blob: c7757fe179e3497a8f9c3f9ab042eea7371e5c6d [file] [log] [blame]
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001/*
2 * Copyright (C) 2009 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17/*
18 * This file contains codegen and support common to all supported
19 * Mips variants. It is included by:
20 *
21 * Codegen-$(TARGET_ARCH_VARIANT).c
22 *
23 * which combines this common code with specific support found in the
24 * applicable directory below this one.
25 */
26
27/*
28 * Mark garbage collection card. Skip if the value we're storing is null.
29 */
30static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg)
31{
32 int regCardBase = dvmCompilerAllocTemp(cUnit);
33 int regCardNo = dvmCompilerAllocTemp(cUnit);
34 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBeq, valReg, r_ZERO);
35 loadWordDisp(cUnit, rSELF, offsetof(Thread, cardTable),
36 regCardBase);
37 opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT);
38 storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
39 kUnsignedByte);
40 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
41 target->defMask = ENCODE_ALL;
42 branchOver->generic.target = (LIR *)target;
43 dvmCompilerFreeTemp(cUnit, regCardBase);
44 dvmCompilerFreeTemp(cUnit, regCardNo);
45}
46
47static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
48 int srcSize, int tgtSize)
49{
50 /*
51 * Don't optimize the register usage since it calls out to template
52 * functions
53 */
54 RegLocation rlSrc;
55 RegLocation rlDest;
56 int srcReg = 0;
57 int srcRegHi = 0;
58 dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
59
60 if (srcSize == kWord) {
61 srcReg = r_A0;
62 } else if (srcSize == kSingle) {
63#ifdef __mips_hard_float
64 srcReg = r_F12;
65#else
66 srcReg = r_A0;
67#endif
68 } else if (srcSize == kLong) {
69 srcReg = r_ARG0;
70 srcRegHi = r_ARG1;
71 } else if (srcSize == kDouble) {
72#ifdef __mips_hard_float
73 srcReg = r_FARG0;
74 srcRegHi = r_FARG1;
75#else
76 srcReg = r_ARG0;
77 srcRegHi = r_ARG1;
78#endif
79 }
80 else {
81 assert(0);
82 }
83
84 if (srcSize == kWord || srcSize == kSingle) {
85 rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
86 loadValueDirectFixed(cUnit, rlSrc, srcReg);
87 } else {
88 rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
89 loadValueDirectWideFixed(cUnit, rlSrc, srcReg, srcRegHi);
90 }
91 LOAD_FUNC_ADDR(cUnit, r_T9, (int)funct);
92 opReg(cUnit, kOpBlx, r_T9);
93 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
94 dvmCompilerClobberCallRegs(cUnit);
95 if (tgtSize == kWord || tgtSize == kSingle) {
96 RegLocation rlResult;
97 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
98#ifdef __mips_hard_float
99 if (tgtSize == kSingle)
100 rlResult = dvmCompilerGetReturnAlt(cUnit);
101 else
102 rlResult = dvmCompilerGetReturn(cUnit);
103#else
104 rlResult = dvmCompilerGetReturn(cUnit);
105#endif
106 storeValue(cUnit, rlDest, rlResult);
107 } else {
108 RegLocation rlResult;
109 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
110#ifdef __mips_hard_float
111 if (tgtSize == kDouble)
112 rlResult = dvmCompilerGetReturnWideAlt(cUnit);
113 else
114 rlResult = dvmCompilerGetReturnWide(cUnit);
115#else
116 rlResult = dvmCompilerGetReturnWide(cUnit);
117#endif
118 storeValueWide(cUnit, rlDest, rlResult);
119 }
120 return false;
121}
122
123
124static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
125 RegLocation rlDest, RegLocation rlSrc1,
126 RegLocation rlSrc2)
127{
128 RegLocation rlResult;
129 void* funct;
130
131 switch (mir->dalvikInsn.opcode) {
132 case OP_ADD_FLOAT_2ADDR:
133 case OP_ADD_FLOAT:
134 funct = (void*) __addsf3;
135 break;
136 case OP_SUB_FLOAT_2ADDR:
137 case OP_SUB_FLOAT:
138 funct = (void*) __subsf3;
139 break;
140 case OP_DIV_FLOAT_2ADDR:
141 case OP_DIV_FLOAT:
142 funct = (void*) __divsf3;
143 break;
144 case OP_MUL_FLOAT_2ADDR:
145 case OP_MUL_FLOAT:
146 funct = (void*) __mulsf3;
147 break;
148 case OP_REM_FLOAT_2ADDR:
149 case OP_REM_FLOAT:
150 funct = (void*) fmodf;
151 break;
152 case OP_NEG_FLOAT: {
153 genNegFloat(cUnit, rlDest, rlSrc1);
154 return false;
155 }
156 default:
157 return true;
158 }
159
160 dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
161#ifdef __mips_hard_float
162 loadValueDirectFixed(cUnit, rlSrc1, r_F12);
163 loadValueDirectFixed(cUnit, rlSrc2, r_F14);
164#else
165 loadValueDirectFixed(cUnit, rlSrc1, r_A0);
166 loadValueDirectFixed(cUnit, rlSrc2, r_A1);
167#endif
168 LOAD_FUNC_ADDR(cUnit, r_T9, (int)funct);
169 opReg(cUnit, kOpBlx, r_T9);
170 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
171 dvmCompilerClobberCallRegs(cUnit);
172#ifdef __mips_hard_float
173 rlResult = dvmCompilerGetReturnAlt(cUnit);
174#else
175 rlResult = dvmCompilerGetReturn(cUnit);
176#endif
177 storeValue(cUnit, rlDest, rlResult);
178 return false;
179}
180
181static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
182 RegLocation rlDest, RegLocation rlSrc1,
183 RegLocation rlSrc2)
184{
185 RegLocation rlResult;
186 void* funct;
187
188 switch (mir->dalvikInsn.opcode) {
189 case OP_ADD_DOUBLE_2ADDR:
190 case OP_ADD_DOUBLE:
191 funct = (void*) __adddf3;
192 break;
193 case OP_SUB_DOUBLE_2ADDR:
