldObject(reference, |
| gDvm.offJavaLangRefReference_queue); |
| Object *queueNext = dvmGetFieldObject(reference, |
| gDvm.offJavaLangRefReference_queueNext); |
| if (queue == NULL || queueNext != NULL) { |
| /* There is no queue, or the reference has already |
| * been enqueued. The Reference.enqueue() method |
| * will do nothing even if we call it. |
| */ |
| return false; |
| } |
| } |
| |
| /* We need to call enqueue(), but if we called it from |
| * here we'd probably deadlock. Schedule a call. |
| */ |
| return true; |
| } |
| |
| /* All objects for stronger reference levels have been |
| * marked before this is called. |
| */ |
| void dvmHeapHandleReferences(Object *refListHead, enum RefType refType) |
| { |
| Object *reference; |
| GcMarkContext *markContext = &gDvm.gcHeap->markContext; |
| const int offVmData = gDvm.offJavaLangRefReference_vmData; |
| const int offReferent = gDvm.offJavaLangRefReference_referent; |
| bool workRequired = false; |
| |
| size_t numCleared = 0; |
| size_t numEnqueued = 0; |
| reference = refListHead; |
| while (reference != NULL) { |
| Object *next; |
| Object *referent; |
| |
| /* Pull the interesting fields out of the Reference object. |
| */ |
| next = dvmGetFieldObject(reference, offVmData); |
| referent = dvmGetFieldObject(reference, offReferent); |
| |
| //TODO: when handling REF_PHANTOM, unlink any references |
| // that fail this initial if(). We need to re-walk |
| // the list, and it would be nice to avoid the extra |
| // work. |
| if (referent != NULL && !isMarked(ptr2chunk(referent), markContext)) { |
| bool schedClear, schedEnqueue; |
| |
| /* This is the strongest reference that refers to referent. |
| * Do the right thing. |
| */ |
| switch (refType) { |
| case REF_SOFT: |
| case REF_WEAK: |
| schedClear = clearReference(reference); |
| schedEnqueue = enqueueReference(reference); |
| break; |
| case REF_PHANTOM: |
| /* PhantomReferences are not cleared automatically. |
| * Until someone clears it (or the reference itself |
| * is collected), the referent must remain alive. |
| * |
| * It's necessary to fully mark the referent because |
| * it will still be present during the next GC, and |
| * all objects that it points to must be valid. |
| * (The referent will be marked outside of this loop, |
| * after handing all references of this strength, in |
| * case multiple references point to the same object.) |
| */ |
| schedClear = false; |
| |
| /* A PhantomReference is only useful with a |
| * queue, but since it's possible to create one |
| * without a queue, we need to check. |
| */ |
| schedEnqueue = enqueueReference(reference); |
| break; |
| default: |
| assert(!"Bad reference type"); |
| schedClear = false; |
| schedEnqueue = false; |
| break; |
| } |
| numCleared += schedClear ? 1 : 0; |
| numEnqueued += schedEnqueue ? 1 : 0; |
| |
| if (schedClear || schedEnqueue) { |
| uintptr_t workBits; |
| |
| /* Stuff the clear/enqueue bits in the bottom of |
| * the pointer. Assumes that objects are 8-byte |
| * aligned. |
| * |
| * Note that we are adding the *Reference* (which |
| * is by definition already marked at this point) to |
| * this list; we're not adding the referent (which |
| * has already been cleared). |
| */ |
| assert(((intptr_t)reference & 3) == 0); |
| assert(((WORKER_CLEAR | WORKER_ENQUEUE) & ~3) == 0); |
| workBits = (schedClear ? WORKER_CLEAR : 0) | |
| (schedEnqueue ? WORKER_ENQUEUE : 0); |
| if (!dvmHeapAddRefToLargeTable( |
| &gDvm.gcHeap->referenceOperations, |
| (Object *)((uintptr_t)reference | workBits))) |
| { |
| LOGE_HEAP("dvmMalloc(): no room for any more " |
| "reference operations\n"); |
| dvmAbort(); |
| } |
| workRequired = true; |
| } |
| |
| if (refType != REF_PHANTOM) { |
| /* Let later GCs know not to reschedule this reference. |
| */ |
| dvmSetFieldObject(reference, offVmData, |
