| /* |
| * Copyright (C) 2008 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "Dalvik.h" |
| #include "HeapBitmap.h" |
| #include "clz.h" |
| #include <limits.h> // for ULONG_MAX |
| #include <sys/mman.h> // for madvise(), mmap() |
| #include <cutils/ashmem.h> |
| |
| #define HB_ASHMEM_NAME "dalvik-heap-bitmap" |
| |
| #ifndef PAGE_SIZE |
| #define PAGE_SIZE 4096 |
| #endif |
| #define ALIGN_UP_TO_PAGE_SIZE(p) \ |
| (((size_t)(p) + (PAGE_SIZE - 1)) & ~(PAGE_SIZE - 1)) |
| |
| #define LIKELY(exp) (__builtin_expect((exp) != 0, true)) |
| #define UNLIKELY(exp) (__builtin_expect((exp) != 0, false)) |
| |
| /* |
| * Initialize a HeapBitmap so that it points to a bitmap large |
| * enough to cover a heap at <base> of <maxSize> bytes, where |
| * objects are guaranteed to be HB_OBJECT_ALIGNMENT-aligned. |
| */ |
| bool |
| dvmHeapBitmapInit(HeapBitmap *hb, const void *base, size_t maxSize, |
| const char *name) |
| { |
| void *bits; |
| size_t bitsLen; |
| size_t allocLen; |
| int fd; |
| char nameBuf[ASHMEM_NAME_LEN] = HB_ASHMEM_NAME; |
| |
| assert(hb != NULL); |
| |
| bitsLen = HB_OFFSET_TO_INDEX(maxSize) * sizeof(*hb->bits); |
| allocLen = ALIGN_UP_TO_PAGE_SIZE(bitsLen); // required by ashmem |
| |
| if (name != NULL) { |
| snprintf(nameBuf, sizeof(nameBuf), HB_ASHMEM_NAME "/%s", name); |
| } |
| fd = ashmem_create_region(nameBuf, allocLen); |
| if (fd < 0) { |
| LOGE("Could not create %zu-byte ashmem region \"%s\" to cover " |
| "%zu-byte heap (%d)\n", |
| allocLen, nameBuf, maxSize, fd); |
| return false; |
| } |
| |
| bits = mmap(NULL, bitsLen, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0); |
| close(fd); |
| if (bits == MAP_FAILED) { |
| LOGE("Could not mmap %d-byte ashmem region \"%s\"\n", |
| bitsLen, nameBuf); |
| return false; |
| } |
| |
| memset(hb, 0, sizeof(*hb)); |
| hb->bits = bits; |
| hb->bitsLen = bitsLen; |
| hb->base = (uintptr_t)base; |
| hb->max = hb->base - 1; |
| |
| return true; |
| } |
| |
| /* |
| * Initialize <hb> so that it covers the same extent as <templateBitmap>. |
| */ |
| bool |
| dvmHeapBitmapInitFromTemplate(HeapBitmap *hb, const HeapBitmap *templateBitmap, |
| const char *name) |
| { |
| return dvmHeapBitmapInit(hb, |
| (void *)templateBitmap->base, HB_MAX_OFFSET(templateBitmap), name); |
| } |
| |
| /* |
| * Initialize the bitmaps in <out> so that they cover the same extent as |
| * the corresponding bitmaps in <templates>. |
| */ |
| bool |
| dvmHeapBitmapInitListFromTemplates(HeapBitmap out[], HeapBitmap templates[], |
| size_t numBitmaps, const char *name) |
| { |
| size_t i; |
| char fullName[PATH_MAX]; |
| |
| fullName[sizeof(fullName)-1] = '\0'; |
| for (i = 0; i < numBitmaps; i++) { |
| bool ok; |
| |
| /* If two ashmem regions have the same name, only one gets |
| * the name when looking at the maps. |
| */ |
| snprintf(fullName, sizeof(fullName)-1, "%s/%zd", name, i); |
| |
| ok = dvmHeapBitmapInitFromTemplate(&out[i], &templates[i], fullName); |
| if (!ok) { |
| dvmHeapBitmapDeleteList(out, i); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /* |
| * Clean up any resources associated with the bitmap. |
| */ |
| void |
| dvmHeapBitmapDelete(HeapBitmap *hb) |
| { |
| assert(hb != NULL); |
| |
| if (hb->bits != NULL) { |
| // Re-calculate the size we passed to mmap(). |
| size_t allocLen = ALIGN_UP_TO_PAGE_SIZE(hb->bitsLen); |
| munmap((char *)hb->bits, allocLen); |
| } |
| memset(hb, 0, sizeof(*hb)); |
| } |
| |
| /* |
| * Clean up any resources associated with the bitmaps. |
| */ |
| void |
| dvmHeapBitmapDeleteList(HeapBitmap hbs[], size_t numBitmaps) |
| { |
| size_t i; |
| |
| for (i = 0; i < numBitmaps; i++) { |
| dvmHeapBitmapDelete(&hbs[i]); |
| } |
| } |
| |
| /* |
| * Fill the bitmap with zeroes. Returns the bitmap's memory to |
| * the system as a side-effect. |
| */ |
| void |
| dvmHeapBitmapZero(HeapBitmap *hb) |
| { |
| assert(hb != NULL); |
