| /* |
| * Copyright (C) 2009 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* |
| * This file contains codegen and support common to all supported |
| * ARM variants. It is included by: |
| * |
| * Codegen-$(TARGET_ARCH_VARIANT).c |
| * |
| * which combines this common code with specific support found in the |
| * applicable directory below this one. |
| */ |
| |
| static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct, |
| int srcSize, int tgtSize) |
| { |
| /* |
| * Don't optimize the register usage since it calls out to template |
| * functions |
| */ |
| RegLocation rlSrc; |
| RegLocation rlDest; |
| dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ |
| if (srcSize == 1) { |
| rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| loadValueDirectFixed(cUnit, rlSrc, r0); |
| } else { |
| rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| loadValueDirectWideFixed(cUnit, rlSrc, r0, r1); |
| } |
| LOAD_FUNC_ADDR(cUnit, r2, (int)funct); |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| if (tgtSize == 1) { |
| RegLocation rlResult; |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlResult = dvmCompilerGetReturn(cUnit); |
| storeValue(cUnit, rlDest, rlResult); |
| } else { |
| RegLocation rlResult; |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| rlResult = dvmCompilerGetReturnWide(cUnit); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } |
| return false; |
| } |
| |
| |
| static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir, |
| RegLocation rlDest, RegLocation rlSrc1, |
| RegLocation rlSrc2) |
| { |
| RegLocation rlResult; |
| void* funct; |
| |
| switch (mir->dalvikInsn.opCode) { |
| case OP_ADD_FLOAT_2ADDR: |
| case OP_ADD_FLOAT: |
| funct = (void*) __aeabi_fadd; |
| break; |
| case OP_SUB_FLOAT_2ADDR: |
| case OP_SUB_FLOAT: |
| funct = (void*) __aeabi_fsub; |
| break; |
| case OP_DIV_FLOAT_2ADDR: |
| case OP_DIV_FLOAT: |
| funct = (void*) __aeabi_fdiv; |
| break; |
| case OP_MUL_FLOAT_2ADDR: |
| case OP_MUL_FLOAT: |
| funct = (void*) __aeabi_fmul; |
| break; |
| case OP_REM_FLOAT_2ADDR: |
| case OP_REM_FLOAT: |
| funct = (void*) fmodf; |
| break; |
| case OP_NEG_FLOAT: { |
| genNegFloat(cUnit, rlDest, rlSrc1); |
| return false; |
| } |
| default: |
| return true; |
| } |
| dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ |
| loadValueDirectFixed(cUnit, rlSrc1, r0); |
| loadValueDirectFixed(cUnit, rlSrc2, r1); |
| LOAD_FUNC_ADDR(cUnit, r2, (int)funct); |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| rlResult = dvmCompilerGetReturn(cUnit); |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir, |
| RegLocation rlDest, RegLocation rlSrc1, |
| RegLocation rlSrc2) |
| { |
| RegLocation rlResult; |
| void* funct; |
| |
| switch (mir->dalvikInsn.opCode) { |
| case OP_ADD_DOUBLE_2ADDR: |
| case OP_ADD_DOUBLE: |
| funct = (void*) __aeabi_dadd; |
| break; |
| case OP_SUB_DOUBLE_2ADDR: |
| case OP_SUB_DOUBLE: |
| funct = (void*) __aeabi_dsub; |
| break; |
| case OP_DIV_DOUBLE_2ADDR: |
| case OP_DIV_DOUBLE: |
| funct = (void*) __aeabi_ddiv; |
| break; |
| case OP_MUL_DOUBLE_2ADDR: |
| case OP_MUL_DOUBLE: |
| funct = (void*) __aeabi_dmul; |
| break; |
| case OP_REM_DOUBLE_2ADDR: |
| case OP_REM_DOUBLE: |
| funct = (void*) fmod; |
| break; |
| case OP_NEG_DOUBLE: { |
| genNegDouble(cUnit, rlDest, rlSrc1); |
| return false; |
| } |
| default: |
| return true; |
| } |
| dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ |
| LOAD_FUNC_ADDR(cUnit, rlr, (int)funct); |
| loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1); |
| loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3); |
| opReg(cUnit, kOpBlx, rlr); |
| dvmCompilerClobberCallRegs(cUnit); |
| rlResult = dvmCompilerGetReturnWide(cUnit); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir) |
| { |
| OpCode opCode = mir->dalvikInsn.opCode; |
| |
| switch (opCode) { |
| case OP_INT_TO_FLOAT: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1); |
| case OP_FLOAT_TO_INT: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1); |
| case OP_DOUBLE_TO_FLOAT: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1); |
| case OP_FLOAT_TO_DOUBLE: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2); |
| case OP_INT_TO_DOUBLE: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2); |
| case OP_DOUBLE_TO_INT: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1); |
| case OP_FLOAT_TO_LONG: |
| return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2); |
| case OP_LONG_TO_FLOAT: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1); |
| case OP_DOUBLE_TO_LONG: |
| return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2); |
| case OP_LONG_TO_DOUBLE: |
| return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2); |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| #if defined(WITH_SELF_VERIFICATION) |
| static void selfVerificationBranchInsert(LIR *currentLIR, ArmOpCode opCode, |
| int dest, int src1) |
| { |
| ArmLIR *insn = dvmCompilerNew(sizeof(ArmLIR), true); |
| insn->opCode = opCode; |
| insn->operands[0] = dest; |
| insn->operands[1] = src1; |
| setupResourceMasks(insn); |
| dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn); |
| } |
| |
| static void selfVerificationBranchInsertPass(CompilationUnit *cUnit) |
| { |
| ArmLIR *thisLIR; |
| ArmLIR *branchLIR = dvmCompilerNew(sizeof(ArmLIR), true); |
| TemplateOpCode opCode = TEMPLATE_MEM_OP_DECODE; |
| |
| for (thisLIR = (ArmLIR *) cUnit->firstLIRInsn; |
| thisLIR != (ArmLIR *) cUnit->lastLIRInsn; |
| thisLIR = NEXT_LIR(thisLIR)) { |
| if (thisLIR->branchInsertSV) { |
| /* Branch to mem op decode template */ |
| selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1, |
| (int) gDvmJit.codeCache + templateEntryOffsets[opCode], |
| (int) gDvmJit.codeCache + templateEntryOffsets[opCode]); |
| selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2, |
| (int) gDvmJit.codeCache + templateEntryOffsets[opCode], |
| (int) gDvmJit.codeCache + templateEntryOffsets[opCode]); |
| } |
| } |
| } |
| #endif |
| |
| /* Generate conditional branch instructions */ |
| static ArmLIR *genConditionalBranch(CompilationUnit *cUnit, |
| ArmConditionCode cond, |
| ArmLIR *target) |
| { |
| ArmLIR *branch = opCondBranch(cUnit, cond); |
| branch->generic.target = (LIR *) target; |
| return branch; |
| } |
| |
| /* Generate a unconditional branch to go to the interpreter */ |
| static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset, |
| ArmLIR *pcrLabel) |
| { |
| ArmLIR *branch = opNone(cUnit, kOpUncondBr); |
| return genCheckCommon(cUnit, dOffset, branch, pcrLabel); |
| } |
| |
| /* Load a wide field from an object instance */ |
| static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset) |
| { |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| RegLocation rlResult; |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| int regPtr = dvmCompilerAllocTemp(cUnit); |
| |
| assert(rlDest.wide); |
| |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, |
| NULL);/* null object? */ |
| opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); |
| |
| HEAP_ACCESS_SHADOW(true); |
| loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg); |
| HEAP_ACCESS_SHADOW(false); |
| |
| dvmCompilerFreeTemp(cUnit, regPtr); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } |
| |
| /* Store a wide field to an object instance */ |
| static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset) |
| { |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2); |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| int regPtr; |
| rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg); |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, |
| NULL);/* null object? */ |
| regPtr = dvmCompilerAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset); |
| |
| HEAP_ACCESS_SHADOW(true); |
| storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg); |
| HEAP_ACCESS_SHADOW(false); |
| |
| dvmCompilerFreeTemp(cUnit, regPtr); |
| } |
| |
| /* |
| * Load a field from an object instance |
| * |
| */ |
| static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size, |
| int fieldOffset) |
| { |
| int regPtr; |
| RegLocation rlResult; |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, |
| NULL);/* null object? */ |
| |
| HEAP_ACCESS_SHADOW(true); |
| loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg, |
| size, rlObj.sRegLow); |
| HEAP_ACCESS_SHADOW(false); |
| |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| |
| /* |
| * Store a field to an object instance |
| * |
| */ |
| static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size, |
| int fieldOffset) |
| { |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1); |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| rlSrc = loadValue(cUnit, rlSrc, kAnyReg); |
| int regPtr; |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, |
| NULL);/* null object? */ |
| |
| HEAP_ACCESS_SHADOW(true); |
| storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size); |
| HEAP_ACCESS_SHADOW(false); |
| } |
| |
| |
| /* |
| * Generate array load |
| */ |
| static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size, |
| RegLocation rlArray, RegLocation rlIndex, |
| RegLocation rlDest, int scale) |
| { |
| int lenOffset = offsetof(ArrayObject, length); |
| int dataOffset = offsetof(ArrayObject, contents); |
| RegLocation rlResult; |
| rlArray = loadValue(cUnit, rlArray, kCoreReg); |
| rlIndex = loadValue(cUnit, rlIndex, kCoreReg); |
| int regPtr; |
| |
| /* null object? */ |
| ArmLIR * pcrLabel = NULL; |
| |
| if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) { |
| pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, |
| rlArray.lowReg, mir->offset, NULL); |
| } |
| |
| regPtr = dvmCompilerAllocTemp(cUnit); |
| |
| if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) { |
| int regLen = dvmCompilerAllocTemp(cUnit); |
| /* Get len */ |
| loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen); |
| /* regPtr -> array data */ |
| opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset); |
| genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset, |
| pcrLabel); |
| dvmCompilerFreeTemp(cUnit, regLen); |
| } else { |
| /* regPtr -> array data */ |
| opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset); |
| } |
| if ((size == kLong) || (size == kDouble)) { |
| if (scale) { |
| int rNewIndex = dvmCompilerAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale); |
| opRegReg(cUnit, kOpAdd, regPtr, rNewIndex); |
| dvmCompilerFreeTemp(cUnit, rNewIndex); |
| } else { |
| opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg); |
| } |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); |
| |
| HEAP_ACCESS_SHADOW(true); |
| loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg); |
| HEAP_ACCESS_SHADOW(false); |
| |
| dvmCompilerFreeTemp(cUnit, regPtr); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } else { |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); |
| |
| HEAP_ACCESS_SHADOW(true); |
| loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg, |
| scale, size); |
| HEAP_ACCESS_SHADOW(false); |
| |
| dvmCompilerFreeTemp(cUnit, regPtr); |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| } |
| |
| /* |
| * Generate array store |
| * |
| */ |
| static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size, |
| RegLocation rlArray, RegLocation rlIndex, |
| RegLocation rlSrc, int scale) |
| { |
| int lenOffset = offsetof(ArrayObject, length); |
| int dataOffset = offsetof(ArrayObject, contents); |
| |
| int regPtr; |
| rlArray = loadValue(cUnit, rlArray, kCoreReg); |
| rlIndex = loadValue(cUnit, rlIndex, kCoreReg); |
| |
| if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) { |
| dvmCompilerClobber(cUnit, rlArray.lowReg); |
| regPtr = rlArray.lowReg; |
| } else { |
| regPtr = dvmCompilerAllocTemp(cUnit); |
| genRegCopy(cUnit, regPtr, rlArray.lowReg); |
| } |
| |
| /* null object? */ |
| ArmLIR * pcrLabel = NULL; |
| |
| if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) { |
| pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg, |
| mir->offset, NULL); |
| } |
| |
| if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) { |
| int regLen = dvmCompilerAllocTemp(cUnit); |
| //NOTE: max live temps(4) here. |
| /* Get len */ |
| loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen); |
| /* regPtr -> array data */ |
| opRegImm(cUnit, kOpAdd, regPtr, dataOffset); |
| genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset, |
| pcrLabel); |
| dvmCompilerFreeTemp(cUnit, regLen); |
| } else { |
| /* regPtr -> array data */ |
| opRegImm(cUnit, kOpAdd, regPtr, dataOffset); |
| } |
| /* at this point, regPtr points to array, 2 live temps */ |
| if ((size == kLong) || (size == kDouble)) { |
| //TODO: need specific wide routine that can handle fp regs |
| if (scale) { |
| int rNewIndex = dvmCompilerAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale); |
| opRegReg(cUnit, kOpAdd, regPtr, rNewIndex); |
| dvmCompilerFreeTemp(cUnit, rNewIndex); |
| } else { |
| opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg); |
| } |
| rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg); |
| |
| HEAP_ACCESS_SHADOW(true); |
| storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg); |
| HEAP_ACCESS_SHADOW(false); |
| |
| dvmCompilerFreeTemp(cUnit, regPtr); |
| } else { |
| rlSrc = loadValue(cUnit, rlSrc, kAnyReg); |
| |
| HEAP_ACCESS_SHADOW(true); |
| storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg, |
| scale, size); |
| HEAP_ACCESS_SHADOW(false); |
| } |
| } |
| |
| /* |
| * Generate array object store |
| * Must use explicit register allocation here because of |
| * call-out to dvmCanPutArrayElement |
| */ |
| static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir, |
| RegLocation rlArray, RegLocation rlIndex, |
| RegLocation rlSrc, int scale) |
| { |
| int lenOffset = offsetof(ArrayObject, length); |
| int dataOffset = offsetof(ArrayObject, contents); |
| |
| dvmCompilerFlushAllRegs(cUnit); |
| |
| int regLen = r0; |
| int regPtr = r4PC; /* Preserved across call */ |
| int regArray = r1; |
| int regIndex = r7; /* Preserved across call */ |
| |
| loadValueDirectFixed(cUnit, rlArray, regArray); |
| loadValueDirectFixed(cUnit, rlIndex, regIndex); |
| |
| /* null object? */ |
| ArmLIR * pcrLabel = NULL; |
| |
| if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) { |
| pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray, |
| mir->offset, NULL); |
| } |
| |
| if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) { |
| /* Get len */ |
| loadWordDisp(cUnit, regArray, lenOffset, regLen); |
| /* regPtr -> array data */ |
| opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset); |
| genBoundsCheck(cUnit, regIndex, regLen, mir->offset, |
| pcrLabel); |
| } else { |
| /* regPtr -> array data */ |
| opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset); |
| } |
| |
| /* Get object to store */ |
| loadValueDirectFixed(cUnit, rlSrc, r0); |
| LOAD_FUNC_ADDR(cUnit, r2, (int)dvmCanPutArrayElement); |
| |
| /* Are we storing null? If so, avoid check */ |
| opRegImm(cUnit, kOpCmp, r0, 0); |
| ArmLIR *branchOver = opCondBranch(cUnit, kArmCondEq); |
| |
| /* Make sure the types are compatible */ |
| loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r1); |
| loadWordDisp(cUnit, r0, offsetof(Object, clazz), r0); |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| |
| /* |
| * Using fixed registers here, and counting on r4 and r7 being |
| * preserved across the above call. Tell the register allocation |