| SCHEDULED_REFERENCE_MAGIC); |
| } // else this is handled later for REF_PHANTOM |
| |
| } // else there was a stronger reference to the referent. |
| |
| reference = next; |
| } |
| #define refType2str(r) \ |
| ((r) == REF_SOFT ? "soft" : ( \ |
| (r) == REF_WEAK ? "weak" : ( \ |
| (r) == REF_PHANTOM ? "phantom" : "UNKNOWN" ))) |
| LOGD_HEAP("dvmHeapHandleReferences(): cleared %zd, enqueued %zd %s references\n", numCleared, numEnqueued, refType2str(refType)); |
| |
| /* Walk though the reference list again, and mark any non-clear/marked |
| * referents. Only PhantomReferences can have non-clear referents |
| * at this point. |
| */ |
| if (refType == REF_PHANTOM) { |
| bool scanRequired = false; |
| |
| HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_REFERENCE_CLEANUP, 0); |
| reference = refListHead; |
| while (reference != NULL) { |
| Object *next; |
| Object *referent; |
| |
| /* Pull the interesting fields out of the Reference object. |
| */ |
| next = dvmGetFieldObject(reference, offVmData); |
| referent = dvmGetFieldObject(reference, offReferent); |
| |
| if (referent != NULL && !isMarked(ptr2chunk(referent), markContext)) { |
| markObjectNonNull(referent, markContext); |
| scanRequired = true; |
| |
| /* Let later GCs know not to reschedule this reference. |
| */ |
| dvmSetFieldObject(reference, offVmData, |
| SCHEDULED_REFERENCE_MAGIC); |
| } |
| |
| reference = next; |
| } |
| HPROF_CLEAR_GC_SCAN_STATE(); |
| |
| if (scanRequired) { |
| processMarkStack(markContext); |
| } |
| } |
| |
| if (workRequired) { |
| dvmSignalHeapWorker(false); |
| } |
| } |
| |
| |
| /* Find unreachable objects that need to be finalized, |
| * and schedule them for finalization. |
| */ |
| void dvmHeapScheduleFinalizations() |
| { |
| HeapRefTable newPendingRefs; |
| LargeHeapRefTable *finRefs = gDvm.gcHeap->finalizableRefs; |
| Object **ref; |
| Object **lastRef; |
| size_t totalPendCount; |
| GcMarkContext *markContext = &gDvm.gcHeap->markContext; |
| |
| /* |
| * All reachable objects have been marked. |
| * Any unmarked finalizable objects need to be finalized. |
| */ |
| |
| /* Create a table that the new pending refs will |
| * be added to. |
| */ |
| if (!dvmHeapInitHeapRefTable(&newPendingRefs, 128)) { |
| //TODO: mark all finalizable refs and hope that |
| // we can schedule them next time. Watch out, |
| // because we may be expecting to free up space |
| // by calling finalizers. |
| LOGE_GC("dvmHeapScheduleFinalizations(): no room for " |
| "pending finalizations\n"); |
| dvmAbort(); |
| } |
| |
| /* Walk through finalizableRefs and move any unmarked references |
| * to the list of new pending refs. |
| */ |
| totalPendCount = 0; |
| while (finRefs != NULL) { |
| Object **gapRef; |
| size_t newPendCount = 0; |
| |
| gapRef = ref = finRefs->refs.table; |
| lastRef = finRefs->refs.nextEntry; |
| while (ref < lastRef) { |
| DvmHeapChunk *hc; |
| |
| hc = ptr2chunk(*ref); |
| if (!isMarked(hc, markContext)) { |
| if (!dvmHeapAddToHeapRefTable(&newPendingRefs, *ref)) { |
| //TODO: add the current table and allocate |
| // a new, smaller one. |
| LOGE_GC("dvmHeapScheduleFinalizations(): " |
| "no room for any more pending finalizations: %zd\n", |
| dvmHeapNumHeapRefTableEntries(&newPendingRefs)); |
| dvmAbort(); |
| } |
| newPendCount++; |
| } else { |
| /* This ref is marked, so will remain on finalizableRefs. |
| */ |
| if (newPendCount > 0) { |
| /* Copy it up to fill the holes. |
| */ |
| *gapRef++ = *ref; |
| } else { |
| /* No holes yet; don't bother copying. |
| */ |
| gapRef++; |
| } |
| } |
| ref++; |
| } |
| finRefs->refs.nextEntry = gapRef; |
| //TODO: if the table is empty when we're done, free it. |
| totalPendCount += newPendCount; |
| finRefs = finRefs->next; |
| } |
| LOGD_GC("dvmHeapScheduleFinalizations(): %zd finalizers triggered.\n", |