| |
| if (hb->bits != NULL) { |
| /* This returns the memory to the system. |
| * Successive page faults will return zeroed memory. |
| */ |
| madvise(hb->bits, hb->bitsLen, MADV_DONTNEED); |
| hb->max = hb->base - 1; |
| } |
| } |
| |
| /* |
| * Walk through the bitmaps in increasing address order, and find the |
| * object pointers that correspond to places where the bitmaps differ. |
| * Call <callback> zero or more times with lists of these object pointers. |
| * |
| * The <finger> argument to the callback indicates the next-highest |
| * address that hasn't been visited yet; setting bits for objects whose |
| * addresses are less than <finger> are not guaranteed to be seen by |
| * the current XorWalk. <finger> will be set to ULONG_MAX when the |
| * end of the bitmap is reached. |
| */ |
| bool |
| dvmHeapBitmapXorWalk(const HeapBitmap *hb1, const HeapBitmap *hb2, |
| bool (*callback)(size_t numPtrs, void **ptrs, |
| const void *finger, void *arg), |
| void *callbackArg) |
| { |
| static const size_t kPointerBufSize = 128; |
| void *pointerBuf[kPointerBufSize]; |
| void **pb = pointerBuf; |
| size_t index; |
| size_t i; |
| |
| #define FLUSH_POINTERBUF(finger_) \ |
| do { \ |
| if (!callback(pb - pointerBuf, (void **)pointerBuf, \ |
| (void *)(finger_), callbackArg)) \ |
| { \ |
| LOGW("dvmHeapBitmapXorWalk: callback failed\n"); \ |
| return false; \ |
| } \ |
| pb = pointerBuf; \ |
| } while (false) |
| |
| #define DECODE_BITS(hb_, bits_, update_index_) \ |
| do { \ |
| if (UNLIKELY(bits_ != 0)) { \ |
| static const unsigned long kHighBit = \ |
| (unsigned long)1 << (HB_BITS_PER_WORD - 1); \ |
| const uintptr_t ptrBase = HB_INDEX_TO_OFFSET(i) + hb_->base; \ |
| /*TODO: hold onto ptrBase so we can shrink max later if possible */ \ |
| /*TODO: see if this is likely or unlikely */ \ |
| while (bits_ != 0) { \ |
| const int rshift = CLZ(bits_); \ |
| bits_ &= ~(kHighBit >> rshift); \ |
| *pb++ = (void *)(ptrBase + rshift * HB_OBJECT_ALIGNMENT); \ |
| } \ |
| /* Make sure that there are always enough slots available */ \ |
| /* for an entire word of 1s. */ \ |
| if (kPointerBufSize - (pb - pointerBuf) < HB_BITS_PER_WORD) { \ |
| FLUSH_POINTERBUF(ptrBase + \ |
| HB_BITS_PER_WORD * HB_OBJECT_ALIGNMENT); \ |
| if (update_index_) { \ |
| /* The callback may have caused hb_->max to grow. */ \ |
| index = HB_OFFSET_TO_INDEX(hb_->max - hb_->base); \ |
| } \ |
| } \ |
| } \ |
| } while (false) |
| |
| assert(hb1 != NULL); |
| assert(hb1->bits != NULL); |
| assert(hb2 != NULL); |
| assert(hb2->bits != NULL); |
| assert(callback != NULL); |
| |
| if (hb1->base != hb2->base) { |
| LOGW("dvmHeapBitmapXorWalk: bitmaps cover different heaps " |
| "(0x%08x != 0x%08x)\n", |
| (uintptr_t)hb1->base, (uintptr_t)hb2->base); |
| return false; |
| } |
| if (hb1->bitsLen != hb2->bitsLen) { |
| LOGW("dvmHeapBitmapXorWalk: size of bitmaps differ (%zd != %zd)\n", |
| hb1->bitsLen, hb2->bitsLen); |
| return false; |
| } |
| if (hb1->max < hb1->base && hb2->max < hb2->base) { |
| /* Easy case; both are obviously empty. |
| */ |
| return true; |
| } |
| |
| /* First, walk along the section of the bitmaps that may be the same. |
| */ |
| if (hb1->max >= hb1->base && hb2->max >= hb2->base) { |
| unsigned long int *p1, *p2; |
| uintptr_t offset; |
| |
| offset = ((hb1->max < hb2->max) ? hb1->max : hb2->max) - hb1->base; |
| //TODO: keep track of which (and whether) one is longer for later |
| index = HB_OFFSET_TO_INDEX(offset); |
| |
| p1 = hb1->bits; |
| p2 = hb2->bits; |
| for (i = 0; i <= index; i++) { |
| //TODO: unroll this. pile up a few in locals? |
| unsigned long int diff = *p1++ ^ *p2++; |
| DECODE_BITS(hb1, diff, false); |
| //BUG: if the callback was called, either max could have changed. |
| } |
| /* The next index to look at. |
| */ |
| index++; |
| } else { |
| /* One of the bitmaps is empty. |
| */ |
| index = 0; |
| } |