| * utilities about the regs we are using directly |
| */ |
| dvmCompilerLockTemp(cUnit, regPtr); // r4PC |
| dvmCompilerLockTemp(cUnit, regIndex); // r7 |
| dvmCompilerLockTemp(cUnit, r0); |
| |
| /* Bad? - roll back and re-execute if so */ |
| genRegImmCheck(cUnit, kArmCondEq, r0, 0, mir->offset, pcrLabel); |
| |
| /* Resume here - must reload element, regPtr & index preserved */ |
| loadValueDirectFixed(cUnit, rlSrc, r0); |
| |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branchOver->generic.target = (LIR *) target; |
| |
| HEAP_ACCESS_SHADOW(true); |
| storeBaseIndexed(cUnit, regPtr, regIndex, r0, |
| scale, kWord); |
| HEAP_ACCESS_SHADOW(false); |
| } |
| |
| static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir, |
| RegLocation rlDest, RegLocation rlSrc1, |
| RegLocation rlShift) |
| { |
| /* |
| * Don't mess with the regsiters here as there is a particular calling |
| * convention to the out-of-line handler. |
| */ |
| RegLocation rlResult; |
| |
| loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1); |
| loadValueDirect(cUnit, rlShift, r2); |
| switch( mir->dalvikInsn.opCode) { |
| case OP_SHL_LONG: |
| case OP_SHL_LONG_2ADDR: |
| genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG); |
| break; |
| case OP_SHR_LONG: |
| case OP_SHR_LONG_2ADDR: |
| genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG); |
| break; |
| case OP_USHR_LONG: |
| case OP_USHR_LONG_2ADDR: |
| genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG); |
| break; |
| default: |
| return true; |
| } |
| rlResult = dvmCompilerGetReturnWide(cUnit); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir, |
| RegLocation rlDest, RegLocation rlSrc1, |
| RegLocation rlSrc2) |
| { |
| RegLocation rlResult; |
| OpKind firstOp = kOpBkpt; |
| OpKind secondOp = kOpBkpt; |
| bool callOut = false; |
| void *callTgt; |
| int retReg = r0; |
| |
| switch (mir->dalvikInsn.opCode) { |
| case OP_NOT_LONG: |
| rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg); |
| opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return false; |
| break; |
| case OP_ADD_LONG: |
| case OP_ADD_LONG_2ADDR: |
| firstOp = kOpAdd; |
| secondOp = kOpAdc; |
| break; |
| case OP_SUB_LONG: |
| case OP_SUB_LONG_2ADDR: |
| firstOp = kOpSub; |
| secondOp = kOpSbc; |
| break; |
| case OP_MUL_LONG: |
| case OP_MUL_LONG_2ADDR: |
| genMulLong(cUnit, rlDest, rlSrc1, rlSrc2); |
| return false; |
| case OP_DIV_LONG: |
| case OP_DIV_LONG_2ADDR: |
| callOut = true; |
| retReg = r0; |
| callTgt = (void*)__aeabi_ldivmod; |
| break; |
| /* NOTE - result is in r2/r3 instead of r0/r1 */ |
| case OP_REM_LONG: |
| case OP_REM_LONG_2ADDR: |
| callOut = true; |
| callTgt = (void*)__aeabi_ldivmod; |
| retReg = r2; |
| break; |
| case OP_AND_LONG_2ADDR: |
| case OP_AND_LONG: |
| firstOp = kOpAnd; |
| secondOp = kOpAnd; |
| break; |
| case OP_OR_LONG: |
| case OP_OR_LONG_2ADDR: |
| firstOp = kOpOr; |
| secondOp = kOpOr; |
| break; |
| case OP_XOR_LONG: |
| case OP_XOR_LONG_2ADDR: |
| firstOp = kOpXor; |
| secondOp = kOpXor; |
| break; |
| case OP_NEG_LONG: { |
| //TUNING: can improve this using Thumb2 code |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadConstantNoClobber(cUnit, tReg, 0); |
| opRegRegReg(cUnit, kOpSub, rlResult.lowReg, |
| tReg, rlSrc2.lowReg); |
| opRegReg(cUnit, kOpSbc, tReg, rlSrc2.highReg); |
| genRegCopy(cUnit, rlResult.highReg, tReg); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return false; |
| } |
| default: |
| LOGE("Invalid long arith op"); |
| dvmCompilerAbort(cUnit); |
| } |
| if (!callOut) { |
| genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2); |
| } else { |
| // Adjust return regs in to handle case of rem returning r2/r3 |
| dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ |
| loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1); |
| LOAD_FUNC_ADDR(cUnit, rlr, (int) callTgt); |
| loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3); |
| opReg(cUnit, kOpBlx, rlr); |
| dvmCompilerClobberCallRegs(cUnit); |
| if (retReg == r0) |
| rlResult = dvmCompilerGetReturnWide(cUnit); |
| else |
| rlResult = dvmCompilerGetReturnWideAlt(cUnit); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } |
| return false; |
| } |
| |
| static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir, |
| RegLocation rlDest, RegLocation rlSrc1, |
| RegLocation rlSrc2) |
| { |
| OpKind op = kOpBkpt; |
| bool callOut = false; |
| bool checkZero = false; |
| bool unary = false; |
| int retReg = r0; |
| void *callTgt; |
| RegLocation rlResult; |
| bool shiftOp = false; |
| |
| switch (mir->dalvikInsn.opCode) { |
| case OP_NEG_INT: |
| op = kOpNeg; |
| unary = true; |
| break; |
| case OP_NOT_INT: |
| op = kOpMvn; |
| unary = true; |
| break; |
| case OP_ADD_INT: |
| case OP_ADD_INT_2ADDR: |
| op = kOpAdd; |
| break; |
| case OP_SUB_INT: |
| case OP_SUB_INT_2ADDR: |
| op = kOpSub; |
| break; |
| case OP_MUL_INT: |
| case OP_MUL_INT_2ADDR: |
| op = kOpMul; |
| break; |
| case OP_DIV_INT: |
| case OP_DIV_INT_2ADDR: |
| callOut = true; |
| checkZero = true; |
| callTgt = __aeabi_idiv; |
| retReg = r0; |
| break; |
| /* NOTE: returns in r1 */ |
| case OP_REM_INT: |
| case OP_REM_INT_2ADDR: |
| callOut = true; |
| checkZero = true; |
| callTgt = __aeabi_idivmod; |
| retReg = r1; |
| break; |
| case OP_AND_INT: |
| case OP_AND_INT_2ADDR: |
| op = kOpAnd; |
| break; |
| case OP_OR_INT: |
| case OP_OR_INT_2ADDR: |
| op = kOpOr; |
| break; |
| case OP_XOR_INT: |
| case OP_XOR_INT_2ADDR: |
| op = kOpXor; |
| break; |
| case OP_SHL_INT: |
| case OP_SHL_INT_2ADDR: |
| shiftOp = true; |
| op = kOpLsl; |
| break; |
| case OP_SHR_INT: |
| case OP_SHR_INT_2ADDR: |
| shiftOp = true; |
| op = kOpAsr; |
| break; |
| case OP_USHR_INT: |
| case OP_USHR_INT_2ADDR: |
| shiftOp = true; |
| op = kOpLsr; |
| break; |
| default: |
| LOGE("Invalid word arith op: 0x%x(%d)", |
| mir->dalvikInsn.opCode, mir->dalvikInsn.opCode); |
| dvmCompilerAbort(cUnit); |
| } |
| if (!callOut) { |
| rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); |
| if (unary) { |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegReg(cUnit, op, rlResult.lowReg, |
| rlSrc1.lowReg); |
| } else { |
| rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg); |
| if (shiftOp) { |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegRegReg(cUnit, op, rlResult.lowReg, |
| rlSrc1.lowReg, tReg); |
| dvmCompilerFreeTemp(cUnit, tReg); |
| } else { |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegRegReg(cUnit, op, rlResult.lowReg, |
| rlSrc1.lowReg, rlSrc2.lowReg); |
| } |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| } else { |
| RegLocation rlResult; |
| dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ |
| loadValueDirectFixed(cUnit, rlSrc2, r1); |
| LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt); |
| loadValueDirectFixed(cUnit, rlSrc1, r0); |
| if (checkZero) { |
| genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL); |
| } |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| if (retReg == r0) |
| rlResult = dvmCompilerGetReturn(cUnit); |
| else |
| rlResult = dvmCompilerGetReturnAlt(cUnit); |
| storeValue(cUnit, rlDest, rlResult); |
| } |
| return false; |
| } |
| |
| static bool genArithOp(CompilationUnit *cUnit, MIR *mir) |
| { |
| OpCode opCode = mir->dalvikInsn.opCode; |
| RegLocation rlDest; |
| RegLocation rlSrc1; |
| RegLocation rlSrc2; |
| /* Deduce sizes of operands */ |
| if (mir->ssaRep->numUses == 2) { |
| rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0); |
| rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1); |
| } else if (mir->ssaRep->numUses == 3) { |
| rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2); |
| } else { |
| rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3); |
| assert(mir->ssaRep->numUses == 4); |
| } |
| if (mir->ssaRep->numDefs == 1) { |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| } else { |
| assert(mir->ssaRep->numDefs == 2); |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| } |
| |
| if ((opCode >= OP_ADD_LONG_2ADDR) && (opCode <= OP_XOR_LONG_2ADDR)) { |
| return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opCode >= OP_ADD_LONG) && (opCode <= OP_XOR_LONG)) { |
| return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opCode >= OP_SHL_LONG_2ADDR) && (opCode <= OP_USHR_LONG_2ADDR)) { |
| return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opCode >= OP_SHL_LONG) && (opCode <= OP_USHR_LONG)) { |
| return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opCode >= OP_ADD_INT_2ADDR) && (opCode <= OP_USHR_INT_2ADDR)) { |
| return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opCode >= OP_ADD_INT) && (opCode <= OP_USHR_INT)) { |
| return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opCode >= OP_ADD_FLOAT_2ADDR) && (opCode <= OP_REM_FLOAT_2ADDR)) { |
| return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opCode >= OP_ADD_FLOAT) && (opCode <= OP_REM_FLOAT)) { |
| return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opCode >= OP_ADD_DOUBLE_2ADDR) && (opCode <= OP_REM_DOUBLE_2ADDR)) { |
| return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| if ((opCode >= OP_ADD_DOUBLE) && (opCode <= OP_REM_DOUBLE)) { |
| return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2); |
| } |
| return true; |
| } |
| |
| /* Generate unconditional branch instructions */ |
| static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target) |
| { |
| ArmLIR *branch = opNone(cUnit, kOpUncondBr); |
| branch->generic.target = (LIR *) target; |
| return branch; |
| } |
| |
| /* Perform the actual operation for OP_RETURN_* */ |
| static void genReturnCommon(CompilationUnit *cUnit, MIR *mir) |
| { |
| genDispatchToHandler(cUnit, TEMPLATE_RETURN); |
| #if defined(JIT_STATS) |
| gDvmJit.returnOp++; |
| #endif |
| int dPC = (int) (cUnit->method->insns + mir->offset); |
| /* Insert branch, but defer setting of target */ |
| ArmLIR *branch = genUnconditionalBranch(cUnit, NULL); |
| /* Set up the place holder to reconstruct this Dalvik PC */ |
| ArmLIR *pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true); |
| pcrLabel->opCode = kArmPseudoPCReconstructionCell; |
| pcrLabel->operands[0] = dPC; |
| pcrLabel->operands[1] = mir->offset; |
| /* Insert the place holder to the growable list */ |
| dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel); |
| /* Branch to the PC reconstruction code */ |
| branch->generic.target = (LIR *) pcrLabel; |
| } |
| |
| static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir, |
| DecodedInstruction *dInsn, |
| ArmLIR **pcrLabel) |
| { |
| unsigned int i; |
| unsigned int regMask = 0; |
| RegLocation rlArg; |
| int numDone = 0; |
| |
| /* |
| * Load arguments to r0..r4. Note that these registers may contain |
| * live values, so we clobber them immediately after loading to prevent |
| * them from being used as sources for subsequent loads. |
| */ |
| dvmCompilerLockAllTemps(cUnit); |
| for (i = 0; i < dInsn->vA; i++) { |
| regMask |= 1 << i; |
| rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++); |
| loadValueDirectFixed(cUnit, rlArg, i); |
| } |
| if (regMask) { |
| /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */ |
| opRegRegImm(cUnit, kOpSub, r7, rFP, |
| sizeof(StackSaveArea) + (dInsn->vA << 2)); |
| /* generate null check */ |
| if (pcrLabel) { |
| *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0, |
| mir->offset, NULL); |
| } |
| storeMultiple(cUnit, r7, regMask); |
| } |
| } |
| |
| static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir, |
| DecodedInstruction *dInsn, |
| ArmLIR **pcrLabel) |
| { |
| int srcOffset = dInsn->vC << 2; |
| int numArgs = dInsn->vA; |
| int regMask; |
| |
| /* |
| * Note: here, all promoted registers will have been flushed |
| * back to the Dalvik base locations, so register usage restrictins |
| * are lifted. All parms loaded from original Dalvik register |
| * region - even though some might conceivably have valid copies |
| * cached in a preserved register. |
| */ |
| dvmCompilerLockAllTemps(cUnit); |
| |
| /* |
| * r4PC : &rFP[vC] |
| * r7: &newFP[0] |
| */ |
| opRegRegImm(cUnit, kOpAdd, r4PC, rFP, srcOffset); |
| /* load [r0 .. min(numArgs,4)] */ |
| regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1; |
| /* |
| * Protect the loadMultiple instruction from being reordered with other |
| * Dalvik stack accesses. |
| */ |
| loadMultiple(cUnit, r4PC, regMask); |
| |
| opRegRegImm(cUnit, kOpSub, r7, rFP, |
| sizeof(StackSaveArea) + (numArgs << 2)); |
| /* generate null check */ |
| if (pcrLabel) { |
| *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0, |
| mir->offset, NULL); |
| } |
| |
| /* |
| * Handle remaining 4n arguments: |
| * store previously loaded 4 values and load the next 4 values |
| */ |
| if (numArgs >= 8) { |
| ArmLIR *loopLabel = NULL; |
| /* |
| * r0 contains "this" and it will be used later, so push it to the stack |
| * first. Pushing r5 (rFP) is just for stack alignment purposes. |
| */ |
| opImm(cUnit, kOpPush, (1 << r0 | 1 << rFP)); |
| /* No need to generate the loop structure if numArgs <= 11 */ |
| if (numArgs > 11) { |
| loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2); |
| loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel); |
| loopLabel->defMask = ENCODE_ALL; |
| } |
| storeMultiple(cUnit, r7, regMask); |
| /* |
| * Protect the loadMultiple instruction from being reordered with other |
| * Dalvik stack accesses. |
| */ |
| loadMultiple(cUnit, r4PC, regMask); |
| /* No need to generate the loop structure if numArgs <= 11 */ |
| if (numArgs > 11) { |
| opRegImm(cUnit, kOpSub, rFP, 4); |
| genConditionalBranch(cUnit, kArmCondNe, loopLabel); |
| } |
| } |
| |
| /* Save the last batch of loaded values */ |
| storeMultiple(cUnit, r7, regMask); |
| |
| /* Generate the loop epilogue - don't use r0 */ |
| if ((numArgs > 4) && (numArgs % 4)) { |
| regMask = ((1 << (numArgs & 0x3)) - 1) << 1; |
| /* |
| * Protect the loadMultiple instruction from being reordered with other |
| * Dalvik stack accesses. |
| */ |
| loadMultiple(cUnit, r4PC, regMask); |
| } |
| if (numArgs >= 8) |
| opImm(cUnit, kOpPop, (1 << r0 | 1 << rFP)); |
| |
| /* Save the modulo 4 arguments */ |
| if ((numArgs > 4) && (numArgs % 4)) { |
| storeMultiple(cUnit, r7, regMask); |
| } |
| } |
| |
| /* |
| * Generate code to setup the call stack then jump to the chaining cell if it |
| * is not a native method. |
| */ |
| static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir, |
| BasicBlock *bb, ArmLIR *labelList, |
| ArmLIR *pcrLabel, |
| const Method *calleeMethod) |
| { |
| /* |
| * Note: all Dalvik register state should be flushed to |
| * memory by the point, so register usage restrictions no |
| * longer apply. All temp & preserved registers may be used. |
| */ |
| dvmCompilerLockAllTemps(cUnit); |
| ArmLIR *retChainingCell = &labelList[bb->fallThrough->id]; |
| |
| /* r1 = &retChainingCell */ |
| dvmCompilerLockTemp(cUnit, r1); |
| ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0); |
| /* r4PC = dalvikCallsite */ |
| loadConstant(cUnit, r4PC, |
| (int) (cUnit->method->insns + mir->offset)); |
| addrRetChain->generic.target = (LIR *) retChainingCell; |
| /* |
| * r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon) |
| * r1 = &ChainingCell |
| * r4PC = callsiteDPC |
| */ |
| if (dvmIsNativeMethod(calleeMethod)) { |
| genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NATIVE); |
| #if defined(JIT_STATS) |
| gDvmJit.invokeNative++; |
| #endif |
| } else { |
| genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_CHAIN); |
| #if defined(JIT_STATS) |
| gDvmJit.invokeMonomorphic++; |
| #endif |
| /* Branch to the chaining cell */ |
| genUnconditionalBranch(cUnit, &labelList[bb->taken->id]); |
| } |
| /* Handle exceptions using the interpreter */ |
| genTrap(cUnit, mir->offset, pcrLabel); |
| } |
| |
| /* |
| * Generate code to check the validity of a predicted chain and take actions |
| * based on the result. |
| * |
| * 0x426a99aa : ldr r4, [pc, #72] --> r4 <- dalvikPC of this invoke |
| * 0x426a99ac : add r1, pc, #32 --> r1 <- &retChainingCell |
| * 0x426a99ae : add r2, pc, #40 --> r2 <- &predictedChainingCell |
| * 0x426a99b0 : blx_1 0x426a918c --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN |
| * 0x426a99b2 : blx_2 see above --+ |
| * 0x426a99b4 : b 0x426a99d8 --> off to the predicted chain |
| * 0x426a99b6 : b 0x426a99c8 --> punt to the interpreter |
| * 0x426a99b8 : ldr r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx] |
| * 0x426a99ba : cmp r1, #0 --> compare r1 (rechain count) against 0 |
| * 0x426a99bc : bgt 0x426a99c2 --> >=0? don't rechain |
| * 0x426a99be : ldr r7, [r6, #96] --+ dvmJitToPatchPredictedChain |
| * 0x426a99c0 : blx r7 --+ |
| * 0x426a99c2 : add r1, pc, #12 --> r1 <- &retChainingCell |
| * 0x426a99c4 : blx_1 0x426a9098 --+ TEMPLATE_INVOKE_METHOD_NO_OPT |
| * 0x426a99c6 : blx_2 see above --+ |
| */ |
| static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir, |
| int methodIndex, |
| ArmLIR *retChainingCell, |
| ArmLIR *predChainingCell, |
| ArmLIR *pcrLabel) |
| { |
| /* |
| * Note: all Dalvik register state should be flushed to |
| * memory by the point, so register usage restrictions no |
| * longer apply. Lock temps to prevent them from being |
| * allocated by utility routines. |
| */ |
| dvmCompilerLockAllTemps(cUnit); |
| |
| /* "this" is already left in r0 by genProcessArgs* */ |
| |
| /* r4PC = dalvikCallsite */ |
| loadConstant(cUnit, r4PC, |
| (int) (cUnit->method->insns + mir->offset)); |
| |
| /* r1 = &retChainingCell */ |
| ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0); |
| addrRetChain->generic.target = (LIR *) retChainingCell; |
| |
| /* r2 = &predictedChainingCell */ |
| ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, rpc, 0); |
| predictedChainingCell->generic.target = (LIR *) predChainingCell; |
| |
| genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN); |
| |
| /* return through lr - jump to the chaining cell */ |
| genUnconditionalBranch(cUnit, predChainingCell); |
| |
| /* |
| * null-check on "this" may have been eliminated, but we still need a PC- |
| * reconstruction label for stack overflow bailout. |
| */ |
| if (pcrLabel == NULL) { |
| int dPC = (int) (cUnit->method->insns + mir->offset); |
| pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true); |
| pcrLabel->opCode = kArmPseudoPCReconstructionCell; |
| pcrLabel->operands[0] = dPC; |
| pcrLabel->operands[1] = mir->offset; |
| /* Insert the place holder to the growable list */ |
| dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel); |
| } |
| |
| /* return through lr+2 - punt to the interpreter */ |
| genUnconditionalBranch(cUnit, pcrLabel); |
| |
| /* |
| * return through lr+4 - fully resolve the callee method. |
| * r1 <- count |
| * r2 <- &predictedChainCell |
| * r3 <- this->class |
| * r4 <- dPC |
| * r7 <- this->class->vtable |
| */ |
| |
| /* r0 <- calleeMethod */ |
| loadWordDisp(cUnit, r7, methodIndex * 4, r0); |
| |
| /* Check if rechain limit is reached */ |
| opRegImm(cUnit, kOpCmp, r1, 0); |
| |
| ArmLIR *bypassRechaining = opCondBranch(cUnit, kArmCondGt); |
| |
| loadWordDisp(cUnit, rGLUE, offsetof(InterpState, |
| jitToInterpEntries.dvmJitToPatchPredictedChain), r7); |
| |
| /* |
| * r0 = calleeMethod |
| * r2 = &predictedChainingCell |
| * r3 = class |
| * |
| * &returnChainingCell has been loaded into r1 but is not needed |
| * when patching the chaining cell and will be clobbered upon |
| * returning so it will be reconstructed again. |
| */ |
| opReg(cUnit, kOpBlx, r7); |
| |
| /* r1 = &retChainingCell */ |
| addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0); |
| addrRetChain->generic.target = (LIR *) retChainingCell; |
| |
| bypassRechaining->generic.target = (LIR *) addrRetChain; |
| /* |
| * r0 = calleeMethod, |
| * r1 = &ChainingCell, |
| * r4PC = callsiteDPC, |
| */ |
| genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT); |
| #if defined(JIT_STATS) |
| gDvmJit.invokePolymorphic++; |
| #endif |
| /* Handle exceptions using the interpreter */ |
| genTrap(cUnit, mir->offset, pcrLabel); |
| } |
| |
| /* |
| * Up calling this function, "this" is stored in r0. The actual class will be |
| * chased down off r0 and the predicted one will be retrieved through |
| * predictedChainingCell then a comparison is performed to see whether the |
| * previously established chaining is still valid. |
| * |
| * The return LIR is a branch based on the comparison result. The actual branch |
| * target will be setup in the caller. |
| */ |
| static ArmLIR *genCheckPredictedChain(CompilationUnit *cUnit, |
| ArmLIR *predChainingCell, |
| ArmLIR *retChainingCell, |
| MIR *mir) |
| { |
| /* |
| * Note: all Dalvik register state should be flushed to |
| * memory by the point, so register usage restrictions no |
| * longer apply. All temp & preserved registers may be used. |
| */ |
| dvmCompilerLockAllTemps(cUnit); |
| |
| /* r3 now contains this->clazz */ |
| loadWordDisp(cUnit, r0, offsetof(Object, clazz), r3); |
| |
| /* |
| * r2 now contains predicted class. The starting offset of the |
| * cached value is 4 bytes into the chaining cell. |
| */ |
| ArmLIR *getPredictedClass = |
| loadWordDisp(cUnit, rpc, offsetof(PredictedChainingCell, clazz), r2); |
| getPredictedClass->generic.target = (LIR *) predChainingCell; |
| |
| /* |
| * r0 now contains predicted method. The starting offset of the |
| * cached value is 8 bytes into the chaining cell. |
| */ |
| ArmLIR *getPredictedMethod = |
| loadWordDisp(cUnit, rpc, offsetof(PredictedChainingCell, method), r0); |
| getPredictedMethod->generic.target = (LIR *) predChainingCell; |
| |
| /* Load the stats counter to see if it is time to unchain and refresh */ |
| ArmLIR *getRechainingRequestCount = |
| loadWordDisp(cUnit, rpc, offsetof(PredictedChainingCell, counter), r7); |
| getRechainingRequestCount->generic.target = |
| (LIR *) predChainingCell; |
| |
| /* r4PC = dalvikCallsite */ |
| loadConstant(cUnit, r4PC, |
| (int) (cUnit->method->insns + mir->offset)); |
| |
| /* r1 = &retChainingCell */ |
| ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0); |
| addrRetChain->generic.target = (LIR *) retChainingCell; |
| |
| /* Check if r2 (predicted class) == r3 (actual class) */ |
| opRegReg(cUnit, kOpCmp, r2, r3); |
| |
| return opCondBranch(cUnit, kArmCondEq); |
| } |
| |
| /* Geneate a branch to go back to the interpreter */ |
| static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset) |
| { |
| /* r0 = dalvik pc */ |
| dvmCompilerFlushAllRegs(cUnit); |
| loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset)); |
| loadWordDisp(cUnit, r0, offsetof(Object, clazz), r3); |
| loadWordDisp(cUnit, rGLUE, offsetof(InterpState, |
| jitToInterpEntries.dvmJitToInterpPunt), r1); |
| opReg(cUnit, kOpBlx, r1); |
| } |
| |
| /* |
| * Attempt to single step one instruction using the interpreter and return |
| * to the compiled code for the next Dalvik instruction |
| */ |
| static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir) |
| { |
| int flags = dexGetInstrFlags(gDvm.instrFlags, mir->dalvikInsn.opCode); |
| int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn | |
| kInstrCanThrow; |
| |
| //If already optimized out, just ignore |
| if (mir->dalvikInsn.opCode == OP_NOP) |
| return; |
| |
| //Ugly, but necessary. Flush all Dalvik regs so Interp can find them |
| dvmCompilerFlushAllRegs(cUnit); |
| |
| if ((mir->next == NULL) || (flags & flagsToCheck)) { |
| genPuntToInterp(cUnit, mir->offset); |
| return; |
| } |
| int entryAddr = offsetof(InterpState, |
| jitToInterpEntries.dvmJitToInterpSingleStep); |
| loadWordDisp(cUnit, rGLUE, entryAddr, r2); |
| /* r0 = dalvik pc */ |
| loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset)); |
| /* r1 = dalvik pc of following instruction */ |
| loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset)); |
| opReg(cUnit, kOpBlx, r2); |
| } |
| |
| /* |
| * To prevent a thread in a monitor wait from blocking the Jit from |
| * resetting the code cache, heavyweight monitor lock will not |
| * be allowed to return to an existing translation. Instead, we will |
| * handle them by branching to a handler, which will in turn call the |
| * runtime lock routine and then branch directly back to the |
| * interpreter main loop. Given the high cost of the heavyweight |
| * lock operation, this additional cost should be slight (especially when |
| * considering that we expect the vast majority of lock operations to |
| * use the fast-path thin lock bypass). |
| */ |
| static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir) |
| { |
| bool isEnter = (mir->dalvikInsn.opCode == OP_MONITOR_ENTER); |
| genExportPC(cUnit, mir); |
| dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */ |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| loadValueDirectFixed(cUnit, rlSrc, r1); |
| loadWordDisp(cUnit, rGLUE, offsetof(InterpState, self), r0); |
| genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL); |
| if (isEnter) { |
| /* Get dPC of next insn */ |
| loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset + |
| dexGetInstrWidthAbs(gDvm.instrWidth, OP_MONITOR_ENTER))); |
| #if defined(WITH_DEADLOCK_PREDICTION) |
| genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER_DEBUG); |
| #else |
| genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER); |
| #endif |
| } else { |
| LOAD_FUNC_ADDR(cUnit, r2, (int)dvmUnlockObject); |
| /* Do the call */ |
| opReg(cUnit, kOpBlx, r2); |
| opRegImm(cUnit, kOpCmp, r0, 0); /* Did we throw? */ |
| ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe); |
| loadConstant(cUnit, r0, |
| (int) (cUnit->method->insns + mir->offset + |
| dexGetInstrWidthAbs(gDvm.instrWidth, OP_MONITOR_EXIT))); |
| genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branchOver->generic.target = (LIR *) target; |
| dvmCompilerClobberCallRegs(cUnit); |
| } |
| } |
| |
| /* |
| * The following are the first-level codegen routines that analyze the format |
| * of each bytecode then either dispatch special purpose codegen routines |
| * or produce corresponding Thumb instructions directly. |
| */ |
| |
| static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir, |
| BasicBlock *bb, ArmLIR *labelList) |
| { |
| /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */ |
| genUnconditionalBranch(cUnit, &labelList[bb->taken->id]); |
| return false; |
| } |
| |
| static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir) |
| { |
| OpCode dalvikOpCode = mir->dalvikInsn.opCode; |
| if (((dalvikOpCode >= OP_UNUSED_3E) && (dalvikOpCode <= OP_UNUSED_43)) || |
| ((dalvikOpCode >= OP_UNUSED_E3) && (dalvikOpCode <= OP_UNUSED_EB))) { |
| LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpCode); |
| return true; |
| } |
| switch (dalvikOpCode) { |
| case OP_RETURN_VOID: |
| genReturnCommon(cUnit,mir); |
| break; |
| case OP_UNUSED_73: |
| case OP_UNUSED_79: |
| case OP_UNUSED_7A: |
| LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpCode); |
| return true; |
| case OP_NOP: |
| break; |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir) |
| { |
| RegLocation rlDest; |
| RegLocation rlResult; |
| if (mir->ssaRep->numDefs == 2) { |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| } else { |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| } |
| |
| switch (mir->dalvikInsn.opCode) { |
| case OP_CONST: |
| case OP_CONST_4: { |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); |
| loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_CONST_WIDE_32: { |
| //TUNING: single routine to load constant pair for support doubles |
| //TUNING: load 0/-1 separately to avoid load dependency |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB); |
| opRegRegImm(cUnit, kOpAsr, rlResult.highReg, |
| rlResult.lowReg, 31); |
| storeValueWide(cUnit, rlDest, rlResult); |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir) |
| { |
| RegLocation rlDest; |
| RegLocation rlResult; |
| if (mir->ssaRep->numDefs == 2) { |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| } else { |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| } |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); |
| |
| switch (mir->dalvikInsn.opCode) { |
| case OP_CONST_HIGH16: { |
| loadConstantNoClobber(cUnit, rlResult.lowReg, |
| mir->dalvikInsn.vB << 16); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_CONST_WIDE_HIGH16: { |
| loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg, |
| 0, mir->dalvikInsn.vB << 16); |
| storeValueWide(cUnit, rlDest, rlResult); |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir) |
| { |
| /* For OP_THROW_VERIFICATION_ERROR */ |
| genInterpSingleStep(cUnit, mir); |
| return false; |
| } |
| |
| static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir) |
| { |
| RegLocation rlResult; |
| RegLocation rlDest; |
| RegLocation rlSrc; |
| |
| switch (mir->dalvikInsn.opCode) { |
| case OP_CONST_STRING_JUMBO: |
| case OP_CONST_STRING: { |
| void *strPtr = (void*) |
| (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]); |
| assert(strPtr != NULL); |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr ); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_CONST_CLASS: { |
| void *classPtr = (void*) |
| (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]); |
| assert(classPtr != NULL); |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr ); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_SGET_OBJECT: |
| case OP_SGET_BOOLEAN: |
| case OP_SGET_CHAR: |
| case OP_SGET_BYTE: |
| case OP_SGET_SHORT: |
| case OP_SGET: { |
| int valOffset = offsetof(StaticField, value); |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| void *fieldPtr = (void*) |
| (cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]); |
| assert(fieldPtr != NULL); |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); |
| loadConstant(cUnit, tReg, (int) fieldPtr + valOffset); |
| |
| HEAP_ACCESS_SHADOW(true); |
| loadWordDisp(cUnit, tReg, 0, rlResult.lowReg); |
| HEAP_ACCESS_SHADOW(false); |
| |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_SGET_WIDE: { |
| int valOffset = offsetof(StaticField, value); |
| void *fieldPtr = (void*) |
| (cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]); |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| assert(fieldPtr != NULL); |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); |
| loadConstant(cUnit, tReg, (int) fieldPtr + valOffset); |
| |
| HEAP_ACCESS_SHADOW(true); |
| loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg); |
| HEAP_ACCESS_SHADOW(false); |
| |
| storeValueWide(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_SPUT_OBJECT: |
| case OP_SPUT_BOOLEAN: |
| case OP_SPUT_CHAR: |
| case OP_SPUT_BYTE: |
| case OP_SPUT_SHORT: |
| case OP_SPUT: { |
| int valOffset = offsetof(StaticField, value); |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| void *fieldPtr = (void*) |
| (cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]); |
| |
| assert(fieldPtr != NULL); |
| rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| rlSrc = loadValue(cUnit, rlSrc, kAnyReg); |
| loadConstant(cUnit, tReg, (int) fieldPtr + valOffset); |
| |
| HEAP_ACCESS_SHADOW(true); |
| storeWordDisp(cUnit, tReg, 0 ,rlSrc.lowReg); |
| HEAP_ACCESS_SHADOW(false); |
| |
| break; |
| } |
| case OP_SPUT_WIDE: { |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| int valOffset = offsetof(StaticField, value); |
| void *fieldPtr = (void*) |
| (cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]); |
| |
| assert(fieldPtr != NULL); |
| rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg); |
| loadConstant(cUnit, tReg, (int) fieldPtr + valOffset); |
| |
| HEAP_ACCESS_SHADOW(true); |
| storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg); |
| HEAP_ACCESS_SHADOW(false); |
| break; |
| } |
| case OP_NEW_INSTANCE: { |
| /* |
| * Obey the calling convention and don't mess with the register |
| * usage. |
| */ |
| ClassObject *classPtr = (void*) |
| (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]); |
| assert(classPtr != NULL); |
| assert(classPtr->status & CLASS_INITIALIZED); |
| /* |
| * If it is going to throw, it should not make to the trace to begin |
| * with. However, Alloc might throw, so we need to genExportPC() |
| */ |
| assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0); |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| genExportPC(cUnit, mir); |
| LOAD_FUNC_ADDR(cUnit, r2, (int)dvmAllocObject); |
| loadConstant(cUnit, r0, (int) classPtr); |
| loadConstant(cUnit, r1, ALLOC_DONT_TRACK); |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| /* generate a branch over if allocation is successful */ |
| opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */ |
| ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe); |
| /* |
| * OOM exception needs to be thrown here and cannot re-execute |
| */ |
| loadConstant(cUnit, r0, |
| (int) (cUnit->method->insns + mir->offset)); |
| genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); |
| /* noreturn */ |
| |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branchOver->generic.target = (LIR *) target; |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlResult = dvmCompilerGetReturn(cUnit); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_CHECK_CAST: { |
| /* |
| * Obey the calling convention and don't mess with the register |
| * usage. |
| */ |
| ClassObject *classPtr = |
| (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]); |
| /* |
| * Note: It is possible that classPtr is NULL at this point, |
| * even though this instruction has been successfully interpreted. |
| * If the previous interpretation had a null source, the |
| * interpreter would not have bothered to resolve the clazz. |
| * Bail out to the interpreter in this case, and log it |
| * so that we can tell if it happens frequently. |
| */ |
| if (classPtr == NULL) { |
| LOGVV("null clazz in OP_CHECK_CAST, single-stepping"); |
| genInterpSingleStep(cUnit, mir); |
| return false; |
| } |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| loadConstant(cUnit, r1, (int) classPtr ); |
| rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0); /* Null? */ |
| ArmLIR *branch1 = opCondBranch(cUnit, kArmCondEq); |
| /* |
| * rlSrc.lowReg now contains object->clazz. Note that |
| * it could have been allocated r0, but we're okay so long |
| * as we don't do anything desctructive until r0 is loaded |
| * with clazz. |
| */ |
| /* r0 now contains object->clazz */ |
| loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0); |
| LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInstanceofNonTrivial); |
| opRegReg(cUnit, kOpCmp, r0, r1); |
| ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq); |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| /* |
| * If null, check cast failed - punt to the interpreter. Because |
| * interpreter will be the one throwing, we don't need to |
| * genExportPC() here. |
| */ |
| genZeroCheck(cUnit, r0, mir->offset, NULL); |
| /* check cast passed - branch target here */ |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branch1->generic.target = (LIR *)target; |
| branch2->generic.target = (LIR *)target; |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir) |
| { |
| OpCode dalvikOpCode = mir->dalvikInsn.opCode; |
| RegLocation rlResult; |
| switch (dalvikOpCode) { |
| case OP_MOVE_EXCEPTION: { |
| int offset = offsetof(InterpState, self); |
| int exOffset = offsetof(Thread, exception); |
| int selfReg = dvmCompilerAllocTemp(cUnit); |
| int resetReg = dvmCompilerAllocTemp(cUnit); |
| RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadWordDisp(cUnit, rGLUE, offset, selfReg); |
| loadConstant(cUnit, resetReg, 0); |
| loadWordDisp(cUnit, selfReg, exOffset, rlResult.lowReg); |
| storeWordDisp(cUnit, selfReg, exOffset, resetReg); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_MOVE_RESULT: |
| case OP_MOVE_RESULT_OBJECT: { |
| RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| RegLocation rlSrc = LOC_DALVIK_RETURN_VAL; |
| rlSrc.fp = rlDest.fp; |
| storeValue(cUnit, rlDest, rlSrc); |
| break; |
| } |
| case OP_MOVE_RESULT_WIDE: { |
| RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE; |
| rlSrc.fp = rlDest.fp; |
| storeValueWide(cUnit, rlDest, rlSrc); |
| break; |
| } |
| case OP_RETURN_WIDE: { |
| RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE; |
| rlDest.fp = rlSrc.fp; |
| storeValueWide(cUnit, rlDest, rlSrc); |
| genReturnCommon(cUnit,mir); |
| break; |
| } |
| case OP_RETURN: |
| case OP_RETURN_OBJECT: { |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlDest = LOC_DALVIK_RETURN_VAL; |
| rlDest.fp = rlSrc.fp; |
| storeValue(cUnit, rlDest, rlSrc); |
| genReturnCommon(cUnit,mir); |
| break; |
| } |
| case OP_MONITOR_EXIT: |
| case OP_MONITOR_ENTER: |
| #if defined(WITH_DEADLOCK_PREDICTION) || defined(WITH_MONITOR_TRACKING) |
| genMonitorPortable(cUnit, mir); |
| #else |
| genMonitor(cUnit, mir); |
| #endif |
| break; |
| case OP_THROW: { |
| genInterpSingleStep(cUnit, mir); |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir) |
| { |
| OpCode opCode = mir->dalvikInsn.opCode; |
| RegLocation rlDest; |
| RegLocation rlSrc; |
| RegLocation rlResult; |
| |
| if ( (opCode >= OP_ADD_INT_2ADDR) && (opCode <= OP_REM_DOUBLE_2ADDR)) { |
| return genArithOp( cUnit, mir ); |
| } |
| |
| if (mir->ssaRep->numUses == 2) |
| rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| else |
| rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| if (mir->ssaRep->numDefs == 2) |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| else |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| |
| switch (opCode) { |
| case OP_DOUBLE_TO_INT: |
| case OP_INT_TO_FLOAT: |
| case OP_FLOAT_TO_INT: |
| case OP_DOUBLE_TO_FLOAT: |
| case OP_FLOAT_TO_DOUBLE: |
| case OP_INT_TO_DOUBLE: |
| case OP_FLOAT_TO_LONG: |
| case OP_LONG_TO_FLOAT: |
| case OP_DOUBLE_TO_LONG: |
| case OP_LONG_TO_DOUBLE: |
| return genConversion(cUnit, mir); |
| case OP_NEG_INT: |
| case OP_NOT_INT: |
| return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc); |
| case OP_NEG_LONG: |
| case OP_NOT_LONG: |
| return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc); |
| case OP_NEG_FLOAT: |
| return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc); |
| case OP_NEG_DOUBLE: |
| return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc); |
| case OP_MOVE_WIDE: |
| storeValueWide(cUnit, rlDest, rlSrc); |
| break; |
| case OP_INT_TO_LONG: |
| rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| //TUNING: shouldn't loadValueDirect already check for phys reg? |
| if (rlSrc.location == kLocPhysReg) { |
| genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg); |
| } else { |
| loadValueDirect(cUnit, rlSrc, rlResult.lowReg); |
| } |
| opRegRegImm(cUnit, kOpAsr, rlResult.highReg, |
| rlResult.lowReg, 31); |
| storeValueWide(cUnit, rlDest, rlResult); |
| break; |
| case OP_LONG_TO_INT: |
| rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc); |
| rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc); |
| // Intentional fallthrough |
| case OP_MOVE: |
| case OP_MOVE_OBJECT: |
| storeValue(cUnit, rlDest, rlSrc); |
| break; |
| case OP_INT_TO_BYTE: |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| case OP_INT_TO_SHORT: |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| case OP_INT_TO_CHAR: |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| case OP_ARRAY_LENGTH: { |
| int lenOffset = offsetof(ArrayObject, length); |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg, |
| mir->offset, NULL); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadWordDisp(cUnit, rlSrc.lowReg, lenOffset, |
| rlResult.lowReg); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir) |
| { |
| OpCode dalvikOpCode = mir->dalvikInsn.opCode; |
| RegLocation rlDest; |
| RegLocation rlResult; |
| int BBBB = mir->dalvikInsn.vB; |
| if (dalvikOpCode == OP_CONST_WIDE_16) { |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB); |
| //TUNING: do high separately to avoid load dependency |
| opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31); |
| storeValueWide(cUnit, rlDest, rlResult); |
| } else if (dalvikOpCode == OP_CONST_16) { |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true); |
| loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB); |
| storeValue(cUnit, rlDest, rlResult); |
| } else |
| return true; |
| return false; |
| } |
| |
| /* Compare agaist zero */ |
| static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb, |
| ArmLIR *labelList) |
| { |
| OpCode dalvikOpCode = mir->dalvikInsn.opCode; |
| ArmConditionCode cond; |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0); |
| |
| //TUNING: break this out to allow use of Thumb2 CB[N]Z |
| switch (dalvikOpCode) { |
| case OP_IF_EQZ: |
| cond = kArmCondEq; |
| break; |
| case OP_IF_NEZ: |
| cond = kArmCondNe; |
| break; |
| case OP_IF_LTZ: |
| cond = kArmCondLt; |
| break; |
| case OP_IF_GEZ: |
| cond = kArmCondGe; |
| break; |
| case OP_IF_GTZ: |
| cond = kArmCondGt; |
| break; |
| case OP_IF_LEZ: |
| cond = kArmCondLe; |
| break; |
| default: |
| cond = 0; |
| LOGE("Unexpected opcode (%d) for Fmt21t\n", dalvikOpCode); |
| dvmCompilerAbort(cUnit); |
| } |
| genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]); |
| /* This mostly likely will be optimized away in a later phase */ |
| genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]); |
| return false; |
| } |
| |
| static bool isPowerOfTwo(int x) |
| { |
| return (x & (x - 1)) == 0; |
| } |
| |
| // Returns true if no more than two bits are set in 'x'. |
| static bool isPopCountLE2(unsigned int x) |
| { |
| x &= x - 1; |
| return (x & (x - 1)) == 0; |
| } |
| |
| // Returns the index of the lowest set bit in 'x'. |
| static int lowestSetBit(unsigned int x) { |
| int bit_posn = 0; |
| while ((x & 0xf) == 0) { |
| bit_posn += 4; |
| x >>= 4; |
| } |
| while ((x & 1) == 0) { |
| bit_posn++; |
| x >>= 1; |
| } |
| return bit_posn; |
| } |
| |
| // Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit' |
| // and store the result in 'rlDest'. |
| static bool handleEasyMultiply(CompilationUnit *cUnit, |
| RegLocation rlSrc, RegLocation rlDest, int lit) |
| { |
| // Can we simplify this multiplication? |
| bool powerOfTwo = false; |
| bool popCountLE2 = false; |
| bool powerOfTwoMinusOne = false; |
| if (lit < 2) { |
| // Avoid special cases. |
| return false; |
| } else if (isPowerOfTwo(lit)) { |
| powerOfTwo = true; |
| } else if (isPopCountLE2(lit)) { |
| popCountLE2 = true; |
| } else if (isPowerOfTwo(lit + 1)) { |
| powerOfTwoMinusOne = true; |
| } else { |
| return false; |
| } |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| if (powerOfTwo) { |
| // Shift. |
| opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg, |
| lowestSetBit(lit)); |
| } else if (popCountLE2) { |
| // Shift and add and shift. |
| int firstBit = lowestSetBit(lit); |
| int secondBit = lowestSetBit(lit ^ (1 << firstBit)); |
| genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit, |
| firstBit, secondBit); |
| } else { |
| // Reverse subtract: (src << (shift + 1)) - src. |
| assert(powerOfTwoMinusOne); |
| // TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1) |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1)); |
| opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg); |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| return true; |
| } |
| |
| static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir) |
| { |
| OpCode dalvikOpCode = mir->dalvikInsn.opCode; |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| RegLocation rlResult; |
| int lit = mir->dalvikInsn.vC; |
| OpKind op = 0; /* Make gcc happy */ |
| int shiftOp = false; |
| bool isDiv = false; |
| |
| switch (dalvikOpCode) { |
| case OP_RSUB_INT_LIT8: |
| case OP_RSUB_INT: { |
| int tReg; |
| //TUNING: add support for use of Arm rsub op |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| tReg = dvmCompilerAllocTemp(cUnit); |
| loadConstant(cUnit, tReg, lit); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| opRegRegReg(cUnit, kOpSub, rlResult.lowReg, |
| tReg, rlSrc.lowReg); |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| break; |
| } |
| |
| case OP_ADD_INT_LIT8: |
| case OP_ADD_INT_LIT16: |
| op = kOpAdd; |
| break; |
| case OP_MUL_INT_LIT8: |
| case OP_MUL_INT_LIT16: { |
| if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) { |
| return false; |
| } |
| op = kOpMul; |
| break; |
| } |
| case OP_AND_INT_LIT8: |
| case OP_AND_INT_LIT16: |
| op = kOpAnd; |
| break; |
| case OP_OR_INT_LIT8: |
| case OP_OR_INT_LIT16: |
| op = kOpOr; |
| break; |
| case OP_XOR_INT_LIT8: |
| case OP_XOR_INT_LIT16: |
| op = kOpXor; |
| break; |
| case OP_SHL_INT_LIT8: |
| lit &= 31; |
| shiftOp = true; |
| op = kOpLsl; |
| break; |
| case OP_SHR_INT_LIT8: |
| lit &= 31; |
| shiftOp = true; |
| op = kOpAsr; |
| break; |
| case OP_USHR_INT_LIT8: |
| lit &= 31; |
| shiftOp = true; |
| op = kOpLsr; |
| break; |
| |
| case OP_DIV_INT_LIT8: |
| case OP_DIV_INT_LIT16: |
| case OP_REM_INT_LIT8: |
| case OP_REM_INT_LIT16: |
| if (lit == 0) { |
| /* Let the interpreter deal with div by 0 */ |
| genInterpSingleStep(cUnit, mir); |
| return false; |
| } |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| loadValueDirectFixed(cUnit, rlSrc, r0); |
| dvmCompilerClobber(cUnit, r0); |
| if ((dalvikOpCode == OP_DIV_INT_LIT8) || |
| (dalvikOpCode == OP_DIV_INT_LIT16)) { |
| LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idiv); |
| isDiv = true; |
| } else { |
| LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idivmod); |
| isDiv = false; |
| } |
| loadConstant(cUnit, r1, lit); |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| if (isDiv) |
| rlResult = dvmCompilerGetReturn(cUnit); |
| else |
| rlResult = dvmCompilerGetReturnAlt(cUnit); |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| break; |
| default: |
| return true; |
| } |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| // Avoid shifts by literal 0 - no support in Thumb. Change to copy |
| if (shiftOp && (lit == 0)) { |
| genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg); |
| } else { |
| opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit); |
| } |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir) |
| { |
| OpCode dalvikOpCode = mir->dalvikInsn.opCode; |
| int fieldOffset; |
| |
| if (dalvikOpCode >= OP_IGET && dalvikOpCode <= OP_IPUT_SHORT) { |
| InstField *pInstField = (InstField *) |
| cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC]; |
| |
| assert(pInstField != NULL); |
| fieldOffset = pInstField->byteOffset; |
| } else { |
| /* Deliberately break the code while make the compiler happy */ |
| fieldOffset = -1; |
| } |
| switch (dalvikOpCode) { |
| case OP_NEW_ARRAY: { |
| // Generates a call - use explicit registers |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| RegLocation rlResult; |
| void *classPtr = (void*) |
| (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]); |
| assert(classPtr != NULL); |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| genExportPC(cUnit, mir); |
| loadValueDirectFixed(cUnit, rlSrc, r1); /* Len */ |
| loadConstant(cUnit, r0, (int) classPtr ); |
| LOAD_FUNC_ADDR(cUnit, r3, (int)dvmAllocArrayByClass); |
| /* |
| * "len < 0": bail to the interpreter to re-execute the |
| * instruction |
| */ |
| ArmLIR *pcrLabel = |
| genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL); |
| loadConstant(cUnit, r2, ALLOC_DONT_TRACK); |
| opReg(cUnit, kOpBlx, r3); |
| dvmCompilerClobberCallRegs(cUnit); |
| /* generate a branch over if allocation is successful */ |
| opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */ |
| ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe); |
| /* |
| * OOM exception needs to be thrown here and cannot re-execute |
| */ |
| loadConstant(cUnit, r0, |
| (int) (cUnit->method->insns + mir->offset)); |
| genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); |
| /* noreturn */ |
| |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branchOver->generic.target = (LIR *) target; |
| rlResult = dvmCompilerGetReturn(cUnit); |
| storeValue(cUnit, rlDest, rlResult); |
| break; |
| } |
| case OP_INSTANCE_OF: { |
| // May generate a call - use explicit registers |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| RegLocation rlResult; |
| ClassObject *classPtr = |
| (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]); |
| /* |
| * Note: It is possible that classPtr is NULL at this point, |
| * even though this instruction has been successfully interpreted. |
| * If the previous interpretation had a null source, the |
| * interpreter would not have bothered to resolve the clazz. |
| * Bail out to the interpreter in this case, and log it |
| * so that we can tell if it happens frequently. |
| */ |
| if (classPtr == NULL) { |
| LOGD("null clazz in OP_INSTANCE_OF, single-stepping"); |
| genInterpSingleStep(cUnit, mir); |
| break; |
| } |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| loadValueDirectFixed(cUnit, rlSrc, r0); /* Ref */ |
| loadConstant(cUnit, r2, (int) classPtr ); |
| //TUNING: compare to 0 primative to allow use of CB[N]Z |
| opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */ |
| /* When taken r0 has NULL which can be used for store directly */ |
| ArmLIR *branch1 = opCondBranch(cUnit, kArmCondEq); |
| /* r1 now contains object->clazz */ |
| loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1); |
| /* r1 now contains object->clazz */ |
| LOAD_FUNC_ADDR(cUnit, r3, (int)dvmInstanceofNonTrivial); |
| loadConstant(cUnit, r0, 1); /* Assume true */ |
| opRegReg(cUnit, kOpCmp, r1, r2); |
| ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq); |
| genRegCopy(cUnit, r0, r1); |
| genRegCopy(cUnit, r1, r2); |
| opReg(cUnit, kOpBlx, r3); |
| dvmCompilerClobberCallRegs(cUnit); |
| /* branch target here */ |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| rlResult = dvmCompilerGetReturn(cUnit); |
| storeValue(cUnit, rlDest, rlResult); |
| branch1->generic.target = (LIR *)target; |
| branch2->generic.target = (LIR *)target; |
| break; |
| } |
| case OP_IGET_WIDE: |
| genIGetWide(cUnit, mir, fieldOffset); |
| break; |
| case OP_IGET: |
| case OP_IGET_OBJECT: |
| genIGet(cUnit, mir, kWord, fieldOffset); |
| break; |
| case OP_IGET_BOOLEAN: |
| genIGet(cUnit, mir, kUnsignedByte, fieldOffset); |
| break; |
| case OP_IGET_BYTE: |
| genIGet(cUnit, mir, kSignedByte, fieldOffset); |
| break; |
| case OP_IGET_CHAR: |
| genIGet(cUnit, mir, kUnsignedHalf, fieldOffset); |
| break; |
| case OP_IGET_SHORT: |
| genIGet(cUnit, mir, kSignedHalf, fieldOffset); |
| break; |
| case OP_IPUT_WIDE: |
| genIPutWide(cUnit, mir, fieldOffset); |
| break; |
| case OP_IPUT: |
| case OP_IPUT_OBJECT: |
| genIPut(cUnit, mir, kWord, fieldOffset); |
| break; |
| case OP_IPUT_SHORT: |
| case OP_IPUT_CHAR: |
| genIPut(cUnit, mir, kUnsignedHalf, fieldOffset); |
| break; |
| case OP_IPUT_BYTE: |
| case OP_IPUT_BOOLEAN: |
| genIPut(cUnit, mir, kUnsignedByte, fieldOffset); |
| break; |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir) |
| { |
| OpCode dalvikOpCode = mir->dalvikInsn.opCode; |
| int fieldOffset = mir->dalvikInsn.vC; |
| switch (dalvikOpCode) { |
| case OP_IGET_QUICK: |
| case OP_IGET_OBJECT_QUICK: |
| genIGet(cUnit, mir, kWord, fieldOffset); |
| break; |
| case OP_IPUT_QUICK: |
| case OP_IPUT_OBJECT_QUICK: |
| genIPut(cUnit, mir, kWord, fieldOffset); |
| break; |
| case OP_IGET_WIDE_QUICK: |
| genIGetWide(cUnit, mir, fieldOffset); |
| break; |
| case OP_IPUT_WIDE_QUICK: |
| genIPutWide(cUnit, mir, fieldOffset); |
| break; |
| default: |
| return true; |
| } |
| return false; |
| |
| } |
| |
| /* Compare agaist zero */ |
| static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb, |
| ArmLIR *labelList) |
| { |
| OpCode dalvikOpCode = mir->dalvikInsn.opCode; |
| ArmConditionCode cond; |
| RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1); |
| |
| rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); |
| rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg); |
| opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg); |
| |
| switch (dalvikOpCode) { |
| case OP_IF_EQ: |
| cond = kArmCondEq; |
| break; |
| case OP_IF_NE: |
| cond = kArmCondNe; |
| break; |
| case OP_IF_LT: |
| cond = kArmCondLt; |
| break; |
| case OP_IF_GE: |
| cond = kArmCondGe; |
| break; |
| case OP_IF_GT: |
| cond = kArmCondGt; |
| break; |
| case OP_IF_LE: |
| cond = kArmCondLe; |
| break; |
| default: |
| cond = 0; |
| LOGE("Unexpected opcode (%d) for Fmt22t\n", dalvikOpCode); |
| dvmCompilerAbort(cUnit); |
| } |
| genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]); |
| /* This mostly likely will be optimized away in a later phase */ |
| genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]); |
| return false; |
| } |
| |
| static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir) |
| { |
| OpCode opCode = mir->dalvikInsn.opCode; |
| |
| switch (opCode) { |
| case OP_MOVE_16: |
| case OP_MOVE_OBJECT_16: |
| case OP_MOVE_FROM16: |
| case OP_MOVE_OBJECT_FROM16: { |
| storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0), |
| dvmCompilerGetSrc(cUnit, mir, 0)); |
| break; |
| } |
| case OP_MOVE_WIDE_16: |
| case OP_MOVE_WIDE_FROM16: { |
| storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1), |
| dvmCompilerGetSrcWide(cUnit, mir, 0, 1)); |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir) |
| { |
| OpCode opCode = mir->dalvikInsn.opCode; |
| RegLocation rlSrc1; |
| RegLocation rlSrc2; |
| RegLocation rlDest; |
| |
| if ( (opCode >= OP_ADD_INT) && (opCode <= OP_REM_DOUBLE)) { |
| return genArithOp( cUnit, mir ); |
| } |
| |
| /* APUTs have 3 sources and no targets */ |
| if (mir->ssaRep->numDefs == 0) { |
| if (mir->ssaRep->numUses == 3) { |
| rlDest = dvmCompilerGetSrc(cUnit, mir, 0); |
| rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1); |
| rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2); |
| } else { |
| assert(mir->ssaRep->numUses == 4); |
| rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2); |
| rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3); |
| } |
| } else { |
| /* Two sources and 1 dest. Deduce the operand sizes */ |
| if (mir->ssaRep->numUses == 4) { |
| rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3); |
| } else { |
| assert(mir->ssaRep->numUses == 2); |
| rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0); |
| rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1); |
| } |
| if (mir->ssaRep->numDefs == 2) { |
| rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| } else { |
| assert(mir->ssaRep->numDefs == 1); |
| rlDest = dvmCompilerGetDest(cUnit, mir, 0); |
| } |
| } |
| |
| |
| switch (opCode) { |
| case OP_CMPL_FLOAT: |
| case OP_CMPG_FLOAT: |
| case OP_CMPL_DOUBLE: |
| case OP_CMPG_DOUBLE: |
| return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2); |
| case OP_CMP_LONG: |
| genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2); |
| break; |
| case OP_AGET_WIDE: |
| genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3); |
| break; |
| case OP_AGET: |
| case OP_AGET_OBJECT: |
| genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2); |
| break; |
| case OP_AGET_BOOLEAN: |
| genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0); |
| break; |
| case OP_AGET_BYTE: |
| genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0); |
| break; |
| case OP_AGET_CHAR: |
| genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1); |
| break; |
| case OP_AGET_SHORT: |
| genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1); |
| break; |
| case OP_APUT_WIDE: |
| genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3); |
| break; |
| case OP_APUT: |
| genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2); |
| break; |
| case OP_APUT_OBJECT: |
| genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2); |
| break; |
| case OP_APUT_SHORT: |
| case OP_APUT_CHAR: |
| genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1); |
| break; |
| case OP_APUT_BYTE: |
| case OP_APUT_BOOLEAN: |
| genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0); |
| break; |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * Find the matching case. |
| * |
| * return values: |
| * r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case, |
| * including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES). |
| * r1 (high 32-bit): the branch offset of the matching case (only for indexes |
| * above MAX_CHAINED_SWITCH_CASES). |
| * |
| * Instructions around the call are: |
| * |
| * mov r2, pc |
| * blx &findPackedSwitchIndex |
| * mov pc, r0 |
| * .align4 |
| * chaining cell for case 0 [8 bytes] |
| * chaining cell for case 1 [8 bytes] |
| * : |
| * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [8 bytes] |
| * chaining cell for case default [8 bytes] |
| * noChain exit |
| */ |
| static s8 findPackedSwitchIndex(const u2* switchData, int testVal, int pc) |
| { |
| int size; |
| int firstKey; |
| const int *entries; |
| int index; |
| int jumpIndex; |
| int caseDPCOffset = 0; |
| /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */ |
| int chainingPC = (pc + 4) & ~3; |
| |
| /* |
| * Packed switch data format: |
| * ushort ident = 0x0100 magic value |
| * ushort size number of entries in the table |
| * int first_key first (and lowest) switch case value |
| * int targets[size] branch targets, relative to switch opcode |
| * |
| * Total size is (4+size*2) 16-bit code units. |
| */ |
| size = switchData[1]; |
| assert(size > 0); |
| |
| firstKey = switchData[2]; |
| firstKey |= switchData[3] << 16; |
| |
| |
| /* The entries are guaranteed to be aligned on a 32-bit boundary; |
| * we can treat them as a native int array. |
| */ |
| entries = (const int*) &switchData[4]; |
| assert(((u4)entries & 0x3) == 0); |
| |
| index = testVal - firstKey; |
| |
| /* Jump to the default cell */ |
| if (index < 0 || index >= size) { |
| jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES); |
| /* Jump to the non-chaining exit point */ |
| } else if (index >= MAX_CHAINED_SWITCH_CASES) { |
| jumpIndex = MAX_CHAINED_SWITCH_CASES + 1; |
| caseDPCOffset = entries[index]; |
| /* Jump to the inline chaining cell */ |
| } else { |
| jumpIndex = index; |
| } |
| |
| chainingPC += jumpIndex * 8; |
| return (((s8) caseDPCOffset) << 32) | (u8) chainingPC; |
| } |
| |
| /* See comments for findPackedSwitchIndex */ |
| static s8 findSparseSwitchIndex(const u2* switchData, int testVal, int pc) |
| { |
| int size; |
| const int *keys; |
| const int *entries; |
| int chainingPC = (pc + 4) & ~3; |
| int i; |
| |
| /* |
| * Sparse switch data format: |
| * ushort ident = 0x0200 magic value |
| * ushort size number of entries in the table; > 0 |
| * int keys[size] keys, sorted low-to-high; 32-bit aligned |
| * int targets[size] branch targets, relative to switch opcode |
| * |
| * Total size is (2+size*4) 16-bit code units. |
| */ |
| |
| size = switchData[1]; |
| assert(size > 0); |
| |
| /* The keys are guaranteed to be aligned on a 32-bit boundary; |
| * we can treat them as a native int array. |
| */ |
| keys = (const int*) &switchData[2]; |
| assert(((u4)keys & 0x3) == 0); |
| |
| /* The entries are guaranteed to be aligned on a 32-bit boundary; |
| * we can treat them as a native int array. |
| */ |
| entries = keys + size; |
| assert(((u4)entries & 0x3) == 0); |
| |
| /* |
| * Run through the list of keys, which are guaranteed to |
| * be sorted low-to-high. |
| * |
| * Most tables have 3-4 entries. Few have more than 10. A binary |
| * search here is probably not useful. |
| */ |
| for (i = 0; i < size; i++) { |
| int k = keys[i]; |
| if (k == testVal) { |
| /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */ |
| int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ? |
| i : MAX_CHAINED_SWITCH_CASES + 1; |
| chainingPC += jumpIndex * 8; |
| return (((s8) entries[i]) << 32) | (u8) chainingPC; |
| } else if (k > testVal) { |
| break; |
| } |
| } |
| return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) * 8; |
| } |
| |
| static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir) |
| { |
| OpCode dalvikOpCode = mir->dalvikInsn.opCode; |
| switch (dalvikOpCode) { |
| case OP_FILL_ARRAY_DATA: { |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| // Making a call - use explicit registers |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| genExportPC(cUnit, mir); |
| loadValueDirectFixed(cUnit, rlSrc, r0); |
| LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInterpHandleFillArrayData); |
| loadConstant(cUnit, r1, |
| (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB)); |
| opReg(cUnit, kOpBlx, r2); |
| dvmCompilerClobberCallRegs(cUnit); |
| /* generate a branch over if successful */ |
| opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */ |
| ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe); |
| loadConstant(cUnit, r0, |
| (int) (cUnit->method->insns + mir->offset)); |
| genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branchOver->generic.target = (LIR *) target; |
| break; |
| } |
| /* |
| * Compute the goto target of up to |
| * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells. |
| * See the comment before findPackedSwitchIndex for the code layout. |
| */ |
| case OP_PACKED_SWITCH: |
| case OP_SPARSE_SWITCH: { |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| loadValueDirectFixed(cUnit, rlSrc, r1); |
| dvmCompilerLockAllTemps(cUnit); |
| const u2 *switchData = |
| cUnit->method->insns + mir->offset + mir->dalvikInsn.vB; |
| u2 size = switchData[1]; |
| |
| if (dalvikOpCode == OP_PACKED_SWITCH) { |
| LOAD_FUNC_ADDR(cUnit, r4PC, (int)findPackedSwitchIndex); |
| } else { |
| LOAD_FUNC_ADDR(cUnit, r4PC, (int)findSparseSwitchIndex); |
| } |
| /* r0 <- Addr of the switch data */ |
| loadConstant(cUnit, r0, |
| (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB)); |
| /* r2 <- pc of the instruction following the blx */ |
| opRegReg(cUnit, kOpMov, r2, rpc); |
| opReg(cUnit, kOpBlx, r4PC); |
| dvmCompilerClobberCallRegs(cUnit); |
| /* pc <- computed goto target */ |
| opRegReg(cUnit, kOpMov, rpc, r0); |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb, |
| ArmLIR *labelList) |
| { |
| ArmLIR *retChainingCell = NULL; |
| ArmLIR *pcrLabel = NULL; |
| |
| if (bb->fallThrough != NULL) |
| retChainingCell = &labelList[bb->fallThrough->id]; |
| |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| switch (mir->dalvikInsn.opCode) { |
| /* |
| * calleeMethod = this->clazz->vtable[ |
| * method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex |
| * ] |
| */ |
| case OP_INVOKE_VIRTUAL: |
| case OP_INVOKE_VIRTUAL_RANGE: { |
| ArmLIR *predChainingCell = &labelList[bb->taken->id]; |
| int methodIndex = |
| cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]-> |
| methodIndex; |
| |
| if (mir->dalvikInsn.opCode == OP_INVOKE_VIRTUAL) |
| genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); |
| else |
| genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); |
| |
| genInvokeVirtualCommon(cUnit, mir, methodIndex, |
| retChainingCell, |
| predChainingCell, |
| pcrLabel); |
| break; |
| } |
| /* |
| * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex |
| * ->pResMethods[BBBB]->methodIndex] |
| */ |
| case OP_INVOKE_SUPER: |
| case OP_INVOKE_SUPER_RANGE: { |
| int mIndex = cUnit->method->clazz->pDvmDex-> |
| pResMethods[dInsn->vB]->methodIndex; |
| const Method *calleeMethod = |
| cUnit->method->clazz->super->vtable[mIndex]; |
| |
| if (mir->dalvikInsn.opCode == OP_INVOKE_SUPER) |
| genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); |
| else |
| genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); |
| |
| /* r0 = calleeMethod */ |
| loadConstant(cUnit, r0, (int) calleeMethod); |
| |
| genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel, |
| calleeMethod); |
| break; |
| } |
| /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */ |
| case OP_INVOKE_DIRECT: |
| case OP_INVOKE_DIRECT_RANGE: { |
| const Method *calleeMethod = |
| cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]; |
| |
| if (mir->dalvikInsn.opCode == OP_INVOKE_DIRECT) |
| genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); |
| else |
| genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); |
| |
| /* r0 = calleeMethod */ |
| loadConstant(cUnit, r0, (int) calleeMethod); |
| |
| genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel, |
| calleeMethod); |
| break; |
| } |
| /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */ |
| case OP_INVOKE_STATIC: |
| case OP_INVOKE_STATIC_RANGE: { |
| const Method *calleeMethod = |
| cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]; |
| |
| if (mir->dalvikInsn.opCode == OP_INVOKE_STATIC) |
| genProcessArgsNoRange(cUnit, mir, dInsn, |
| NULL /* no null check */); |
| else |
| genProcessArgsRange(cUnit, mir, dInsn, |
| NULL /* no null check */); |
| |
| /* r0 = calleeMethod */ |
| loadConstant(cUnit, r0, (int) calleeMethod); |
| |
| genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel, |
| calleeMethod); |
| break; |
| } |
| /* |
| * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz, |
| * BBBB, method, method->clazz->pDvmDex) |
| * |
| * Given "invoke-interface {v0}", the following is the generated code: |
| * |
| * 0x426a9abe : ldr r0, [r5, #0] --+ |
| * 0x426a9ac0 : mov r7, r5 | |
| * 0x426a9ac2 : sub r7, #24 | |
| * 0x426a9ac4 : cmp r0, #0 | genProcessArgsNoRange |
| * 0x426a9ac6 : beq 0x426a9afe | |
| * 0x426a9ac8 : stmia r7, <r0> --+ |
| * 0x426a9aca : ldr r4, [pc, #104] --> r4 <- dalvikPC of this invoke |
| * 0x426a9acc : add r1, pc, #52 --> r1 <- &retChainingCell |
| * 0x426a9ace : add r2, pc, #60 --> r2 <- &predictedChainingCell |
| * 0x426a9ad0 : blx_1 0x426a918c --+ TEMPLATE_INVOKE_METHOD_ |
| * 0x426a9ad2 : blx_2 see above --+ PREDICTED_CHAIN |
| * 0x426a9ad4 : b 0x426a9b0c --> off to the predicted chain |
| * 0x426a9ad6 : b 0x426a9afe --> punt to the interpreter |
| * 0x426a9ad8 : mov r8, r1 --+ |
| * 0x426a9ada : mov r9, r2 | |
| * 0x426a9adc : mov r10, r3 | |
| * 0x426a9ade : mov r0, r3 | |
| * 0x426a9ae0 : mov r1, #74 | dvmFindInterfaceMethodInCache |
| * 0x426a9ae2 : ldr r2, [pc, #76] | |
| * 0x426a9ae4 : ldr r3, [pc, #68] | |
| * 0x426a9ae6 : ldr r7, [pc, #64] | |
| * 0x426a9ae8 : blx r7 --+ |
| * 0x426a9aea : mov r1, r8 --> r1 <- rechain count |
| * 0x426a9aec : cmp r1, #0 --> compare against 0 |
| * 0x426a9aee : bgt 0x426a9af8 --> >=0? don't rechain |
| * 0x426a9af0 : ldr r7, [r6, #96] --+ |
| * 0x426a9af2 : mov r2, r9 | dvmJitToPatchPredictedChain |
| * 0x426a9af4 : mov r3, r10 | |
| * 0x426a9af6 : blx r7 --+ |
| * 0x426a9af8 : add r1, pc, #8 --> r1 <- &retChainingCell |
| * 0x426a9afa : blx_1 0x426a9098 --+ TEMPLATE_INVOKE_METHOD_NO_OPT |
| * 0x426a9afc : blx_2 see above --+ |
| * -------- reconstruct dalvik PC : 0x428b786c @ +0x001e |
| * 0x426a9afe (0042): ldr r0, [pc, #52] |
| * Exception_Handling: |
| * 0x426a9b00 (0044): ldr r1, [r6, #84] |
| * 0x426a9b02 (0046): blx r1 |
| * 0x426a9b04 (0048): .align4 |
| * -------- chaining cell (hot): 0x0021 |
| * 0x426a9b04 (0048): ldr r0, [r6, #92] |
| * 0x426a9b06 (004a): blx r0 |
| * 0x426a9b08 (004c): data 0x7872(30834) |
| * 0x426a9b0a (004e): data 0x428b(17035) |
| * 0x426a9b0c (0050): .align4 |
| * -------- chaining cell (predicted) |
| * 0x426a9b0c (0050): data 0x0000(0) --> will be patched into bx |
| * 0x426a9b0e (0052): data 0x0000(0) |
| * 0x426a9b10 (0054): data 0x0000(0) --> class |
| * 0x426a9b12 (0056): data 0x0000(0) |
| * 0x426a9b14 (0058): data 0x0000(0) --> method |
| * 0x426a9b16 (005a): data 0x0000(0) |
| * 0x426a9b18 (005c): data 0x0000(0) --> reset count |
| * 0x426a9b1a (005e): data 0x0000(0) |
| * 0x426a9b28 (006c): .word (0xad0392a5) |
| * 0x426a9b2c (0070): .word (0x6e750) |
| * 0x426a9b30 (0074): .word (0x4109a618) |
| * 0x426a9b34 (0078): .word (0x428b786c) |
| */ |
| case OP_INVOKE_INTERFACE: |
| case OP_INVOKE_INTERFACE_RANGE: { |
| ArmLIR *predChainingCell = &labelList[bb->taken->id]; |
| int methodIndex = dInsn->vB; |
| |
| /* Ensure that nothing is both live and dirty */ |
| dvmCompilerFlushAllRegs(cUnit); |
| |
| if (mir->dalvikInsn.opCode == OP_INVOKE_INTERFACE) |
| genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); |
| else |
| genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); |
| |
| /* "this" is already left in r0 by genProcessArgs* */ |
| |
| /* r4PC = dalvikCallsite */ |
| loadConstant(cUnit, r4PC, |
| (int) (cUnit->method->insns + mir->offset)); |
| |
| /* r1 = &retChainingCell */ |
| ArmLIR *addrRetChain = |
| opRegRegImm(cUnit, kOpAdd, r1, rpc, 0); |
| addrRetChain->generic.target = (LIR *) retChainingCell; |
| |
| /* r2 = &predictedChainingCell */ |
| ArmLIR *predictedChainingCell = |
| opRegRegImm(cUnit, kOpAdd, r2, rpc, 0); |
| predictedChainingCell->generic.target = (LIR *) predChainingCell; |
| |
| genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN); |
| |
| /* return through lr - jump to the chaining cell */ |
| genUnconditionalBranch(cUnit, predChainingCell); |
| |
| /* |
| * null-check on "this" may have been eliminated, but we still need |
| * a PC-reconstruction label for stack overflow bailout. |
| */ |
| if (pcrLabel == NULL) { |
| int dPC = (int) (cUnit->method->insns + mir->offset); |
| pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true); |
| pcrLabel->opCode = kArmPseudoPCReconstructionCell; |
| pcrLabel->operands[0] = dPC; |
| pcrLabel->operands[1] = mir->offset; |
| /* Insert the place holder to the growable list */ |
| dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel); |
| } |
| |
| /* return through lr+2 - punt to the interpreter */ |
| genUnconditionalBranch(cUnit, pcrLabel); |
| |
| /* |
| * return through lr+4 - fully resolve the callee method. |
| * r1 <- count |
| * r2 <- &predictedChainCell |
| * r3 <- this->class |
| * r4 <- dPC |
| * r7 <- this->class->vtable |
| */ |
| |
| /* Save count, &predictedChainCell, and class to high regs first */ |
| genRegCopy(cUnit, r8, r1); |
| genRegCopy(cUnit, r9, r2); |
| genRegCopy(cUnit, r10, r3); |
| |
| /* r0 now contains this->clazz */ |
| genRegCopy(cUnit, r0, r3); |
| |
| /* r1 = BBBB */ |
| loadConstant(cUnit, r1, dInsn->vB); |
| |
| /* r2 = method (caller) */ |
| loadConstant(cUnit, r2, (int) cUnit->method); |
| |
| /* r3 = pDvmDex */ |
| loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex); |
| |
| LOAD_FUNC_ADDR(cUnit, r7, |
| (intptr_t) dvmFindInterfaceMethodInCache); |
| opReg(cUnit, kOpBlx, r7); |
| |
| /* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */ |
| |
| genRegCopy(cUnit, r1, r8); |
| |
| /* Check if rechain limit is reached */ |
| opRegImm(cUnit, kOpCmp, r1, 0); |
| |
| ArmLIR *bypassRechaining = opCondBranch(cUnit, kArmCondGt); |
| |
| loadWordDisp(cUnit, rGLUE, offsetof(InterpState, |
| jitToInterpEntries.dvmJitToPatchPredictedChain), r7); |
| |
| genRegCopy(cUnit, r2, r9); |
| genRegCopy(cUnit, r3, r10); |
| |
| /* |
| * r0 = calleeMethod |
| * r2 = &predictedChainingCell |
| * r3 = class |
| * |
| * &returnChainingCell has been loaded into r1 but is not needed |
| * when patching the chaining cell and will be clobbered upon |
| * returning so it will be reconstructed again. |
| */ |
| opReg(cUnit, kOpBlx, r7); |
| |
| /* r1 = &retChainingCell */ |
| addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0); |
| addrRetChain->generic.target = (LIR *) retChainingCell; |
| |
| bypassRechaining->generic.target = (LIR *) addrRetChain; |
| |
| /* |
| * r0 = this, r1 = calleeMethod, |
| * r1 = &ChainingCell, |
| * r4PC = callsiteDPC, |
| */ |
| genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT); |
| #if defined(JIT_STATS) |
| gDvmJit.invokePolymorphic++; |
| #endif |
| /* Handle exceptions using the interpreter */ |
| genTrap(cUnit, mir->offset, pcrLabel); |
| break; |
| } |
| /* NOP */ |
| case OP_INVOKE_DIRECT_EMPTY: { |
| return false; |
| } |
| case OP_FILLED_NEW_ARRAY: |
| case OP_FILLED_NEW_ARRAY_RANGE: { |
| /* Just let the interpreter deal with these */ |
| genInterpSingleStep(cUnit, mir); |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir, |
| BasicBlock *bb, ArmLIR *labelList) |
| { |
| ArmLIR *retChainingCell = &labelList[bb->fallThrough->id]; |
| ArmLIR *predChainingCell = &labelList[bb->taken->id]; |
| ArmLIR *pcrLabel = NULL; |
| |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| switch (mir->dalvikInsn.opCode) { |
| /* calleeMethod = this->clazz->vtable[BBBB] */ |
| case OP_INVOKE_VIRTUAL_QUICK_RANGE: |
| case OP_INVOKE_VIRTUAL_QUICK: { |
| int methodIndex = dInsn->vB; |
| if (mir->dalvikInsn.opCode == OP_INVOKE_VIRTUAL_QUICK) |
| genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); |
| else |
| genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); |
| |
| genInvokeVirtualCommon(cUnit, mir, methodIndex, |
| retChainingCell, |
| predChainingCell, |
| pcrLabel); |
| break; |
| } |
| /* calleeMethod = method->clazz->super->vtable[BBBB] */ |
| case OP_INVOKE_SUPER_QUICK: |
| case OP_INVOKE_SUPER_QUICK_RANGE: { |
| const Method *calleeMethod = |
| cUnit->method->clazz->super->vtable[dInsn->vB]; |
| |
| if (mir->dalvikInsn.opCode == OP_INVOKE_SUPER_QUICK) |
| genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel); |
| else |
| genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel); |
| |
| /* r0 = calleeMethod */ |
| loadConstant(cUnit, r0, (int) calleeMethod); |
| |
| genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel, |
| calleeMethod); |
| /* Handle exceptions using the interpreter */ |
| genTrap(cUnit, mir->offset, pcrLabel); |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| /* |
| * This operation is complex enough that we'll do it partly inline |
| * and partly with a handler. NOTE: the handler uses hardcoded |
| * values for string object offsets and must be revisitied if the |
| * layout changes. |
| */ |
| static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir) |
| { |
| #if defined(USE_GLOBAL_STRING_DEFS) |
| return false; |
| #else |
| ArmLIR *rollback; |
| RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1); |
| |
| loadValueDirectFixed(cUnit, rlThis, r0); |
| loadValueDirectFixed(cUnit, rlComp, r1); |
| /* Test objects for NULL */ |
| rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL); |
| genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback); |
| /* |
| * TUNING: we could check for object pointer equality before invoking |
| * handler. Unclear whether the gain would be worth the added code size |
| * expansion. |
| */ |
| genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO); |
| storeValue(cUnit, inlinedTarget(cUnit, mir, false), |
| dvmCompilerGetReturn(cUnit)); |
| return true; |
| #endif |
| } |
| |
| static bool genInlinedIndexOf(CompilationUnit *cUnit, MIR *mir, bool singleI) |
| { |
| #if defined(USE_GLOBAL_STRING_DEFS) |
| return false; |
| #else |
| RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1); |
| |
| loadValueDirectFixed(cUnit, rlThis, r0); |
| loadValueDirectFixed(cUnit, rlChar, r1); |
| if (!singleI) { |
| RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2); |
| loadValueDirectFixed(cUnit, rlStart, r2); |
| } else { |
| loadConstant(cUnit, r2, 0); |
| } |
| /* Test objects for NULL */ |
| genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL); |
| genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF); |
| storeValue(cUnit, inlinedTarget(cUnit, mir, false), |
| dvmCompilerGetReturn(cUnit)); |
| return true; |
| #endif |
| } |
| |
| static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir) |
| { |
| RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlDest = inlinedTarget(cUnit, mir, false); |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL); |
| loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, |
| rlResult.lowReg); |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir) |
| { |
| int contents = offsetof(ArrayObject, contents); |
| RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0); |
| RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1); |
| RegLocation rlDest = inlinedTarget(cUnit, mir, false); |
| RegLocation rlResult; |
| rlObj = loadValue(cUnit, rlObj, kCoreReg); |
| rlIdx = loadValue(cUnit, rlIdx, kCoreReg); |
| int regMax = dvmCompilerAllocTemp(cUnit); |
| int regOff = dvmCompilerAllocTemp(cUnit); |
| int regPtr = dvmCompilerAllocTemp(cUnit); |
| ArmLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, |
| mir->offset, NULL); |
| loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax); |
| loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff); |
| loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr); |
| genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel); |
| dvmCompilerFreeTemp(cUnit, regMax); |
| opRegImm(cUnit, kOpAdd, regPtr, contents); |
| opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg); |
| rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf); |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir) |
| { |
| RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0); |
| rlSrc = loadValue(cUnit, rlSrc, kCoreReg); |
| RegLocation rlDest = inlinedTarget(cUnit, mir, false);; |
| RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| int signReg = dvmCompilerAllocTemp(cUnit); |
| /* |
| * abs(x) = y<=x>>31, (x+y)^y. |
| * Thumb2's IT block also yields 3 instructions, but imposes |
| * scheduling constraints. |
| */ |
| opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31); |
| opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg); |
| opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg); |
| storeValue(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir) |
| { |
| RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1); |
| RegLocation rlDest = inlinedTargetWide(cUnit, mir, false); |
| rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg); |
| RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| int signReg = dvmCompilerAllocTemp(cUnit); |
| /* |
| * abs(x) = y<=x>>31, (x+y)^y. |
| * Thumb2 IT block allows slightly shorter sequence, |
| * but introduces a scheduling barrier. Stick with this |
| * mechanism for now. |
| */ |
| opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31); |
| opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg); |
| opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg); |
| opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg); |
| opRegReg(cUnit, kOpXor, rlResult.highReg, signReg); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| /* |
| * NOTE: Handles both range and non-range versions (arguments |
| * have already been normalized by this point). |
| */ |
| static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir) |
| { |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| switch( mir->dalvikInsn.opCode) { |
| case OP_EXECUTE_INLINE_RANGE: |
| case OP_EXECUTE_INLINE: { |
| unsigned int i; |
| const InlineOperation* inLineTable = dvmGetInlineOpsTable(); |
| int offset = offsetof(InterpState, retval); |
| int operation = dInsn->vB; |
| int tReg1; |
| int tReg2; |
| switch (operation) { |
| case INLINE_EMPTYINLINEMETHOD: |
| return false; /* Nop */ |
| case INLINE_STRING_LENGTH: |
| return genInlinedStringLength(cUnit, mir); |
| case INLINE_MATH_ABS_INT: |
| return genInlinedAbsInt(cUnit, mir); |
| case INLINE_MATH_ABS_LONG: |
| return genInlinedAbsLong(cUnit, mir); |
| case INLINE_MATH_MIN_INT: |
| return genInlinedMinMaxInt(cUnit, mir, true); |
| case INLINE_MATH_MAX_INT: |
| return genInlinedMinMaxInt(cUnit, mir, false); |
| case INLINE_STRING_CHARAT: |
| return genInlinedStringCharAt(cUnit, mir); |
| case INLINE_MATH_SQRT: |
| if (genInlineSqrt(cUnit, mir)) |
| return false; |
| else |
| break; /* Handle with C routine */ |
| case INLINE_MATH_ABS_FLOAT: |
| if (genInlinedAbsFloat(cUnit, mir)) |
| return false; |
| else |
| break; |
| case INLINE_MATH_ABS_DOUBLE: |
| if (genInlinedAbsDouble(cUnit, mir)) |
| return false; |
| else |
| break; |
| case INLINE_STRING_COMPARETO: |
| if (genInlinedCompareTo(cUnit, mir)) |
| return false; |
| else |
| break; |
| case INLINE_STRING_INDEXOF_I: |
| if (genInlinedIndexOf(cUnit, mir, true /* I */)) |
| return false; |
| else |
| break; |
| case INLINE_STRING_INDEXOF_II: |
| if (genInlinedIndexOf(cUnit, mir, false /* I */)) |
| return false; |
| else |
| break; |
| case INLINE_STRING_EQUALS: |
| case INLINE_MATH_COS: |
| case INLINE_MATH_SIN: |
| break; /* Handle with C routine */ |
| default: |
| dvmCompilerAbort(cUnit); |
| } |
| dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */ |
| dvmCompilerClobberCallRegs(cUnit); |
| dvmCompilerClobber(cUnit, r4PC); |
| dvmCompilerClobber(cUnit, r7); |
| opRegRegImm(cUnit, kOpAdd, r4PC, rGLUE, offset); |
| opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7)); |
| LOAD_FUNC_ADDR(cUnit, r4PC, (int)inLineTable[operation].func); |
| genExportPC(cUnit, mir); |
| for (i=0; i < dInsn->vA; i++) { |
| loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i); |
| } |
| opReg(cUnit, kOpBlx, r4PC); |
| opRegImm(cUnit, kOpAdd, r13, 8); |
| opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */ |
| ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe); |
| loadConstant(cUnit, r0, |
| (int) (cUnit->method->insns + mir->offset)); |
| genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON); |
| ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel); |
| target->defMask = ENCODE_ALL; |
| branchOver->generic.target = (LIR *) target; |
| break; |
| } |
| default: |
| return true; |
| } |
| return false; |
| } |
| |
| static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir) |
| { |
| //TUNING: We're using core regs here - not optimal when target is a double |
| RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1); |
| RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true); |
| loadConstantNoClobber(cUnit, rlResult.lowReg, |
| mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL); |
| loadConstantNoClobber(cUnit, rlResult.highReg, |
| (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL); |
| storeValueWide(cUnit, rlDest, rlResult); |
| return false; |
| } |
| |
| /* |
| * The following are special processing routines that handle transfer of |
| * controls between compiled code and the interpreter. Certain VM states like |
| * Dalvik PC and special-purpose registers are reconstructed here. |
| */ |
| |
| /* Chaining cell for code that may need warmup. */ |
| static void handleNormalChainingCell(CompilationUnit *cUnit, |
| unsigned int offset) |
| { |
| /* |
| * Use raw instruction constructors to guarantee that the generated |
| * instructions fit the predefined cell size. |
| */ |
| newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE, |
| offsetof(InterpState, |
| jitToInterpEntries.dvmJitToInterpNormal) >> 2); |
| newLIR1(cUnit, kThumbBlxR, r0); |
| addWordData(cUnit, (int) (cUnit->method->insns + offset), true); |
| } |
| |
| /* |
| * Chaining cell for instructions that immediately following already translated |
| * code. |
| */ |
| static void handleHotChainingCell(CompilationUnit *cUnit, |
| unsigned int offset) |
| { |
| /* |
| * Use raw instruction constructors to guarantee that the generated |
| * instructions fit the predefined cell size. |
| */ |
| newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE, |
| offsetof(InterpState, |
| jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2); |
| newLIR1(cUnit, kThumbBlxR, r0); |
| addWordData(cUnit, (int) (cUnit->method->insns + offset), true); |
| } |
| |
| #if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING) |
| /* Chaining cell for branches that branch back into the same basic block */ |
| static void handleBackwardBranchChainingCell(CompilationUnit *cUnit, |
| unsigned int offset) |
| { |
| /* |
| * Use raw instruction constructors to guarantee that the generated |
| * instructions fit the predefined cell size. |
| */ |
| #if defined(WITH_SELF_VERIFICATION) |
| newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE, |
| offsetof(InterpState, |
| jitToInterpEntries.dvmJitToInterpBackwardBranch) >> 2); |
| #else |
| newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE, |
| offsetof(InterpState, jitToInterpEntries.dvmJitToInterpNormal) >> 2); |
| #endif |
| newLIR1(cUnit, kThumbBlxR, r0); |
| addWordData(cUnit, (int) (cUnit->method->insns + offset), true); |
| } |
| |
| #endif |
| /* Chaining cell for monomorphic method invocations. */ |
| static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit, |
| const Method *callee) |
| { |
| /* |
| * Use raw instruction constructors to guarantee that the generated |
| * instructions fit the predefined cell size. |
| */ |
| newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE, |
| offsetof(InterpState, |
| jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2); |
| newLIR1(cUnit, kThumbBlxR, r0); |
| addWordData(cUnit, (int) (callee->insns), true); |
| } |
| |
| /* Chaining cell for monomorphic method invocations. */ |
| static void handleInvokePredictedChainingCell(CompilationUnit *cUnit) |
| { |
| |
| /* Should not be executed in the initial state */ |
| addWordData(cUnit, PREDICTED_CHAIN_BX_PAIR_INIT, true); |
| /* To be filled: class */ |
| addWordData(cUnit, PREDICTED_CHAIN_CLAZZ_INIT, true); |
| /* To be filled: method */ |
| addWordData(cUnit, PREDICTED_CHAIN_METHOD_INIT, true); |
| /* |
| * Rechain count. The initial value of 0 here will trigger chaining upon |
| * the first invocation of this callsite. |
| */ |
| addWordData(cUnit, PREDICTED_CHAIN_COUNTER_INIT, true); |
| } |
| |
| /* Load the Dalvik PC into r0 and jump to the specified target */ |
| static void handlePCReconstruction(CompilationUnit *cUnit, |
| ArmLIR *targetLabel) |
| { |
| ArmLIR **pcrLabel = |
| (ArmLIR **) cUnit->pcReconstructionList.elemList; |
| int numElems = cUnit->pcReconstructionList.numUsed; |
| int i; |
| for (i = 0; i < numElems; i++) { |
| dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]); |
| /* r0 = dalvik PC */ |
| loadConstant(cUnit, r0, pcrLabel[i]->operands[0]); |
| genUnconditionalBranch(cUnit, targetLabel); |
| } |
| } |
| |
| static char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = { |
| "kMirOpPhi", |
| "kMirOpNullNRangeUpCheck", |
| "kMirOpNullNRangeDownCheck", |
| "kMirOpLowerBound", |
| "kMirOpPunt", |
| }; |
| |
| /* |
| * vA = arrayReg; |
| * vB = idxReg; |
| * vC = endConditionReg; |
| * arg[0] = maxC |
| * arg[1] = minC |
| * arg[2] = loopBranchConditionCode |
| */ |
| static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir) |
| { |
| /* |
| * NOTE: these synthesized blocks don't have ssa names assigned |
| * for Dalvik registers. However, because they dominate the following |
| * blocks we can simply use the Dalvik name w/ subscript 0 as the |
| * ssa name. |
| */ |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| const int lenOffset = offsetof(ArrayObject, length); |
| const int maxC = dInsn->arg[0]; |
| const int minC = dInsn->arg[1]; |
| int regLength; |
| RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA]; |
| RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC]; |
| |
| /* regArray <- arrayRef */ |
| rlArray = loadValue(cUnit, rlArray, kCoreReg); |
| rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg); |
| genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0, |
| (ArmLIR *) cUnit->loopAnalysis->branchToPCR); |
| |
| /* regLength <- len(arrayRef) */ |
| regLength = dvmCompilerAllocTemp(cUnit); |
| loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength); |
| |
| int delta = maxC; |
| /* |
| * If the loop end condition is ">=" instead of ">", then the largest value |
| * of the index is "endCondition - 1". |
| */ |
| if (dInsn->arg[2] == OP_IF_GE) { |
| delta--; |
| } |
| |
| if (delta) { |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta); |
| rlIdxEnd.lowReg = tReg; |
| dvmCompilerFreeTemp(cUnit, tReg); |
| } |
| /* Punt if "regIdxEnd < len(Array)" is false */ |
| genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0, |
| (ArmLIR *) cUnit->loopAnalysis->branchToPCR); |
| } |
| |
| /* |
| * vA = arrayReg; |
| * vB = idxReg; |
| * vC = endConditionReg; |
| * arg[0] = maxC |
| * arg[1] = minC |
| * arg[2] = loopBranchConditionCode |
| */ |
| static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir) |
| { |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| const int lenOffset = offsetof(ArrayObject, length); |
| const int regLength = dvmCompilerAllocTemp(cUnit); |
| const int maxC = dInsn->arg[0]; |
| const int minC = dInsn->arg[1]; |
| RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA]; |
| RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB]; |
| |
| /* regArray <- arrayRef */ |
| rlArray = loadValue(cUnit, rlArray, kCoreReg); |
| rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg); |
| genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0, |
| (ArmLIR *) cUnit->loopAnalysis->branchToPCR); |
| |
| /* regLength <- len(arrayRef) */ |
| loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength); |
| |
| if (maxC) { |
| int tReg = dvmCompilerAllocTemp(cUnit); |
| opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC); |
| rlIdxInit.lowReg = tReg; |
| dvmCompilerFreeTemp(cUnit, tReg); |
| } |
| |
| /* Punt if "regIdxInit < len(Array)" is false */ |
| genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0, |
| (ArmLIR *) cUnit->loopAnalysis->branchToPCR); |
| } |
| |
| /* |
| * vA = idxReg; |
| * vB = minC; |
| */ |
| static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir) |
| { |
| DecodedInstruction *dInsn = &mir->dalvikInsn; |
| const int minC = dInsn->vB; |
| RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA]; |
| |
| /* regIdx <- initial index value */ |
| rlIdx = loadValue(cUnit, rlIdx, kCoreReg); |
| |
| /* Punt if "regIdxInit + minC >= 0" is false */ |
| genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0, |
| (ArmLIR *) cUnit->loopAnalysis->branchToPCR); |
| } |
| |
| /* Extended MIR instructions like PHI */ |
| static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir) |
| { |
| int opOffset = mir->dalvikInsn.opCode - kMirOpFirst; |
| char *msg = dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1, |
| false); |
| strcpy(msg, extendedMIROpNames[opOffset]); |
| newLIR1(cUnit, kArmPseudoExtended, (int) msg); |
| |
| switch (mir->dalvikInsn.opCode) { |
| case kMirOpPhi: { |
| char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep); |
| newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString); |
| break; |
| } |
| case kMirOpNullNRangeUpCheck: { |
| genHoistedChecksForCountUpLoop(cUnit, mir); |
| break; |
| } |
| case kMirOpNullNRangeDownCheck: { |
| genHoistedChecksForCountDownLoop(cUnit, mir); |
| break; |
| } |
| case kMirOpLowerBound: { |
| genHoistedLowerBoundCheck(cUnit, mir); |
| break; |
| } |
| case kMirOpPunt: { |
| genUnconditionalBranch(cUnit, |
| (ArmLIR *) cUnit->loopAnalysis->branchToPCR); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| /* |
| * Create a PC-reconstruction cell for the starting offset of this trace. |
| * Since the PCR cell is placed near the end of the compiled code which is |
| * usually out of range for a conditional branch, we put two branches (one |
| * branch over to the loop body and one layover branch to the actual PCR) at the |
| * end of the entry block. |
| */ |
| static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry, |
| ArmLIR *bodyLabel) |
| { |
| /* Set up the place holder to reconstruct this Dalvik PC */ |
| ArmLIR *pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true); |
| pcrLabel->opCode = kArmPseudoPCReconstructionCell; |
| pcrLabel->operands[0] = |
| (int) (cUnit->method->insns + entry->startOffset); |
| pcrLabel->operands[1] = entry->startOffset; |
| /* Insert the place holder to the growable list */ |
| dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel); |
| |
| /* |
| * Next, create two branches - one branch over to the loop body and the |
| * other branch to the PCR cell to punt. |
| */ |
| ArmLIR *branchToBody = dvmCompilerNew(sizeof(ArmLIR), true); |
| branchToBody->opCode = kThumbBUncond; |
| branchToBody->generic.target = (LIR *) bodyLabel; |
| setupResourceMasks(branchToBody); |
| cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody; |
| |
| ArmLIR *branchToPCR = dvmCompilerNew(sizeof(ArmLIR), true); |
| branchToPCR->opCode = kThumbBUncond; |
| branchToPCR->generic.target = (LIR *) pcrLabel; |
| setupResourceMasks(branchToPCR); |
| cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR; |
| } |
| |
| #if defined(WITH_SELF_VERIFICATION) |
| static bool selfVerificationPuntOps(MIR *mir) |
| { |
| DecodedInstruction *decInsn = &mir->dalvikInsn; |
| OpCode op = decInsn->opCode; |
| int flags = dexGetInstrFlags(gDvm.instrFlags, op); |
| /* |
| * All opcodes that can throw exceptions and use the |
| * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace |
| * under self-verification mode. |
| */ |
| return (op == OP_MONITOR_ENTER || op == OP_MONITOR_EXIT || |
| op == OP_NEW_INSTANCE || op == OP_NEW_ARRAY || |
| op == OP_CHECK_CAST || op == OP_MOVE_EXCEPTION || |
| op == OP_FILL_ARRAY_DATA || op == OP_EXECUTE_INLINE || |
| op == OP_EXECUTE_INLINE_RANGE || |
| (flags & kInstrInvoke)); |
| } |
| #endif |
| |
| void dvmCompilerMIR2LIR(CompilationUnit *cUnit) |
| { |
| /* Used to hold the labels of each block */ |
| ArmLIR *labelList = |
| dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true); |
| GrowableList chainingListByType[kChainingCellGap]; |
| int i; |
| |
| /* |
| * Initialize various types chaining lists. |
| */ |
| for (i = 0; i < kChainingCellGap; i++) { |
| dvmInitGrowableList(&chainingListByType[i], 2); |
| } |
| |
| BasicBlock **blockList = cUnit->blockList; |
| |
| if (cUnit->executionCount) { |
| /* |
| * Reserve 6 bytes at the beginning of the trace |
| * +----------------------------+ |
| * | execution count (4 bytes) | |
| * +----------------------------+ |
| * | chain cell offset (2 bytes)| |
| * +----------------------------+ |
| * ...and then code to increment the execution |
| * count: |
| * mov r0, pc @ move adr of "mov r0,pc" + 4 to r0 |
| * sub r0, #10 @ back up to addr of executionCount |
| * ldr r1, [r0] |
| * add r1, #1 |
| * str r1, [r0] |
| */ |
| newLIR1(cUnit, kArm16BitData, 0); |
| newLIR1(cUnit, kArm16BitData, 0); |
| cUnit->chainCellOffsetLIR = |
| (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG); |
| cUnit->headerSize = 6; |
| /* Thumb instruction used directly here to ensure correct size */ |
| newLIR2(cUnit, kThumbMovRR_H2L, r0, rpc); |
| newLIR2(cUnit, kThumbSubRI8, r0, 10); |
| newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0); |
| newLIR2(cUnit, kThumbAddRI8, r1, 1); |
| newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0); |
| } else { |
| /* Just reserve 2 bytes for the chain cell offset */ |
| cUnit->chainCellOffsetLIR = |
| (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG); |
| cUnit->headerSize = 2; |
| } |
| |
| /* Handle the content in each basic block */ |
| for (i = 0; i < cUnit->numBlocks; i++) { |
| blockList[i]->visited = true; |
| MIR *mir; |
| |
| labelList[i].operands[0] = blockList[i]->startOffset; |
| |
| if (blockList[i]->blockType >= kChainingCellGap) { |
| /* |
| * Append the label pseudo LIR first. Chaining cells will be handled |
| * separately afterwards. |
| */ |
| dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]); |
| } |
| |
| if (blockList[i]->blockType == kEntryBlock) { |
| labelList[i].opCode = kArmPseudoEntryBlock; |
| if (blockList[i]->firstMIRInsn == NULL) { |
| continue; |
| } else { |
| setupLoopEntryBlock(cUnit, blockList[i], |
| &labelList[blockList[i]->fallThrough->id]); |
| } |
| } else if (blockList[i]->blockType == kExitBlock) { |
| labelList[i].opCode = kArmPseudoExitBlock; |
| goto gen_fallthrough; |
| } else if (blockList[i]->blockType == kDalvikByteCode) { |
| labelList[i].opCode = kArmPseudoNormalBlockLabel; |
| /* Reset the register state */ |
| dvmCompilerResetRegPool(cUnit); |
| dvmCompilerClobberAllRegs(cUnit); |
| dvmCompilerResetNullCheck(cUnit); |
| } else { |
| switch (blockList[i]->blockType) { |
| case kChainingCellNormal: |
| labelList[i].opCode = kArmPseudoChainingCellNormal; |
| /* handle the codegen later */ |
| dvmInsertGrowableList( |
| &chainingListByType[kChainingCellNormal], (void *) i); |
| break; |
| case kChainingCellInvokeSingleton: |
| labelList[i].opCode = |
| kArmPseudoChainingCellInvokeSingleton; |
| labelList[i].operands[0] = |
| (int) blockList[i]->containingMethod; |
| /* handle the codegen later */ |
| dvmInsertGrowableList( |
| &chainingListByType[kChainingCellInvokeSingleton], |
| (void *) i); |
| break; |
| case kChainingCellInvokePredicted: |
| labelList[i].opCode = |
| kArmPseudoChainingCellInvokePredicted; |
| /* handle the codegen later */ |
| dvmInsertGrowableList( |
| &chainingListByType[kChainingCellInvokePredicted], |
| (void *) i); |
| break; |
| case kChainingCellHot: |
| labelList[i].opCode = |
| kArmPseudoChainingCellHot; |
| /* handle the codegen later */ |
| dvmInsertGrowableList( |
| &chainingListByType[kChainingCellHot], |
| (void *) i); |
| break; |
| case kPCReconstruction: |
| /* Make sure exception handling block is next */ |
| labelList[i].opCode = |
| kArmPseudoPCReconstructionBlockLabel; |
| assert (i == cUnit->numBlocks - 2); |
| handlePCReconstruction(cUnit, &labelList[i+1]); |
| break; |
| case kExceptionHandling: |
| labelList[i].opCode = kArmPseudoEHBlockLabel; |
| if (cUnit->pcReconstructionList.numUsed) { |
| loadWordDisp(cUnit, rGLUE, offsetof(InterpState, |
| jitToInterpEntries.dvmJitToInterpPunt), |
| r1); |
| opReg(cUnit, kOpBlx, r1); |
| } |
| break; |
| #if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING) |
| case kChainingCellBackwardBranch: |
| labelList[i].opCode = |
| kArmPseudoChainingCellBackwardBranch; |
| /* handle the codegen later */ |
| dvmInsertGrowableList( |
| &chainingListByType[kChainingCellBackwardBranch], |
| (void *) i); |
| break; |
| #endif |
| default: |
| break; |
| } |
| continue; |
| } |
| |
| ArmLIR *headLIR = NULL; |
| |
| for (mir = blockList[i]->firstMIRInsn; mir; mir = mir->next) { |
| |
| dvmCompilerResetRegPool(cUnit); |
| if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) { |
| dvmCompilerClobberAllRegs(cUnit); |
| } |
| |
| if (gDvmJit.disableOpt & (1 << kSuppressLoads)) { |
| dvmCompilerResetDefTracking(cUnit); |
| } |
| |
| if (mir->dalvikInsn.opCode >= kMirOpFirst) { |
| handleExtendedMIR(cUnit, mir); |
| continue; |
| } |
| |
| |
| OpCode dalvikOpCode = mir->dalvikInsn.opCode; |
| InstructionFormat dalvikFormat = |
| dexGetInstrFormat(gDvm.instrFormat, dalvikOpCode); |
| ArmLIR *boundaryLIR = |
| newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary, |
| mir->offset, |
| (int) dvmCompilerGetDalvikDisassembly(&mir->dalvikInsn) |
| ); |
| if (mir->ssaRep) { |
| char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep); |
| newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString); |
| } |
| |
| /* Remember the first LIR for this block */ |
| if (headLIR == NULL) { |
| headLIR = boundaryLIR; |
| /* Set the first boundaryLIR as a scheduling barrier */ |
| headLIR->defMask = ENCODE_ALL; |
| } |
| |
| bool notHandled; |
| /* |
| * Debugging: screen the opcode first to see if it is in the |
| * do[-not]-compile list |
| */ |
| bool singleStepMe = |
| gDvmJit.includeSelectedOp != |
| ((gDvmJit.opList[dalvikOpCode >> 3] & |
| (1 << (dalvikOpCode & 0x7))) != |
| 0); |
| #if defined(WITH_SELF_VERIFICATION) |
| if (singleStepMe == false) { |
| singleStepMe = selfVerificationPuntOps(mir); |
| } |
| #endif |
| if (singleStepMe || cUnit->allSingleStep) { |
| notHandled = false; |
| genInterpSingleStep(cUnit, mir); |
| } else { |
| opcodeCoverage[dalvikOpCode]++; |
| switch (dalvikFormat) { |
| case kFmt10t: |
| case kFmt20t: |
| case kFmt30t: |
| notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit, |
| mir, blockList[i], labelList); |
| break; |
| case kFmt10x: |
| notHandled = handleFmt10x(cUnit, mir); |
| break; |
| case kFmt11n: |
| case kFmt31i: |
| notHandled = handleFmt11n_Fmt31i(cUnit, mir); |
| break; |
| case kFmt11x: |
| notHandled = handleFmt11x(cUnit, mir); |
| break; |
| case kFmt12x: |
| notHandled = handleFmt12x(cUnit, mir); |
| break; |
| case kFmt20bc: |
| notHandled = handleFmt20bc(cUnit, mir); |
| break; |
| case kFmt21c: |
| case kFmt31c: |
| notHandled = handleFmt21c_Fmt31c(cUnit, mir); |
| break; |
| case kFmt21h: |
| notHandled = handleFmt21h(cUnit, mir); |
| break; |
| case kFmt21s: |
| notHandled = handleFmt21s(cUnit, mir); |
| break; |
| case kFmt21t: |
| notHandled = handleFmt21t(cUnit, mir, blockList[i], |
| labelList); |
| break; |
| case kFmt22b: |
| case kFmt22s: |
| notHandled = handleFmt22b_Fmt22s(cUnit, mir); |
| break; |
| case kFmt22c: |
| notHandled = handleFmt22c(cUnit, mir); |
| break; |
| case kFmt22cs: |
| notHandled = handleFmt22cs(cUnit, mir); |
| break; |
| case kFmt22t: |
| notHandled = handleFmt22t(cUnit, mir, blockList[i], |
| labelList); |
| break; |
| case kFmt22x: |
| case kFmt32x: |
| notHandled = handleFmt22x_Fmt32x(cUnit, mir); |
| break; |
| case kFmt23x: |
| notHandled = handleFmt23x(cUnit, mir); |
| break; |
| case kFmt31t: |
| notHandled = handleFmt31t(cUnit, mir); |
| break; |
| case kFmt3rc: |
| case kFmt35c: |
| notHandled = handleFmt35c_3rc(cUnit, mir, blockList[i], |
| labelList); |
| break; |
| case kFmt3rms: |
| case kFmt35ms: |
| notHandled = handleFmt35ms_3rms(cUnit, mir,blockList[i], |
| labelList); |
| break; |
| case kFmt3inline: |
| case kFmt3rinline: |
| notHandled = handleExecuteInline(cUnit, mir); |
| break; |
| case kFmt51l: |
| notHandled = handleFmt51l(cUnit, mir); |
| break; |
| default: |
| notHandled = true; |
| break; |
| } |
| } |
| if (notHandled) { |
| LOGE("%#06x: Opcode 0x%x (%s) / Fmt %d not handled\n", |
| mir->offset, |
| dalvikOpCode, getOpcodeName(dalvikOpCode), |
| dalvikFormat); |
| dvmCompilerAbort(cUnit); |
| break; |
| } |
| } |
| |
| if (blockList[i]->blockType == kEntryBlock) { |
| dvmCompilerAppendLIR(cUnit, |
| (LIR *) cUnit->loopAnalysis->branchToBody); |
| dvmCompilerAppendLIR(cUnit, |
| (LIR *) cUnit->loopAnalysis->branchToPCR); |
| } |
| |
| if (headLIR) { |
| /* |
| * Eliminate redundant loads/stores and delay stores into later |
| * slots |
| */ |
| dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR, |
| cUnit->lastLIRInsn); |
| } |
| |
| gen_fallthrough: |
| /* |
| * Check if the block is terminated due to trace length constraint - |
| * insert an unconditional branch to the chaining cell. |
| */ |
| if (blockList[i]->needFallThroughBranch) { |
| genUnconditionalBranch(cUnit, |
| &labelList[blockList[i]->fallThrough->id]); |
| } |
| |
| } |
| |
| /* Handle the chaining cells in predefined order */ |
| for (i = 0; i < kChainingCellGap; i++) { |
| size_t j; |
| int *blockIdList = (int *) chainingListByType[i].elemList; |
| |
| cUnit->numChainingCells[i] = chainingListByType[i].numUsed; |
| |
| /* No chaining cells of this type */ |
| if (cUnit->numChainingCells[i] == 0) |
| continue; |
| |
| /* Record the first LIR for a new type of chaining cell */ |
| cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]]; |
| |
| for (j = 0; j < chainingListByType[i].numUsed; j++) { |
| int blockId = blockIdList[j]; |
| |
| /* Align this chaining cell first */ |
| newLIR0(cUnit, kArmPseudoPseudoAlign4); |
| |
| /* Insert the pseudo chaining instruction */ |
| dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]); |
| |
| |
| switch (blockList[blockId]->blockType) { |
| case kChainingCellNormal: |
| handleNormalChainingCell(cUnit, |
| blockList[blockId]->startOffset); |
| break; |
| case kChainingCellInvokeSingleton: |
| handleInvokeSingletonChainingCell(cUnit, |
| blockList[blockId]->containingMethod); |
| break; |
| case kChainingCellInvokePredicted: |
| handleInvokePredictedChainingCell(cUnit); |
| break; |
| case kChainingCellHot: |
| handleHotChainingCell(cUnit, |
| blockList[blockId]->startOffset); |
| break; |
| #if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING) |
| case kChainingCellBackwardBranch: |
| handleBackwardBranchChainingCell(cUnit, |
| blockList[blockId]->startOffset); |
| break; |
| #endif |
| default: |
| LOGE("Bad blocktype %d", blockList[blockId]->blockType); |
| dvmCompilerAbort(cUnit); |
| } |
| } |
| } |
| |
| /* Mark the bottom of chaining cells */ |
| cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kArmChainingCellBottom); |
| |
| /* |
| * Generate the branch to the dvmJitToInterpNoChain entry point at the end |
| * of all chaining cells for the overflow cases. |
| */ |
| if (cUnit->switchOverflowPad) { |
| loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad); |
| loadWordDisp(cUnit, rGLUE, offsetof(InterpState, |
| jitToInterpEntries.dvmJitToInterpNoChain), r2); |
| opRegReg(cUnit, kOpAdd, r1, r1); |
| opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1); |
| #if defined(JIT_STATS) |
| loadConstant(cUnit, r0, kSwitchOverflow); |
| #endif |
| opReg(cUnit, kOpBlx, r2); |
| } |
| |
| dvmCompilerApplyGlobalOptimizations(cUnit); |
| |
| #if defined(WITH_SELF_VERIFICATION) |
| selfVerificationBranchInsertPass(cUnit); |
| #endif |
| } |
| |
| /* Accept the work and start compiling */ |
| bool dvmCompilerDoWork(CompilerWorkOrder *work) |
| { |
| bool res; |
| |
| if (gDvmJit.codeCacheFull) { |
| return false; |
| } |
| |
| switch (work->kind) { |
| case kWorkOrderMethod: |
| res = dvmCompileMethod(work->info, &work->result); |
| break; |
| case kWorkOrderTrace: |
| /* Start compilation with maximally allowed trace length */ |
| res = dvmCompileTrace(work->info, JIT_MAX_TRACE_LEN, &work->result, |
| work->bailPtr); |
| break; |
| case kWorkOrderTraceDebug: { |
| bool oldPrintMe = gDvmJit.printMe; |
| gDvmJit.printMe = true; |
| /* Start compilation with maximally allowed trace length */ |
| res = dvmCompileTrace(work->info, JIT_MAX_TRACE_LEN, &work->result, |
| work->bailPtr); |
| gDvmJit.printMe = oldPrintMe;; |
| break; |
| } |
| default: |
| res = false; |
| LOGE("Jit: unknown work order type"); |
| assert(0); // Bail if debug build, discard oteherwise |
| } |
| return res; |
| } |
| |
| /* Architectural-specific debugging helpers go here */ |
| void dvmCompilerArchDump(void) |
| { |
| /* Print compiled opcode in this VM instance */ |
| int i, start, streak; |
| char buf[1024]; |
| |
| streak = i = 0; |
| buf[0] = 0; |
| while (opcodeCoverage[i] == 0 && i < 256) { |
| i++; |
| } |
| if (i == 256) { |
| return; |
| } |
| for (start = i++, streak = 1; i < 256; i++) { |
| if (opcodeCoverage[i]) { |
| streak++; |
| } else { |
| if (streak == 1) { |
| sprintf(buf+strlen(buf), "%x,", start); |
| } else { |
| sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1); |
| } |
| streak = 0; |
| while (opcodeCoverage[i] == 0 && i < 256) { |
| i++; |
| } |
| if (i < 256) { |
| streak = 1; |
| start = i; |
| } |
| } |
| } |
| if (streak) { |
| if (streak == 1) { |
| sprintf(buf+strlen(buf), "%x", start); |
| } else { |
| sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1); |
| } |
| } |
| if (strlen(buf)) { |
| LOGD("dalvik.vm.jit.op = %s", buf); |
| } |
| } |
| |
| /* Common initialization routine for an architecture family */ |
| bool dvmCompilerArchInit() |
| { |
| int i; |
| |
| for (i = 0; i < kArmLast; i++) { |
| if (EncodingMap[i].opCode != i) { |
| LOGE("Encoding order for %s is wrong: expecting %d, seeing %d", |
| EncodingMap[i].name, i, EncodingMap[i].opCode); |
| dvmAbort(); // OK to dvmAbort - build error |
| } |
| } |
| |
| return dvmCompilerArchVariantInit(); |
| } |
| |
| void *dvmCompilerGetInterpretTemplate() |
| { |
| return (void*) ((int)gDvmJit.codeCache + |
| templateEntryOffsets[TEMPLATE_INTERPRET]); |
| } |
| |
| /* Needed by the ld/st optmizatons */ |
| ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc) |
| { |
| return genRegCopyNoInsert(cUnit, rDest, rSrc); |
| } |
| |
| /* Needed by the register allocator */ |
| ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc) |
| { |
| return genRegCopy(cUnit, rDest, rSrc); |
| } |
| |
| /* Needed by the register allocator */ |
| void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi, |
| int srcLo, int srcHi) |
| { |
| genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi); |
| } |
| |
| void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase, |
| int displacement, int rSrc, OpSize size) |
| { |
| storeBaseDisp(cUnit, rBase, displacement, rSrc, size); |
| } |
| |
| void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase, |
| int displacement, int rSrcLo, int rSrcHi) |
| { |
| storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi); |
| } |