| totalPendCount); |
| if (totalPendCount == 0) { |
| /* No objects required finalization. |
| * Free the empty temporary table. |
| */ |
| dvmClearReferenceTable(&newPendingRefs); |
| return; |
| } |
| |
| /* Add the new pending refs to the main list. |
| */ |
| if (!dvmHeapAddTableToLargeTable(&gDvm.gcHeap->pendingFinalizationRefs, |
| &newPendingRefs)) |
| { |
| LOGE_GC("dvmHeapScheduleFinalizations(): can't insert new " |
| "pending finalizations\n"); |
| dvmAbort(); |
| } |
| |
| //TODO: try compacting the main list with a memcpy loop |
| |
| /* Mark the refs we just moved; we don't want them or their |
| * children to get swept yet. |
| */ |
| ref = newPendingRefs.table; |
| lastRef = newPendingRefs.nextEntry; |
| assert(ref < lastRef); |
| HPROF_SET_GC_SCAN_STATE(HPROF_ROOT_FINALIZING, 0); |
| while (ref < lastRef) { |
| markObjectNonNull(*ref, markContext); |
| ref++; |
| } |
| HPROF_CLEAR_GC_SCAN_STATE(); |
| |
| /* Set markAllReferents so that we don't collect referents whose |
| * only references are in final-reachable objects. |
| * TODO: eventually provide normal reference behavior by properly |
| * marking these references. |
| */ |
| gDvm.gcHeap->markAllReferents = true; |
| processMarkStack(markContext); |
| gDvm.gcHeap->markAllReferents = false; |
| |
| dvmSignalHeapWorker(false); |
| } |
| |
| void dvmHeapFinishMarkStep() |
| { |
| HeapBitmap *markBitmap; |
| HeapBitmap objectBitmap; |
| GcMarkContext *markContext; |
| |
| markContext = &gDvm.gcHeap->markContext; |
| |
| /* The sweep step freed every object that appeared in the |
| * HeapSource bitmaps that didn't appear in the mark bitmaps. |
| * The new state of the HeapSource is exactly the final |
| * mark bitmaps, so swap them in. |
| * |
| * The old bitmaps will be swapped into the context so that |
| * we can clean them up. |
| */ |
| dvmHeapSourceReplaceObjectBitmaps(markContext->bitmaps, |
| markContext->numBitmaps); |
| |
| /* Clean up the old HeapSource bitmaps and anything else associated |
| * with the marking process. |
| */ |
| dvmHeapBitmapDeleteList(markContext->bitmaps, markContext->numBitmaps); |
| destroyMarkStack(&markContext->stack); |
| |
| memset(markContext, 0, sizeof(*markContext)); |
| } |
| |
| #if WITH_HPROF && WITH_HPROF_UNREACHABLE |
| static bool |
| hprofUnreachableBitmapCallback(size_t numPtrs, void **ptrs, |
| const void *finger, void *arg) |
| { |
| hprof_context_t *hctx = (hprof_context_t *)arg; |
| size_t i; |
| |
| for (i = 0; i < numPtrs; i++) { |
| Object *obj; |
| |
| /* The pointers we're getting back are DvmHeapChunks, not |
| * Objects. |
| */ |
| obj = (Object *)chunk2ptr(*ptrs++); |
| |
| hprofMarkRootObject(hctx, obj, 0); |
| hprofDumpHeapObject(hctx, obj); |
| } |
| |
| return true; |
| } |
| |
| static void |
| hprofDumpUnmarkedObjects(const HeapBitmap markBitmaps[], |
| const HeapBitmap objectBitmaps[], size_t numBitmaps) |
| { |
| hprof_context_t *hctx = gDvm.gcHeap->hprofContext; |
| if (hctx == NULL) { |
| return; |
| } |
| |
| LOGI("hprof: dumping unreachable objects\n"); |
| |
| HPROF_SET_GC_SCAN_STATE(HPROF_UNREACHABLE, 0); |
| |
| dvmHeapBitmapXorWalkLists(markBitmaps, objectBitmaps, numBitmaps, |
| hprofUnreachableBitmapCallback, hctx); |
| |
| HPROF_CLEAR_GC_SCAN_STATE(); |
| } |
| #endif |
| |
| static bool |
| sweepBitmapCallback(size_t numPtrs, void **ptrs, const void *finger, void *arg) |
| { |
| const ClassObject *const classJavaLangClass = gDvm.classJavaLangClass; |
| size_t i; |
| |
| for (i = 0; i < numPtrs; i++) { |
| DvmHeapChunk *hc; |
| Object *obj; |
| |
| /* The pointers we're getting back are DvmHeapChunks, not |
| * Objects. |
| */ |
| hc = (DvmHeapChunk *)*ptrs++; |
| obj = (Object *)chunk2ptr(hc); |
| |
| #if WITH_OBJECT_HEADERS |
| if (hc->markGeneration == gGeneration) { |
| LOGE("sweeping marked object: 0x%08x\n", (uint)obj); |