| |
| /* If one bitmap's max is larger, walk through the rest of the |
| * set bits. |
| */ |
| const HeapBitmap *longHb; |
| unsigned long int *p; |
| //TODO: may be the same size, in which case this is wasted work |
| longHb = (hb1->max > hb2->max) ? hb1 : hb2; |
| i = index; |
| index = HB_OFFSET_TO_INDEX(longHb->max - longHb->base); |
| p = longHb->bits + i; |
| for (/* i = i */; i <= index; i++) { |
| //TODO: unroll this |
| unsigned long bits = *p++; |
| DECODE_BITS(longHb, bits, true); |
| } |
| |
| if (pb > pointerBuf) { |
| /* Set the finger to the end of the heap (rather than longHb->max) |
| * so that the callback doesn't expect to be called again |
| * if it happens to change the current max. |
| */ |
| FLUSH_POINTERBUF(longHb->base + HB_MAX_OFFSET(longHb)); |
| } |
| |
| return true; |
| |
| #undef FLUSH_POINTERBUF |
| #undef DECODE_BITS |
| } |
| |
| /* |
| * Fills outIndexList with indices so that for all i: |
| * |
| * hb[outIndexList[i]].base < hb[outIndexList[i+1]].base |
| */ |
| static void |
| createSortedBitmapIndexList(const HeapBitmap hbs[], size_t numBitmaps, |
| size_t outIndexList[]) |
| { |
| int i, j; |
| |
| /* numBitmaps is usually 2 or 3, so use a simple sort */ |
| for (i = 0; i < (int) numBitmaps; i++) { |
| outIndexList[i] = i; |
| for (j = 0; j < i; j++) { |
| if (hbs[j].base > hbs[i].base) { |
| int tmp = outIndexList[i]; |
| outIndexList[i] = outIndexList[j]; |
| outIndexList[j] = tmp; |
| } |
| } |
| } |
| } |
| |
| /* |
| * Similar to dvmHeapBitmapXorWalk(), but compare multiple bitmaps. |
| * Regardless of the order of the arrays, the bitmaps will be visited |
| * in address order, so that finger will increase monotonically. |
| */ |
| bool |
| dvmHeapBitmapXorWalkLists(const HeapBitmap hbs1[], const HeapBitmap hbs2[], |
| size_t numBitmaps, |
| bool (*callback)(size_t numPtrs, void **ptrs, |
| const void *finger, void *arg), |
| void *callbackArg) |
| { |
| size_t indexList[numBitmaps]; |
| size_t i; |
| |
| /* Sort the bitmaps by address. Assume that the two lists contain |
| * congruent bitmaps. |
| */ |
| createSortedBitmapIndexList(hbs1, numBitmaps, indexList); |
| |
| /* Walk each pair of bitmaps, lowest address first. |
| */ |
| for (i = 0; i < numBitmaps; i++) { |
| bool ok; |
| |
| ok = dvmHeapBitmapXorWalk(&hbs1[indexList[i]], &hbs2[indexList[i]], |
| callback, callbackArg); |
| if (!ok) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* |
| * Similar to dvmHeapBitmapXorWalk(), but visit the set bits |
| * in a single bitmap. |
| */ |
| bool |
| dvmHeapBitmapWalk(const HeapBitmap *hb, |
| bool (*callback)(size_t numPtrs, void **ptrs, |
| const void *finger, void *arg), |
| void *callbackArg) |
| { |
| /* Create an empty bitmap with the same extent as <hb>. |
| * Don't actually allocate any memory. |
| */ |
| HeapBitmap emptyHb = *hb; |
| emptyHb.max = emptyHb.base - 1; // empty |
| emptyHb.bits = (void *)1; // non-NULL but intentionally bad |
| |
| return dvmHeapBitmapXorWalk(hb, &emptyHb, callback, callbackArg); |
| } |
| |
| /* |
| * Similar to dvmHeapBitmapXorWalkList(), but visit the set bits |
| * in a single list of bitmaps. Regardless of the order of the array, |
| * the bitmaps will be visited in address order, so that finger will |
| * increase monotonically. |
| */ |
| bool dvmHeapBitmapWalkList(const HeapBitmap hbs[], size_t numBitmaps, |
| bool (*callback)(size_t numPtrs, void **ptrs, |
| const void *finger, void *arg), |
| void *callbackArg) |
| { |
| size_t indexList[numBitmaps]; |
| size_t i; |
| |
| /* Sort the bitmaps by address. |
| */ |
| createSortedBitmapIndexList(hbs, numBitmaps, indexList); |
| |
| /* Walk each bitmap, lowest address first. |
| */ |
| for (i = 0; i < numBitmaps; i++) { |
| bool ok; |
| |
| ok = dvmHeapBitmapWalk(&hbs[indexList[i]], callback, callbackArg); |
| if (!ok) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |