| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* |
| * Dalvik verification subroutines. |
| */ |
| #include "Dalvik.h" |
| #include "analysis/CodeVerify.h" |
| #include "libdex/DexCatch.h" |
| #include "libdex/InstrUtils.h" |
| |
| |
| /* |
| * Compute the width of the instruction at each address in the instruction |
| * stream. Addresses that are in the middle of an instruction, or that |
| * are part of switch table data, are not set (so the caller should probably |
| * initialize "insnFlags" to zero). |
| * |
| * If "pNewInstanceCount" is not NULL, it will be set to the number of |
| * new-instance instructions in the method. |
| * |
| * Performs some static checks, notably: |
| * - opcode of first instruction begins at index 0 |
| * - only documented instructions may appear |
| * - each instruction follows the last |
| * - last byte of last instruction is at (code_length-1) |
| * |
| * Logs an error and returns "false" on failure. |
| */ |
| bool dvmComputeCodeWidths(const Method* meth, InsnFlags* insnFlags, |
| int* pNewInstanceCount) |
| { |
| size_t insnCount = dvmGetMethodInsnsSize(meth); |
| const u2* insns = meth->insns; |
| bool result = false; |
| int newInstanceCount = 0; |
| int i; |
| |
| |
| for (i = 0; i < (int) insnCount; /**/) { |
| size_t width = dexGetInstrOrTableWidthAbs(gDvm.instrWidth, insns); |
| if (width == 0) { |
| LOG_VFY_METH(meth, |
| "VFY: invalid post-opt instruction (0x%04x)\n", *insns); |
| goto bail; |
| } |
| |
| if ((*insns & 0xff) == OP_NEW_INSTANCE) |
| newInstanceCount++; |
| |
| if (width > 65535) { |
| LOG_VFY_METH(meth, "VFY: insane width %d\n", width); |
| goto bail; |
| } |
| |
| insnFlags[i] |= width; |
| i += width; |
| insns += width; |
| } |
| if (i != (int) dvmGetMethodInsnsSize(meth)) { |
| LOG_VFY_METH(meth, "VFY: code did not end where expected (%d vs. %d)\n", |
| i, dvmGetMethodInsnsSize(meth)); |
| goto bail; |
| } |
| |
| result = true; |
| if (pNewInstanceCount != NULL) |
| *pNewInstanceCount = newInstanceCount; |
| |
| bail: |
| return result; |
| } |
| |
| /* |
| * Set the "in try" flags for all instructions protected by "try" statements. |
| * Also sets the "branch target" flags for exception handlers. |
| * |
| * Call this after widths have been set in "insnFlags". |
| * |
| * Returns "false" if something in the exception table looks fishy, but |
| * we're expecting the exception table to be somewhat sane. |
| */ |
| bool dvmSetTryFlags(const Method* meth, InsnFlags* insnFlags) |
| { |
| u4 insnsSize = dvmGetMethodInsnsSize(meth); |
| const DexCode* pCode = dvmGetMethodCode(meth); |
| u4 triesSize = pCode->triesSize; |
| const DexTry* pTries; |
| u4 handlersSize; |
| u4 offset; |
| u4 i; |
| |
| if (triesSize == 0) { |
| return true; |
| } |
| |
| pTries = dexGetTries(pCode); |
| handlersSize = dexGetHandlersSize(pCode); |
| |
| for (i = 0; i < triesSize; i++) { |
| const DexTry* pTry = &pTries[i]; |
| u4 start = pTry->startAddr; |
| u4 end = start + pTry->insnCount; |
| u4 addr; |
| |
| if ((start >= end) || (start >= insnsSize) || (end > insnsSize)) { |
| LOG_VFY_METH(meth, |
| "VFY: bad exception entry: startAddr=%d endAddr=%d (size=%d)\n", |