| dvmAbort(); |
| } |
| #endif |
| |
| /* Free the monitor associated with the object. |
| */ |
| dvmFreeObjectMonitor(obj); |
| |
| /* NOTE: Dereferencing clazz is dangerous. If obj was the last |
| * one to reference its class object, the class object could be |
| * on the sweep list, and could already have been swept, leaving |
| * us with a stale pointer. |
| */ |
| LOGV_SWEEP("FREE: 0x%08x %s\n", (uint)obj, obj->clazz->name); |
| |
| /* This assumes that java.lang.Class will never go away. |
| * If it can, and we were the last reference to it, it |
| * could have already been swept. However, even in that case, |
| * gDvm.classJavaLangClass should still have a useful |
| * value. |
| */ |
| if (obj->clazz == classJavaLangClass) { |
| LOGV_SWEEP("---------------> %s\n", ((ClassObject *)obj)->name); |
| /* dvmFreeClassInnards() may have already been called, |
| * but it's safe to call on the same ClassObject twice. |
| */ |
| dvmFreeClassInnards((ClassObject *)obj); |
| } |
| |
| #if 0 |
| /* Overwrite the to-be-freed object to make stale references |
| * more obvious. |
| */ |
| { |
| int chunklen; |
| ClassObject *clazz = obj->clazz; |
| #if WITH_OBJECT_HEADERS |
| DvmHeapChunk chunk = *hc; |
| chunk.header = ~OBJECT_HEADER | 1; |
| #endif |
| chunklen = dvmHeapSourceChunkSize(hc); |
| memset(hc, 0xa5, chunklen); |
| obj->clazz = (ClassObject *)((uintptr_t)clazz ^ 0xffffffff); |
| #if WITH_OBJECT_HEADERS |
| *hc = chunk; |
| #endif |
| } |
| #endif |
| |
| //TODO: provide a heapsource function that takes a list of pointers to free |
| // and call it outside of this loop. |
| dvmHeapSourceFree(hc); |
| } |
| |
| return true; |
| } |
| |
| /* A function suitable for passing to dvmHashForeachRemove() |
| * to clear out any unmarked objects. Clears the low bits |
| * of the pointer because the intern table may set them. |
| */ |
| static int isUnmarkedObject(void *object) |
| { |
| return !isMarked(ptr2chunk((uintptr_t)object & ~(HB_OBJECT_ALIGNMENT-1)), |
| &gDvm.gcHeap->markContext); |
| } |
| |
| /* Walk through the list of objects that haven't been |
| * marked and free them. |
| */ |
| void |
| dvmHeapSweepUnmarkedObjects(int *numFreed, size_t *sizeFreed) |
| { |
| const HeapBitmap *markBitmaps; |
| const GcMarkContext *markContext; |
| HeapBitmap objectBitmaps[HEAP_SOURCE_MAX_HEAP_COUNT]; |
| size_t origObjectsAllocated; |
| size_t origBytesAllocated; |
| size_t numBitmaps; |
| |
| /* All reachable objects have been marked. |
| * Detach any unreachable interned strings before |
| * we sweep. |
| */ |
| dvmGcDetachDeadInternedStrings(isUnmarkedObject); |
| |
| /* Free any known objects that are not marked. |
| */ |
| origObjectsAllocated = dvmHeapSourceGetValue(HS_OBJECTS_ALLOCATED, NULL, 0); |
| origBytesAllocated = dvmHeapSourceGetValue(HS_BYTES_ALLOCATED, NULL, 0); |
| |
| markContext = &gDvm.gcHeap->markContext; |
| markBitmaps = markContext->bitmaps; |
| numBitmaps = dvmHeapSourceGetObjectBitmaps(objectBitmaps, |
| HEAP_SOURCE_MAX_HEAP_COUNT); |
| #ifndef NDEBUG |
| if (numBitmaps != markContext->numBitmaps) { |
| LOGE("heap bitmap count mismatch: %zd != %zd\n", |
| numBitmaps, markContext->numBitmaps); |
| dvmAbort(); |
| } |
| #endif |
| |
| #if WITH_HPROF && WITH_HPROF_UNREACHABLE |
| hprofDumpUnmarkedObjects(markBitmaps, objectBitmaps, numBitmaps); |
| #endif |
| |
| dvmHeapBitmapXorWalkLists(markBitmaps, objectBitmaps, numBitmaps, |
| sweepBitmapCallback, NULL); |
| |
| *numFreed = origObjectsAllocated - |
| dvmHeapSourceGetValue(HS_OBJECTS_ALLOCATED, NULL, 0); |
| *sizeFreed = origBytesAllocated - |
| dvmHeapSourceGetValue(HS_BYTES_ALLOCATED, NULL, 0); |
| |
| #ifdef WITH_PROFILER |
| if (gDvm.allocProf.enabled) { |
| gDvm.allocProf.freeCount += *numFreed; |
| gDvm.allocProf.freeSize += *sizeFreed; |
| } |
| #endif |
| } |