| start, end, insnsSize); |
| return false; |
| } |
| |
| if (dvmInsnGetWidth(insnFlags, start) == 0) { |
| LOG_VFY_METH(meth, |
| "VFY: 'try' block starts inside an instruction (%d)\n", |
| start); |
| return false; |
| } |
| |
| for (addr = start; addr < end; |
| addr += dvmInsnGetWidth(insnFlags, addr)) |
| { |
| assert(dvmInsnGetWidth(insnFlags, addr) != 0); |
| dvmInsnSetInTry(insnFlags, addr, true); |
| } |
| } |
| |
| /* Iterate over each of the handlers to verify target addresses. */ |
| offset = dexGetFirstHandlerOffset(pCode); |
| for (i = 0; i < handlersSize; i++) { |
| DexCatchIterator iterator; |
| dexCatchIteratorInit(&iterator, pCode, offset); |
| |
| for (;;) { |
| DexCatchHandler* handler = dexCatchIteratorNext(&iterator); |
| u4 addr; |
| |
| if (handler == NULL) { |
| break; |
| } |
| |
| addr = handler->address; |
| if (dvmInsnGetWidth(insnFlags, addr) == 0) { |
| LOG_VFY_METH(meth, |
| "VFY: exception handler starts at bad address (%d)\n", |
| addr); |
| return false; |
| } |
| |
| dvmInsnSetBranchTarget(insnFlags, addr, true); |
| } |
| |
| offset = dexCatchIteratorGetEndOffset(&iterator, pCode); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Verify a switch table. "curOffset" is the offset of the switch |
| * instruction. |
| */ |
| bool dvmCheckSwitchTargets(const Method* meth, InsnFlags* insnFlags, |
| int curOffset) |
| { |
| const int insnCount = dvmGetMethodInsnsSize(meth); |
| const u2* insns = meth->insns + curOffset; |
| const u2* switchInsns; |
| u2 expectedSignature; |
| int switchCount, tableSize; |
| int offsetToSwitch, offsetToKeys, offsetToTargets, targ; |
| int offset, absOffset; |
| |
| assert(curOffset >= 0 && curOffset < insnCount); |
| |
| /* make sure the start of the switch is in range */ |
| offsetToSwitch = (s2) insns[1]; |
| if (curOffset + offsetToSwitch < 0 || |
| curOffset + offsetToSwitch + 2 >= insnCount) |
| { |
| LOG_VFY_METH(meth, |
| "VFY: invalid switch start: at %d, switch offset %d, count %d\n", |
| curOffset, offsetToSwitch, insnCount); |
| return false; |
| } |
| |
| /* offset to switch table is a relative branch-style offset */ |
| switchInsns = insns + offsetToSwitch; |
| |
| /* make sure the table is 32-bit aligned */ |
| if ((((u4) switchInsns) & 0x03) != 0) { |
| LOG_VFY_METH(meth, |
| "VFY: unaligned switch table: at %d, switch offset %d\n", |
| curOffset, offsetToSwitch); |
| return false; |
| } |
| |
| switchCount = switchInsns[1]; |
| |
| if ((*insns & 0xff) == OP_PACKED_SWITCH) { |
| /* 0=sig, 1=count, 2/3=firstKey */ |
| offsetToTargets = 4; |
| offsetToKeys = -1; |
| expectedSignature = kPackedSwitchSignature; |
| } else { |
| /* 0=sig, 1=count, 2..count*2 = keys */ |
| offsetToKeys = 2; |
| offsetToTargets = 2 + 2*switchCount; |
| expectedSignature = kSparseSwitchSignature; |
| } |
| tableSize = offsetToTargets + switchCount*2; |
| |
| if (switchInsns[0] != expectedSignature) { |
| LOG_VFY_METH(meth, |
| "VFY: wrong signature for switch table (0x%04x, wanted 0x%04x)\n", |
| switchInsns[0], expectedSignature); |
| return false; |
| } |
| |
| /* make sure the end of the switch is in range */ |
| if (curOffset + offsetToSwitch + tableSize > insnCount) { |
| LOG_VFY_METH(meth, |
| "VFY: invalid switch end: at %d, switch offset %d, end %d, count %d\n", |
| curOffset, offsetToSwitch, curOffset + offsetToSwitch + tableSize, |
| insnCount); |
| return false; |
| } |
| |
| /* for a sparse switch, verify the keys are in ascending order */ |
| if (offsetToKeys > 0 && switchCount > 1) { |
| s4 lastKey; |
| |
| lastKey = switchInsns[offsetToKeys] | |
| (switchInsns[offsetToKeys+1] << 16); |
| for (targ = 1; targ < switchCount; targ++) { |
| s4 key = (s4) switchInsns[offsetToKeys + targ*2] | |
| (s4) (switchInsns[offsetToKeys + targ*2 +1] << 16); |
| if (key <= lastKey) { |
| LOG_VFY_METH(meth, |
| "VFY: invalid packed switch: last key=%d, this=%d\n", |
| lastKey, key); |
| return false; |
| } |
| |
| lastKey = key; |
| } |
| } |
| |
| /* verify each switch target */ |
| for (targ = 0; targ < switchCount; targ++) { |
| offset = (s4) switchInsns[offsetToTargets + targ*2] | |
| (s4) (switchInsns[offsetToTargets + targ*2 +1] << 16); |
| absOffset = curOffset + offset; |
| |
| if (absOffset < 0 || absOffset >= insnCount || |
| !dvmInsnIsOpcode(insnFlags, absOffset)) |
| { |
| LOG_VFY_METH(meth, |
| "VFY: invalid switch target %d (-> 0x%x) at 0x%x[%d]\n", |
| offset, absOffset, curOffset, targ); |
| return false; |
| } |
| dvmInsnSetBranchTarget(insnFlags, absOffset, true); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Verify that the target of a branch instruction is valid. |
| * |
| * We don't expect code to jump directly into an exception handler, but |
| * it's valid to do so as long as the target isn't a "move-exception" |
| * instruction. We verify that in a later stage. |
| * |
| * The VM spec doesn't forbid an instruction from branching to itself, |
| * but the Dalvik spec declares that only certain instructions can do so. |
| */ |
| bool dvmCheckBranchTarget(const Method* meth, InsnFlags* insnFlags, |
| int curOffset, bool selfOkay) |
| { |
| const int insnCount = dvmGetMethodInsnsSize(meth); |
| int offset, absOffset; |
| bool isConditional; |
| |
| if (!dvmGetBranchTarget(meth, insnFlags, curOffset, &offset, |
| &isConditional)) |
| return false; |
| |
| if (!selfOkay && offset == 0) { |
| LOG_VFY_METH(meth, "VFY: branch offset of zero not allowed at 0x%x\n", |
| curOffset); |
| return false; |
| } |
| |
| /* |
| * Check for 32-bit overflow. This isn't strictly necessary if we can |
| * depend on the VM to have identical "wrap-around" behavior, but |
| * it's unwise to depend on that. |
| */ |
| if (((s8) curOffset + (s8) offset) != (s8)(curOffset + offset)) { |
| LOG_VFY_METH(meth, "VFY: branch target overflow 0x%x +%d\n", |
| curOffset, offset); |
| return false; |
| } |
| absOffset = curOffset + offset; |
| if (absOffset < 0 || absOffset >= insnCount || |
| !dvmInsnIsOpcode(insnFlags, absOffset)) |
| { |
| LOG_VFY_METH(meth, |
| "VFY: invalid branch target %d (-> 0x%x) at 0x%x\n", |
| offset, absOffset, curOffset); |
| return false; |
| } |
| dvmInsnSetBranchTarget(insnFlags, absOffset, true); |
| |
| return true; |
| } |
| |
| |
| /* |
| * Output a code verifier warning message. For the pre-verifier it's not |
| * a big deal if something fails (and it may even be expected), but if |
| * we're doing just-in-time verification it's significant. |
| */ |
| void dvmLogVerifyFailure(const Method* meth, const char* format, ...) |
| { |
| va_list ap; |
| int logLevel; |
| |
| if (gDvm.optimizing) { |
| return; |
| //logLevel = ANDROID_LOG_DEBUG; |
| } else { |
| logLevel = ANDROID_LOG_WARN; |
| } |
| |
| va_start(ap, format); |
| LOG_PRI_VA(logLevel, LOG_TAG, format, ap); |
| if (meth != NULL) { |
| char* desc = dexProtoCopyMethodDescriptor(&meth->prototype); |
| LOG_PRI(logLevel, LOG_TAG, "VFY: rejected %s.%s %s\n", |
| meth->clazz->descriptor, meth->name, desc); |
| free(desc); |
| } |
| } |
| |
| /* |
| * Show a relatively human-readable message describing the failure to |
| * resolve a class. |
| * |
| * TODO: this is somewhat misleading when resolution fails because of |
| * illegal access rather than nonexistent class. |
| */ |
| void dvmLogUnableToResolveClass(const char* missingClassDescr, |
| const Method* meth) |
| { |
| if (gDvm.optimizing) |
| return; |
| |
| char* dotMissingClass = dvmDescriptorToDot(missingClassDescr); |
| char* dotFromClass = dvmDescriptorToDot(meth->clazz->descriptor); |
| //char* methodDescr = dexProtoCopyMethodDescriptor(&meth->prototype); |
| |
| LOGE("Could not find class '%s', referenced from method %s.%s\n", |
| dotMissingClass, dotFromClass, meth->name/*, methodDescr*/); |
| |
| free(dotMissingClass); |
| free(dotFromClass); |
| //free(methodDescr); |
| } |
| |
| /* |
| * Extract the relative offset from a branch instruction. |
| * |
| * Returns "false" on failure (e.g. this isn't a branch instruction). |
| */ |
| bool dvmGetBranchTarget(const Method* meth, InsnFlags* insnFlags, |
| int curOffset, int* pOffset, bool* pConditional) |
| { |
| const u2* insns = meth->insns + curOffset; |
| |
| switch (*insns & 0xff) { |
| case OP_GOTO: |
| *pOffset = ((s2) *insns) >> 8; |
| *pConditional = false; |
| break; |
| case OP_GOTO_32: |
| *pOffset = insns[1] | (((u4) insns[2]) << 16); |
| *pConditional = false; |
| break; |
| case OP_GOTO_16: |
| *pOffset = (s2) insns[1]; |
| *pConditional = false; |
| break; |
| case OP_IF_EQ: |
| case OP_IF_NE: |
| case OP_IF_LT: |
| case OP_IF_GE: |
| case OP_IF_GT: |
| case OP_IF_LE: |
| case OP_IF_EQZ: |
| case OP_IF_NEZ: |
| case OP_IF_LTZ: |
| case OP_IF_GEZ: |
| case OP_IF_GTZ: |
| case OP_IF_LEZ: |
| *pOffset = (s2) insns[1]; |
| *pConditional = true; |
| break; |
| default: |
| return false; |
| break; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Given a 32-bit constant, return the most-restricted RegType enum entry |
| * that can hold the value. |
| */ |
| char dvmDetermineCat1Const(s4 value) |
| { |
| if (value < -32768) |
| return kRegTypeInteger; |
| else if (value < -128) |
| return kRegTypeShort; |
| else if (value < 0) |
| return kRegTypeByte; |
| else if (value == 0) |
| return kRegTypeZero; |
| else if (value == 1) |
| return kRegTypeOne; |
| else if (value < 128) |
| return kRegTypePosByte; |
| else if (value < 32768) |
| return kRegTypePosShort; |
| else if (value < 65536) |
| return kRegTypeChar; |
| else |
| return kRegTypeInteger; |
| } |