194 case OP_SUB_DOUBLE:
195 funct = (void*) __subdf3;
196 break;
197 case OP_DIV_DOUBLE_2ADDR:
198 case OP_DIV_DOUBLE:
199 funct = (void*) __divsf3;
200 break;
201 case OP_MUL_DOUBLE_2ADDR:
202 case OP_MUL_DOUBLE:
203 funct = (void*) __muldf3;
204 break;
205 case OP_REM_DOUBLE_2ADDR:
206 case OP_REM_DOUBLE:
207 funct = (void*) (double (*)(double, double)) fmod;
208 break;
209 case OP_NEG_DOUBLE: {
210 genNegDouble(cUnit, rlDest, rlSrc1);
211 return false;
212 }
213 default:
214 return true;
215 }
216 dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
217 LOAD_FUNC_ADDR(cUnit, r_T9, (int)funct);
218#ifdef __mips_hard_float
219 loadValueDirectWideFixed(cUnit, rlSrc1, r_F12, r_F13);
220 loadValueDirectWideFixed(cUnit, rlSrc2, r_F14, r_F15);
221#else
222 loadValueDirectWideFixed(cUnit, rlSrc1, r_ARG0, r_ARG1);
223 loadValueDirectWideFixed(cUnit, rlSrc2, r_ARG2, r_ARG3);
224#endif
225 opReg(cUnit, kOpBlx, r_T9);
226 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
227 dvmCompilerClobberCallRegs(cUnit);
228#ifdef __mips_hard_float
229 rlResult = dvmCompilerGetReturnWideAlt(cUnit);
230#else
231 rlResult = dvmCompilerGetReturnWide(cUnit);
232#endif
233 storeValueWide(cUnit, rlDest, rlResult);
234#if defined(WITH_SELF_VERIFICATION)
235 cUnit->usesLinkRegister = true;
236#endif
237 return false;
238}
239
240static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
241{
242 Opcode opcode = mir->dalvikInsn.opcode;
243
244 switch (opcode) {
245 case OP_INT_TO_FLOAT:
246 return genConversionCall(cUnit, mir, (void*)__floatsisf, kWord, kSingle);
247 case OP_FLOAT_TO_INT:
248 return genConversionCall(cUnit, mir, (void*)__fixsfsi, kSingle, kWord);
249 case OP_DOUBLE_TO_FLOAT:
250 return genConversionCall(cUnit, mir, (void*)__truncdfsf2, kDouble, kSingle);
251 case OP_FLOAT_TO_DOUBLE:
252 return genConversionCall(cUnit, mir, (void*)__extendsfdf2, kSingle, kDouble);
253 case OP_INT_TO_DOUBLE:
254 return genConversionCall(cUnit, mir, (void*)__floatsidf, kWord, kDouble);
255 case OP_DOUBLE_TO_INT:
256 return genConversionCall(cUnit, mir, (void*)__fixdfsi, kDouble, kWord);
257 case OP_FLOAT_TO_LONG:
258 return genConversionCall(cUnit, mir, (void*)__fixsfdi, kSingle, kLong);
259 case OP_LONG_TO_FLOAT:
260 return genConversionCall(cUnit, mir, (void*)__floatdisf, kLong, kSingle);
261 case OP_DOUBLE_TO_LONG:
262 return genConversionCall(cUnit, mir, (void*)__fixdfdi, kDouble, kLong);
263 case OP_LONG_TO_DOUBLE:
264 return genConversionCall(cUnit, mir, (void*)__floatdidf, kLong, kDouble);
265 default:
266 return true;
267 }
268 return false;
269}
270
271#if defined(WITH_SELF_VERIFICATION)
272static void selfVerificationBranchInsert(LIR *currentLIR, Mipsopcode opcode,
273 int dest, int src1)
274{
275assert(0); /* MIPSTODO port selfVerificationBranchInsert() */
276 MipsLIR *insn = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
277 insn->opcode = opcode;
278 insn->operands[0] = dest;
279 insn->operands[1] = src1;
280 setupResourceMasks(insn);
281 dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn);
282}
283
284/*
285 * Example where r14 (LR) is preserved around a heap access under
286 * self-verification mode in Thumb2:
287 *
288 * D/dalvikvm( 1538): 0x59414c5e (0026): ldr r14, [r15pc, #220] <-hoisted
289 * D/dalvikvm( 1538): 0x59414c62 (002a): mla r4, r0, r8, r4
290 * D/dalvikvm( 1538): 0x59414c66 (002e): adds r3, r4, r3
291 * D/dalvikvm( 1538): 0x59414c6a (0032): push <r5, r14> ---+
292 * D/dalvikvm( 1538): 0x59414c6c (0034): blx_1 0x5940f494 |
293 * D/dalvikvm( 1538): 0x59414c6e (0036): blx_2 see above <-MEM_OP_DECODE
294 * D/dalvikvm( 1538): 0x59414c70 (0038): ldr r10, [r9, #0] |
295 * D/dalvikvm( 1538): 0x59414c74 (003c): pop <r5, r14> ---+
296 * D/dalvikvm( 1538): 0x59414c78 (0040): mov r11, r10
297 * D/dalvikvm( 1538): 0x59414c7a (0042): asr r12, r11, #31
298 * D/dalvikvm( 1538): 0x59414c7e (0046): movs r0, r2
299 * D/dalvikvm( 1538): 0x59414c80 (0048): movs r1, r3
300 * D/dalvikvm( 1538): 0x59414c82 (004a): str r2, [r5, #16]
301 * D/dalvikvm( 1538): 0x59414c84 (004c): mov r2, r11
302 * D/dalvikvm( 1538): 0x59414c86 (004e): str r3, [r5, #20]
303 * D/dalvikvm( 1538): 0x59414c88 (0050): mov r3, r12
304 * D/dalvikvm( 1538): 0x59414c8a (0052): str r11, [r5, #24]
305 * D/dalvikvm( 1538): 0x59414c8e (0056): str r12, [r5, #28]
306 * D/dalvikvm( 1538): 0x59414c92 (005a): blx r14 <-use of LR
307 *
308 */
309static void selfVerificationBranchInsertPass(CompilationUnit *cUnit)
310{
311assert(0); /* MIPSTODO port selfVerificationBranchInsertPass() */
312 MipsLIR *thisLIR;
313 Templateopcode opcode = TEMPLATE_MEM_OP_DECODE;
314
315 for (thisLIR = (MipsLIR *) cUnit->firstLIRInsn;
316 thisLIR != (MipsLIR *) cUnit->lastLIRInsn;
317 thisLIR = NEXT_LIR(thisLIR)) {
318 if (!thisLIR->flags.isNop && thisLIR->flags.insertWrapper) {
319 /*
320 * Push r5(FP) and r14(LR) onto stack. We need to make sure that
321 * SP is 8-byte aligned, and we use r5 as a temp to restore LR
322 * for Thumb-only target since LR cannot be directly accessed in
323 * Thumb mode. Another reason to choose r5 here is it is the Dalvik
324 * frame pointer and cannot be the target of the emulated heap
325 * load.
326 */
327 if (cUnit->usesLinkRegister) {
328 genSelfVerificationPreBranch(cUnit, thisLIR);
329 }
330
331 /* Branch to mem op decode template */
332 selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1,
333 (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
334 (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
335 selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2,
336 (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
337 (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
338
339 /* Restore LR */
340 if (cUnit->usesLinkRegister) {
341 genSelfVerificationPostBranch(cUnit, thisLIR);
342 }
343 }
344 }
345}
346#endif
347
348/* Generate conditional branch instructions */
349static MipsLIR *genConditionalBranchMips(CompilationUnit *cUnit,
350 MipsOpCode opc, int rs, int rt,
351 MipsLIR *target)
352{
353 MipsLIR *branch = opCompareBranch(cUnit, opc, rs, rt);
354 branch->generic.target = (LIR *) target;
355 return branch;
356}
357
358/* Generate a unconditional branch to go to the interpreter */
359static inline MipsLIR *genTrap(CompilationUnit *cUnit, int dOffset,
360 MipsLIR *pcrLabel)
361{
362 MipsLIR *branch = opNone(cUnit, kOpUncondBr);
363 return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
364}
365
366/* Load a wide field from an object instance */
367static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
368{
369 RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
370 RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
371 RegLocation rlResult;
372 rlObj = loadValue(cUnit, rlObj, kCoreReg);
373 int regPtr = dvmCompilerAllocTemp(cUnit);
374
375 assert(rlDest.wide);
376
377 genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
378 NULL);/* null object? */
379 opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
380 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
381
382 HEAP_ACCESS_SHADOW(true);
383 loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
384 HEAP_ACCESS_SHADOW(false);
385
386 dvmCompilerFreeTemp(cUnit, regPtr);
387 storeValueWide(cUnit, rlDest, rlResult);
388}
389
390/* Store a wide field to an object instance */
391static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
392{
393 RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
394 RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2);
395 rlObj = loadValue(cUnit, rlObj, kCoreReg);
396 int regPtr;
397 rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
398 genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
399 NULL);/* null object? */
400 regPtr = dvmCompilerAllocTemp(cUnit);
401 opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
402
403 HEAP_ACCESS_SHADOW(true);
404 storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
405 HEAP_ACCESS_SHADOW(false);
406
407 dvmCompilerFreeTemp(cUnit, regPtr);
408}
409
410/*
411 * Load a field from an object instance
412 *
413 */
414static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
415 int fieldOffset, bool isVolatile)
416{
417 RegLocation rlResult;
418 RegisterClass regClass = dvmCompilerRegClassBySize(size);
419 RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
420 RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
421 rlObj = loadValue(cUnit, rlObj, kCoreReg);
422 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
423 genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
424 NULL);/* null object? */
425
426 HEAP_ACCESS_SHADOW(true);
427 loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
428 size, rlObj.sRegLow);
429 HEAP_ACCESS_SHADOW(false);
430 if (isVolatile) {
Elliott Hughes100dbe02012-07-17 16:31:30 -0700431 dvmCompilerGenMemBarrier(cUnit, 0);
Raghu Gandhama8b91c52012-05-02 14:27:16 -0700432 }
433
434 storeValue(cUnit, rlDest, rlResult);
435}
436
437/*
438 * Store a field to an object instance
439 *
440 */
441static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
442 int fieldOffset, bool isObject, bool isVolatile)
443{
444 RegisterClass regClass = dvmCompilerRegClassBySize(size);
445 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
446 RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1);
447 rlObj = loadValue(cUnit, rlObj, kCoreReg);
448 rlSrc = loadValue(cUnit, rlSrc, regClass);
449 genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
450 NULL);/* null object? */
451
452 if (isVolatile) {
Elliott Hughes100dbe02012-07-17 16:31:30 -0700453 dvmCompilerGenMemBarrier(cUnit, 0);
Raghu Gandhama8b91c52012-05-02 14:27:16 -0700454 }
455 HEAP_ACCESS_SHADOW(true);
456 storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
457 HEAP_ACCESS_SHADOW(false);
458 if (isVolatile) {
459 dvmCompilerGenMemBarrier(cUnit, 0);
460 }
461 if (isObject) {
462 /* NOTE: marking card based on object head */
463 markCard(cUnit, rlSrc.lowReg, rlObj.lowReg);
464 }
465}
466
467
468/*
469 * Generate array load
470 */
471static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
472 RegLocation rlArray, RegLocation rlIndex,
473 RegLocation rlDest, int scale)
474{
475 RegisterClass regClass = dvmCompilerRegClassBySize(size);
476 int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
477 int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
478 RegLocation rlResult;
479 rlArray = loadValue(cUnit, rlArray, kCoreReg);
480 rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
481 int regPtr;
482
483 /* null object? */
484 MipsLIR * pcrLabel = NULL;
485
486 if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
487 pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
488 rlArray.lowReg, mir->offset, NULL);
489 }
490
491 regPtr = dvmCompilerAllocTemp(cUnit);
492
493 assert(IS_SIMM16(dataOffset));
494 if (scale) {
495 opRegRegImm(cUnit, kOpLsl, regPtr, rlIndex.lowReg, scale);
496 }
497
498 if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
499 int regLen = dvmCompilerAllocTemp(cUnit);
500 /* Get len */
501 loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
502 genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
503 pcrLabel);
504 dvmCompilerFreeTemp(cUnit, regLen);
505 }
506
507 if (scale) {
508 opRegReg(cUnit, kOpAdd, regPtr, rlArray.lowReg);
509 } else {
510 opRegRegReg(cUnit, kOpAdd, regPtr, rlArray.lowReg, rlIndex.lowReg);
511 }
512
513 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
514 if ((size == kLong) || (size == kDouble)) {
515 HEAP_ACCESS_SHADOW(true);
516 loadBaseDispWide(cUnit, mir, regPtr, dataOffset, rlResult.lowReg,
517 rlResult.highReg, INVALID_SREG);
518 HEAP_ACCESS_SHADOW(false);
519 dvmCompilerFreeTemp(cUnit, regPtr);
520 storeValueWide(cUnit, rlDest, rlResult);
521 } else {
522 HEAP_ACCESS_SHADOW(true);
523 loadBaseDisp(cUnit, mir, regPtr, dataOffset, rlResult.lowReg,
524 size, INVALID_SREG);
525 HEAP_ACCESS_SHADOW(false);
526 dvmCompilerFreeTemp(cUnit, regPtr);
527 storeValue(cUnit, rlDest, rlResult);
528 }
529}
530
531/*
532 * Generate array store
533 *
534 */
535static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
536 RegLocation rlArray, RegLocation rlIndex,
537 RegLocation rlSrc, int scale)
538{
539 RegisterClass regClass = dvmCompilerRegClassBySize(size);
540 int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
541 int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
542
543 int regPtr;
544 rlArray = loadValue(cUnit, rlArray, kCoreReg);
545 rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
546
547 if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
548 dvmCompilerClobber(cUnit, rlArray.lowReg);
549 regPtr = rlArray.lowReg;
550 } else {
551 regPtr = dvmCompilerAllocTemp(cUnit);
552 genRegCopy(cUnit, regPtr, rlArray.lowReg);
553 }
554
555 /* null object? */
556 MipsLIR * pcrLabel = NULL;
557
558 if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
559 pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
560 mir->offset, NULL);
561 }
562
563 assert(IS_SIMM16(dataOffset));
564 int tReg = dvmCompilerAllocTemp(cUnit);
565 if (scale) {
566 opRegRegImm(cUnit, kOpLsl, tReg, rlIndex.lowReg, scale);
567 }
568
569 if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
570 int regLen = dvmCompilerAllocTemp(cUnit);
571 //NOTE: max live temps(4) here.
572 /* Get len */
573 loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
574 genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
575 pcrLabel);
576 dvmCompilerFreeTemp(cUnit, regLen);
577 }
578
579 if (scale) {
580 opRegReg(cUnit, kOpAdd, tReg, rlArray.lowReg);
581 } else {
582 opRegRegReg(cUnit, kOpAdd, tReg, rlArray.lowReg, rlIndex.lowReg);
583 }
584
585 /* at this point, tReg points to array, 2 live temps */
586 if ((size == kLong) || (size == kDouble)) {
587 rlSrc = loadValueWide(cUnit, rlSrc, regClass);
588 HEAP_ACCESS_SHADOW(true);
589 storeBaseDispWide(cUnit, tReg, dataOffset, rlSrc.lowReg, rlSrc.highReg)
590 HEAP_ACCESS_SHADOW(false);
591 dvmCompilerFreeTemp(cUnit, tReg);
592 dvmCompilerFreeTemp(cUnit, regPtr);
593 } else {
594 rlSrc = loadValue(cUnit, rlSrc, regClass);
595 HEAP_ACCESS_SHADOW(true);
596 storeBaseDisp(cUnit, tReg, dataOffset, rlSrc.lowReg, size);
597 dvmCompilerFreeTemp(cUnit, tReg);
598 HEAP_ACCESS_SHADOW(false);
599 }
600}
601
602/*
603 * Generate array object store
604 * Must use explicit register allocation here because of
605 * call-out to dvmCanPutArrayElement
606 */
607static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir,
608 RegLocation rlArray, RegLocation rlIndex,
609 RegLocation rlSrc, int scale)
610{
611 int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
612 int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
613
614 int regLen = r_A0;
615 int regPtr = r_S0; /* Preserved across call */
616 int regArray = r_A1;
617 int regIndex = r_S4; /* Preserved across call */
618
619 dvmCompilerFlushAllRegs(cUnit);
620 // moved lock for r_S0 and r_S4 here from below since genBoundsCheck
621 // allocates a temporary that can result in clobbering either of them
622 dvmCompilerLockTemp(cUnit, regPtr); // r_S0
623 dvmCompilerLockTemp(cUnit, regIndex); // r_S4
624
625 loadValueDirectFixed(cUnit, rlArray, regArray);
626 loadValueDirectFixed(cUnit, rlIndex, regIndex);
627
628 /* null object? */
629 MipsLIR * pcrLabel = NULL;
630
631 if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
632 pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray,
633 mir->offset, NULL);
634 }
635
636 if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
637 /* Get len */
638 loadWordDisp(cUnit, regArray, lenOffset, regLen);
639 /* regPtr -> array data */
640 opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
641 genBoundsCheck(cUnit, regIndex, regLen, mir->offset,
642 pcrLabel);
643 } else {
644 /* regPtr -> array data */
645 opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
646 }
647
648 /* Get object to store */
649 loadValueDirectFixed(cUnit, rlSrc, r_A0);
650 LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmCanPutArrayElement);
651
652 /* Are we storing null? If so, avoid check */
653 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBeqz, r_A0, -1);
654
655 /* Make sure the types are compatible */
656 loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r_A1);
657 loadWordDisp(cUnit, r_A0, offsetof(Object, clazz), r_A0);
658 opReg(cUnit, kOpBlx, r_T9);
659 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
660 dvmCompilerClobberCallRegs(cUnit);
661
662 /*
663 * Using fixed registers here, and counting on r_S0 and r_S4 being
664 * preserved across the above call. Tell the register allocation
665 * utilities about the regs we are using directly
666 */
667 dvmCompilerLockTemp(cUnit, r_A0);
668 dvmCompilerLockTemp(cUnit, r_A1);
669
670 /* Bad? - roll back and re-execute if so */
671 genRegImmCheck(cUnit, kMipsCondEq, r_V0, 0, mir->offset, pcrLabel);
672
673 /* Resume here - must reload element & array, regPtr & index preserved */
674 loadValueDirectFixed(cUnit, rlSrc, r_A0);
675 loadValueDirectFixed(cUnit, rlArray, r_A1);
676
677 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
678 target->defMask = ENCODE_ALL;
679 branchOver->generic.target = (LIR *) target;
680
681 HEAP_ACCESS_SHADOW(true);
682 storeBaseIndexed(cUnit, regPtr, regIndex, r_A0,
683 scale, kWord);
684 HEAP_ACCESS_SHADOW(false);
685
686 dvmCompilerFreeTemp(cUnit, regPtr);
687 dvmCompilerFreeTemp(cUnit, regIndex);
688
689 /* NOTE: marking card here based on object head */
690 markCard(cUnit, r_A0, r_A1);
691}
692
693static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
694 RegLocation rlDest, RegLocation rlSrc1,
695 RegLocation rlShift)
696{
697 /*
698 * Don't mess with the regsiters here as there is a particular calling
699 * convention to the out-of-line handler.
700 */
701 RegLocation rlResult;
702
703 loadValueDirectWideFixed(cUnit, rlSrc1, r_ARG0, r_ARG1);
704 loadValueDirect(cUnit, rlShift, r_A2);
705 switch( mir->dalvikInsn.opcode) {
706 case OP_SHL_LONG:
707 case OP_SHL_LONG_2ADDR:
708 genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
709 break;
710 case OP_SHR_LONG:
711 case OP_SHR_LONG_2ADDR:
712 genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
713 break;
714 case OP_USHR_LONG:
715 case OP_USHR_LONG_2ADDR:
716 genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
717 break;
718 default:
719 return true;
720 }
721 rlResult = dvmCompilerGetReturnWide(cUnit);
722 storeValueWide(cUnit, rlDest, rlResult);
723 return false;
724}
725
726static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
727 RegLocation rlDest, RegLocation rlSrc1,
728 RegLocation rlSrc2)
729{
730 RegLocation rlResult;
731 OpKind firstOp = kOpBkpt;
732 OpKind secondOp = kOpBkpt;
733 bool callOut = false;
734 void *callTgt;
735
736 switch (mir->dalvikInsn.opcode) {
737 case OP_NOT_LONG:
738 rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
739 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
740 opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
741 opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
742 storeValueWide(cUnit, rlDest, rlResult);
743 return false;
744 break;
745 case OP_ADD_LONG:
746 case OP_ADD_LONG_2ADDR:
747 firstOp = kOpAdd;
748 secondOp = kOpAdc;
749 break;
750 case OP_SUB_LONG:
751 case OP_SUB_LONG_2ADDR:
752 firstOp = kOpSub;
753 secondOp = kOpSbc;
754 break;
755 case OP_MUL_LONG:
756 case OP_MUL_LONG_2ADDR:
757 genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
758 return false;
759 case OP_DIV_LONG:
760 case OP_DIV_LONG_2ADDR:
761 callOut = true;
762 callTgt = (void*)__divdi3;
763 break;
764 case OP_REM_LONG:
765 case OP_REM_LONG_2ADDR:
766 callOut = true;
767 callTgt = (void*)__moddi3;
768 break;
769 case OP_AND_LONG_2ADDR:
770 case OP_AND_LONG:
771 firstOp = kOpAnd;
772 secondOp = kOpAnd;
773 break;
774 case OP_OR_LONG:
775 case OP_OR_LONG_2ADDR:
776 firstOp = kOpOr;
777 secondOp = kOpOr;
778 break;
779 case OP_XOR_LONG:
780 case OP_XOR_LONG_2ADDR:
781 firstOp = kOpXor;
782 secondOp = kOpXor;
783 break;
784 case OP_NEG_LONG: {
785 int tReg = dvmCompilerAllocTemp(cUnit);
786 rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
787 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
788 newLIR3(cUnit, kMipsSubu, rlResult.lowReg, r_ZERO, rlSrc2.lowReg);
789 newLIR3(cUnit, kMipsSubu, tReg, r_ZERO, rlSrc2.highReg);
790 newLIR3(cUnit, kMipsSltu, rlResult.highReg, r_ZERO, rlResult.lowReg);
791 newLIR3(cUnit, kMipsSubu, rlResult.highReg, tReg, rlResult.highReg);
792 dvmCompilerFreeTemp(cUnit, tReg);
793 storeValueWide(cUnit, rlDest, rlResult);
794 return false;
795 break;
796 }
797 default:
798 LOGE("Invalid long arith op");
799 dvmCompilerAbort(cUnit);
800 }
801 if (!callOut) {
802 genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
803 } else {
804 dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
805 loadValueDirectWideFixed(cUnit, rlSrc1, r_ARG0, r_ARG1);
806 LOAD_FUNC_ADDR(cUnit, r_T9, (int) callTgt);
807 loadValueDirectWideFixed(cUnit, rlSrc2, r_ARG2, r_ARG3);
808 opReg(cUnit, kOpBlx, r_T9);
809 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
810 dvmCompilerClobberCallRegs(cUnit);
811 rlResult = dvmCompilerGetReturnWide(cUnit);
812 storeValueWide(cUnit, rlDest, rlResult);
813#if defined(WITH_SELF_VERIFICATION)
814 cUnit->usesLinkRegister = true;
815#endif
816 }
817 return false;
818}
819
820static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
821 RegLocation rlDest, RegLocation rlSrc1,
822 RegLocation rlSrc2)
823{
824 OpKind op = kOpBkpt;
825 bool checkZero = false;
826 bool unary = false;
827 RegLocation rlResult;
828 bool shiftOp = false;
829 int isDivRem = false;
830 MipsOpCode opc;
831 int divReg;
832
833 switch (mir->dalvikInsn.opcode) {
834 case OP_NEG_INT:
835 op = kOpNeg;
836 unary = true;
837 break;
838 case OP_NOT_INT:
839 op = kOpMvn;
840 unary = true;
841 break;
842 case OP_ADD_INT:
843 case OP_ADD_INT_2ADDR:
844 op = kOpAdd;
845 break;
846 case OP_SUB_INT:
847 case OP_SUB_INT_2ADDR:
848 op = kOpSub;
849 break;
850 case OP_MUL_INT:
851 case OP_MUL_INT_2ADDR:
852 op = kOpMul;
853 break;
854 case OP_DIV_INT:
855 case OP_DIV_INT_2ADDR:
856 isDivRem = true;
857 checkZero = true;
858 opc = kMipsMflo;
859 divReg = r_LO;
860 break;
861 case OP_REM_INT:
862 case OP_REM_INT_2ADDR:
863 isDivRem = true;
864 checkZero = true;
865 opc = kMipsMfhi;
866 divReg = r_HI;
867 break;
868 case OP_AND_INT:
869 case OP_AND_INT_2ADDR:
870 op = kOpAnd;
871 break;
872 case OP_OR_INT:
873 case OP_OR_INT_2ADDR:
874 op = kOpOr;
875 break;
876 case OP_XOR_INT:
877 case OP_XOR_INT_2ADDR:
878 op = kOpXor;
879 break;
880 case OP_SHL_INT:
881 case OP_SHL_INT_2ADDR:
882 shiftOp = true;
883 op = kOpLsl;
884 break;
885 case OP_SHR_INT:
886 case OP_SHR_INT_2ADDR:
887 shiftOp = true;
888 op = kOpAsr;
889 break;
890 case OP_USHR_INT:
891 case OP_USHR_INT_2ADDR:
892 shiftOp = true;
893 op = kOpLsr;
894 break;
895 default:
896 LOGE("Invalid word arith op: %#x(%d)",
897 mir->dalvikInsn.opcode, mir->dalvikInsn.opcode);
898 dvmCompilerAbort(cUnit);
899 }
900
901 rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
902 if (unary) {
903 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
904 opRegReg(cUnit, op, rlResult.lowReg,
905 rlSrc1.lowReg);
906 } else if (isDivRem) {
907 rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
908 if (checkZero) {
909 genNullCheck(cUnit, rlSrc2.sRegLow, rlSrc2.lowReg, mir->offset, NULL);
910 }
911 newLIR4(cUnit, kMipsDiv, r_HI, r_LO, rlSrc1.lowReg, rlSrc2.lowReg);
912 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
913 newLIR2(cUnit, opc, rlResult.lowReg, divReg);
914 } else {
915 rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
916 if (shiftOp) {
917 int tReg = dvmCompilerAllocTemp(cUnit);
918 opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
919 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
920 opRegRegReg(cUnit, op, rlResult.lowReg,
921 rlSrc1.lowReg, tReg);
922 dvmCompilerFreeTemp(cUnit, tReg);
923 } else {
924 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
925 opRegRegReg(cUnit, op, rlResult.lowReg,
926 rlSrc1.lowReg, rlSrc2.lowReg);
927 }
928 }
929 storeValue(cUnit, rlDest, rlResult);
930
931 return false;
932}
933
934static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
935{
936 Opcode opcode = mir->dalvikInsn.opcode;
937 RegLocation rlDest;
938 RegLocation rlSrc1;
939 RegLocation rlSrc2;
940 /* Deduce sizes of operands */
941 if (mir->ssaRep->numUses == 2) {
942 rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
943 rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
944 } else if (mir->ssaRep->numUses == 3) {
945 rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
946 rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
947 } else {
948 rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
949 rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
950 assert(mir->ssaRep->numUses == 4);
951 }
952 if (mir->ssaRep->numDefs == 1) {
953 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
954 } else {
955 assert(mir->ssaRep->numDefs == 2);
956 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
957 }
958
959 if ((opcode >= OP_ADD_LONG_2ADDR) && (opcode <= OP_XOR_LONG_2ADDR)) {
960 return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
961 }
962 if ((opcode >= OP_ADD_LONG) && (opcode <= OP_XOR_LONG)) {
963 return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
964 }
965 if ((opcode >= OP_SHL_LONG_2ADDR) && (opcode <= OP_USHR_LONG_2ADDR)) {
966 return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
967 }
968 if ((opcode >= OP_SHL_LONG) && (opcode <= OP_USHR_LONG)) {
969 return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
970 }
971 if ((opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_USHR_INT_2ADDR)) {
972 return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
973 }
974 if ((opcode >= OP_ADD_INT) && (opcode <= OP_USHR_INT)) {
975 return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
976 }
977 if ((opcode >= OP_ADD_FLOAT_2ADDR) && (opcode <= OP_REM_FLOAT_2ADDR)) {
978 return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
979 }
980 if ((opcode >= OP_ADD_FLOAT) && (opcode <= OP_REM_FLOAT)) {
981 return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
982 }
983 if ((opcode >= OP_ADD_DOUBLE_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
984 return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
985 }
986 if ((opcode >= OP_ADD_DOUBLE) && (opcode <= OP_REM_DOUBLE)) {
987 return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
988 }
989 return true;
990}
991
992/* Generate unconditional branch instructions */
993static MipsLIR *genUnconditionalBranch(CompilationUnit *cUnit, MipsLIR *target)
994{
995 MipsLIR *branch = opNone(cUnit, kOpUncondBr);
996 branch->generic.target = (LIR *) target;
997 return branch;
998}
999
1000/* Perform the actual operation for OP_RETURN_* */
1001void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
1002{
1003 genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1004 TEMPLATE_RETURN_PROF : TEMPLATE_RETURN);
1005#if defined(WITH_JIT_TUNING)
1006 gDvmJit.returnOp++;
1007#endif
1008 int dPC = (int) (cUnit->method->insns + mir->offset);
1009 /* Insert branch, but defer setting of target */
1010 MipsLIR *branch = genUnconditionalBranch(cUnit, NULL);
1011 /* Set up the place holder to reconstruct this Dalvik PC */
1012 MipsLIR *pcrLabel = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
1013 pcrLabel->opcode = kMipsPseudoPCReconstructionCell;
1014 pcrLabel->operands[0] = dPC;
1015 pcrLabel->operands[1] = mir->offset;
1016 /* Insert the place holder to the growable list */
1017 dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
1018 /* Branch to the PC reconstruction code */
1019 branch->generic.target = (LIR *) pcrLabel;
1020}
1021
1022static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
1023 DecodedInstruction *dInsn,
1024 MipsLIR **pcrLabel)
1025{
1026 unsigned int i;
1027 unsigned int regMask = 0;
1028 RegLocation rlArg;
1029 int numDone = 0;
1030
1031 /*
1032 * Load arguments to r_A0..r_T0. Note that these registers may contain
1033 * live values, so we clobber them immediately after loading to prevent
1034 * them from being used as sources for subsequent loads.
1035 */
1036 dvmCompilerLockAllTemps(cUnit);
1037 for (i = 0; i < dInsn->vA; i++) {
1038 regMask |= 1 << i;
1039 rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++);
1040 loadValueDirectFixed(cUnit, rlArg, i+r_A0); /* r_A0 thru r_T0 */
1041 }
1042 if (regMask) {
1043 /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
1044 opRegRegImm(cUnit, kOpSub, r_S4, rFP,
1045 sizeof(StackSaveArea) + (dInsn->vA << 2));
1046 /* generate null check */
1047 if (pcrLabel) {
1048 *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r_A0,
1049 mir->offset, NULL);
1050 }
1051 storeMultiple(cUnit, r_S4, regMask);
1052 }
1053}
1054
1055static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
1056 DecodedInstruction *dInsn,
1057 MipsLIR **pcrLabel)
1058{
1059 int srcOffset = dInsn->vC << 2;
1060 int numArgs = dInsn->vA;
1061 int regMask;
1062
1063 /*
1064 * Note: here, all promoted registers will have been flushed
1065 * back to the Dalvik base locations, so register usage restrictins
1066 * are lifted. All parms loaded from original Dalvik register
1067 * region - even though some might conceivably have valid copies
1068 * cached in a preserved register.
1069 */
1070 dvmCompilerLockAllTemps(cUnit);
1071
1072 /*
1073 * r4PC : &rFP[vC]
1074 * r_S4: &newFP[0]
1075 */
1076 opRegRegImm(cUnit, kOpAdd, r4PC, rFP, srcOffset);
1077 /* load [r_A0 up to r_A3)] */
1078 regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
1079 /*
1080 * Protect the loadMultiple instruction from being reordered with other
1081 * Dalvik stack accesses.
1082 *
1083 * This code is also shared by the invoke jumbo instructions, and this
1084 * does not need to be done if the invoke jumbo has no arguments.
1085 */
1086 if (numArgs != 0) loadMultiple(cUnit, r4PC, regMask);
1087
1088 opRegRegImm(cUnit, kOpSub, r_S4, rFP,
1089 sizeof(StackSaveArea) + (numArgs << 2));
1090 /* generate null check */
1091 if (pcrLabel) {
1092 *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r_A0,
1093 mir->offset, NULL);
1094 }
1095
1096 /*
1097 * Handle remaining 4n arguments:
1098 * store previously loaded 4 values and load the next 4 values
1099 */
1100 if (numArgs >= 8) {
1101 MipsLIR *loopLabel = NULL;
1102 /*
1103 * r_A0 contains "this" and it will be used later, so push it to the stack
1104 * first. Pushing r_S1 (rFP) is just for stack alignment purposes.
1105 */
1106
1107 newLIR2(cUnit, kMipsMove, r_T0, r_A0);
1108 newLIR2(cUnit, kMipsMove, r_T1, r_S1);
1109
1110 /* No need to generate the loop structure if numArgs <= 11 */
1111 if (numArgs > 11) {
1112 loadConstant(cUnit, rFP, ((numArgs - 4) >> 2) << 2);
1113 loopLabel = newLIR0(cUnit, kMipsPseudoTargetLabel);
1114 loopLabel->defMask = ENCODE_ALL;
1115 }
1116 storeMultiple(cUnit, r_S4, regMask);
1117 /*
1118 * Protect the loadMultiple instruction from being reordered with other
1119 * Dalvik stack accesses.
1120 */
1121 loadMultiple(cUnit, r4PC, regMask);
1122 /* No need to generate the loop structure if numArgs <= 11 */
1123 if (numArgs > 11) {
1124 opRegImm(cUnit, kOpSub, rFP, 4);
1125 genConditionalBranchMips(cUnit, kMipsBne, rFP, r_ZERO, loopLabel);
1126 }
1127 }
1128
1129 /* Save the last batch of loaded values */
1130 if (numArgs != 0) storeMultiple(cUnit, r_S4, regMask);
1131
1132 /* Generate the loop epilogue - don't use r_A0 */
1133 if ((numArgs > 4) && (numArgs % 4)) {
1134 regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
1135 /*
1136 * Protect the loadMultiple instruction from being reordered with other
1137 * Dalvik stack accesses.
1138 */
1139 loadMultiple(cUnit, r4PC, regMask);
1140 }
1141 if (numArgs >= 8) {
1142 newLIR2(cUnit, kMipsMove, r_A0, r_T0);
1143 newLIR2(cUnit, kMipsMove, r_S1, r_T1);
1144 }
1145
1146 /* Save the modulo 4 arguments */
1147 if ((numArgs > 4) && (numArgs % 4)) {
1148 storeMultiple(cUnit, r_S4, regMask);
1149 }
1150}
1151
1152/*
1153 * Generate code to setup the call stack then jump to the chaining cell if it
1154 * is not a native method.
1155 */
1156static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
1157 BasicBlock *bb, MipsLIR *labelList,
1158 MipsLIR *pcrLabel,
1159 const Method *calleeMethod)
1160{
1161 /*
1162 * Note: all Dalvik register state should be flushed to
1163 * memory by the point, so register usage restrictions no
1164 * longer apply. All temp & preserved registers may be used.
1165 */
1166 dvmCompilerLockAllTemps(cUnit);
1167 MipsLIR *retChainingCell = &labelList[bb->fallThrough->id];
1168
1169 /* r_A1 = &retChainingCell */
1170 dvmCompilerLockTemp(cUnit, r_A1);
1171 MipsLIR *addrRetChain = newLIR2(cUnit, kMipsLahi, r_A1, 0);
1172 addrRetChain->generic.target = (LIR *) retChainingCell;
1173 addrRetChain = newLIR3(cUnit, kMipsLalo, r_A1, r_A1, 0);
1174 addrRetChain->generic.target = (LIR *) retChainingCell;
1175
1176 /* r4PC = dalvikCallsite */
1177 loadConstant(cUnit, r4PC,
1178 (int) (cUnit->method->insns + mir->offset));
1179 /*
1180 * r_A0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
1181 * r_A1 = &ChainingCell
1182 * r4PC = callsiteDPC
1183 */
1184 if (dvmIsNativeMethod(calleeMethod)) {
1185 genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1186 TEMPLATE_INVOKE_METHOD_NATIVE_PROF :
1187 TEMPLATE_INVOKE_METHOD_NATIVE);
1188#if defined(WITH_JIT_TUNING)
1189 gDvmJit.invokeNative++;
1190#endif
1191 } else {
1192 genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1193 TEMPLATE_INVOKE_METHOD_CHAIN_PROF :
1194 TEMPLATE_INVOKE_METHOD_CHAIN);
1195#if defined(WITH_JIT_TUNING)
1196 gDvmJit.invokeMonomorphic++;
1197#endif
1198 /* Branch to the chaining cell */
1199 genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
1200 }
1201 /* Handle exceptions using the interpreter */
1202 genTrap(cUnit, mir->offset, pcrLabel);
1203}
1204
1205/*
1206 * Generate code to check the validity of a predicted chain and take actions
1207 * based on the result.
1208 *
1209 * 0x2f1304c4 : lui s0,0x2d22(11554) # s0 <- dalvikPC
1210 * 0x2f1304c8 : ori s0,s0,0x2d22848c(757236876)
1211 * 0x2f1304cc : lahi/lui a1,0x2f13(12051) # a1 <- &retChainingCell
1212 * 0x2f1304d0 : lalo/ori a1,a1,0x2f13055c(789775708)
1213 * 0x2f1304d4 : lahi/lui a2,0x2f13(12051) # a2 <- &predictedChainingCell
1214 * 0x2f1304d8 : lalo/ori a2,a2,0x2f13056c(789775724)
1215 * 0x2f1304dc : jal 0x2f12d1ec(789762540) # call TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
1216 * 0x2f1304e0 : nop
1217 * 0x2f1304e4 : b 0x2f13056c (L0x11ec10) # off to the predicted chain
1218 * 0x2f1304e8 : nop
1219 * 0x2f1304ec : b 0x2f13054c (L0x11fc80) # punt to the interpreter
1220 * 0x2f1304f0 : lui a0,0x2d22(11554)
1221 * 0x2f1304f4 : lw a0,156(s4) # a0 <- this->class->vtable[methodIdx]
1222 * 0x2f1304f8 : bgtz a1,0x2f13051c (L0x11fa40) # if >0 don't rechain
1223 * 0x2f1304fc : nop
1224 * 0x2f130500 : lui t9,0x2aba(10938)
1225 * 0x2f130504 : ori t9,t9,0x2abae3f8(716891128)
1226 * 0x2f130508 : move a1,s2
1227 * 0x2f13050c : jalr ra,t9 # call dvmJitToPatchPredictedChain
1228 * 0x2f130510 : nop
1229 * 0x2f130514 : lw gp,84(sp)
1230 * 0x2f130518 : move a0,v0
1231 * 0x2f13051c : lahi/lui a1,0x2f13(12051) # a1 <- &retChainingCell
1232 * 0x2f130520 : lalo/ori a1,a1,0x2f13055c(789775708)
1233 * 0x2f130524 : jal 0x2f12d0c4(789762244) # call TEMPLATE_INVOKE_METHOD_NO_OPT
1234 * 0x2f130528 : nop
1235 */
1236static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
1237 int methodIndex,
1238 MipsLIR *retChainingCell,
1239 MipsLIR *predChainingCell,
1240 MipsLIR *pcrLabel)
1241{
1242 /*
1243 * Note: all Dalvik register state should be flushed to
1244 * memory by the point, so register usage restrictions no
1245 * longer apply. Lock temps to prevent them from being
1246 * allocated by utility routines.
1247 */
1248 dvmCompilerLockAllTemps(cUnit);
1249
1250 /*
1251 * For verbose printing, store the method pointer in operands[1] first as
1252 * operands[0] will be clobbered in dvmCompilerMIR2LIR.
1253 */
1254 predChainingCell->operands[1] = (int) mir->meta.callsiteInfo->method;
1255
1256 /* "this" is already left in r_A0 by genProcessArgs* */
1257
1258 /* r4PC = dalvikCallsite */
1259 loadConstant(cUnit, r4PC,
1260 (int) (cUnit->method->insns + mir->offset));
1261
1262 /* r_A1 = &retChainingCell */
1263 MipsLIR *addrRetChain = newLIR2(cUnit, kMipsLahi, r_A1, 0);
1264 addrRetChain->generic.target = (LIR *) retChainingCell;
1265 addrRetChain = newLIR3(cUnit, kMipsLalo, r_A1, r_A1, 0);
1266 addrRetChain->generic.target = (LIR *) retChainingCell;
1267
1268 /* r_A2 = &predictedChainingCell */
1269 MipsLIR *predictedChainingCell = newLIR2(cUnit, kMipsLahi, r_A2, 0);
1270 predictedChainingCell->generic.target = (LIR *) predChainingCell;
1271 predictedChainingCell = newLIR3(cUnit, kMipsLalo, r_A2, r_A2, 0);
1272 predictedChainingCell->generic.target = (LIR *) predChainingCell;
1273
1274 genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1275 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
1276 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
1277
1278 /* return through ra - jump to the chaining cell */
1279 genUnconditionalBranch(cUnit, predChainingCell);
1280
1281 /*
1282 * null-check on "this" may have been eliminated, but we still need a PC-
1283 * reconstruction label for stack overflow bailout.
1284 */
1285 if (pcrLabel == NULL) {
1286 int dPC = (int) (cUnit->method->insns + mir->offset);
1287 pcrLabel = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
1288 pcrLabel->opcode = kMipsPseudoPCReconstructionCell;
1289 pcrLabel->operands[0] = dPC;
1290 pcrLabel->operands[1] = mir->offset;
1291 /* Insert the place holder to the growable list */
1292 dvmInsertGrowableList(&cUnit->pcReconstructionList,
1293 (intptr_t) pcrLabel);
1294 }
1295
1296 /* return through ra+8 - punt to the interpreter */
1297 genUnconditionalBranch(cUnit, pcrLabel);
1298
1299 /*
1300 * return through ra+16 - fully resolve the callee method.
1301 * r_A1 <- count
1302 * r_A2 <- &predictedChainCell
1303 * r_A3 <- this->class
1304 * r4 <- dPC
1305 * r_S4 <- this->class->vtable
1306 */
1307
1308 /* r_A0 <- calleeMethod */
1309 loadWordDisp(cUnit, r_S4, methodIndex * 4, r_A0);
1310
1311 /* Check if rechain limit is reached */
1312 MipsLIR *bypassRechaining = opCompareBranch(cUnit, kMipsBgtz, r_A1, -1);
1313
1314 LOAD_FUNC_ADDR(cUnit, r_T9, (int) dvmJitToPatchPredictedChain);
1315
1316 genRegCopy(cUnit, r_A1, rSELF);
1317
1318 /*
1319 * r_A0 = calleeMethod
1320 * r_A2 = &predictedChainingCell
1321 * r_A3 = class
1322 *
1323 * &returnChainingCell has been loaded into r_A1 but is not needed
1324 * when patching the chaining cell and will be clobbered upon
1325 * returning so it will be reconstructed again.
1326 */
1327 opReg(cUnit, kOpBlx, r_T9);
1328 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
1329 newLIR2(cUnit, kMipsMove, r_A0, r_V0);
1330
1331 /* r_A1 = &retChainingCell */
1332 addrRetChain = newLIR2(cUnit, kMipsLahi, r_A1, 0);
1333 addrRetChain->generic.target = (LIR *) retChainingCell;
1334 bypassRechaining->generic.target = (LIR *) addrRetChain;
1335 addrRetChain = newLIR3(cUnit, kMipsLalo, r_A1, r_A1, 0);
1336 addrRetChain->generic.target = (LIR *) retChainingCell;
1337
1338 /*
1339 * r_A0 = calleeMethod,
1340 * r_A1 = &ChainingCell,
1341 * r4PC = callsiteDPC,
1342 */
1343 genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
1344 TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
1345 TEMPLATE_INVOKE_METHOD_NO_OPT);
1346#if defined(WITH_JIT_TUNING)
1347 gDvmJit.invokePolymorphic++;
1348#endif
1349 /* Handle exceptions using the interpreter */
1350 genTrap(cUnit, mir->offset, pcrLabel);
1351}
1352
1353/* "this" pointer is already in r0 */
1354static void genInvokeVirtualWholeMethod(CompilationUnit *cUnit,
1355 MIR *mir,
1356 void *calleeAddr,
1357 MipsLIR *retChainingCell)
1358{
1359 CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
1360 dvmCompilerLockAllTemps(cUnit);
1361
1362 loadClassPointer(cUnit, r_A1, (int) callsiteInfo);
1363
1364 loadWordDisp(cUnit, r_A0, offsetof(Object, clazz), r_A2);
1365 /*
1366 * Set the misPredBranchOver target so that it will be generated when the
1367 * code for the non-optimized invoke is generated.
1368 */
1369 /* Branch to the slow path if classes are not equal */
1370 MipsLIR *classCheck = opCompareBranch(cUnit, kMipsBne, r_A1, r_A2);
1371
1372 /* a0 = the Dalvik PC of the callsite */
1373 loadConstant(cUnit, r_A0, (int) (cUnit->method->insns + mir->offset));
1374
1375 newLIR1(cUnit, kMipsJal, (int) calleeAddr);
1376 genUnconditionalBranch(cUnit, retChainingCell);
1377
1378 /* Target of slow path */
1379 MipsLIR *slowPathLabel = newLIR0(cUnit, kMipsPseudoTargetLabel);
1380
1381 slowPathLabel->defMask = ENCODE_ALL;
1382 classCheck->generic.target = (LIR *) slowPathLabel;
1383
1384 // FIXME
1385 cUnit->printMe = true;
1386}
1387
1388static void genInvokeSingletonWholeMethod(CompilationUnit *cUnit,
1389 MIR *mir,
1390 void *calleeAddr,
1391 MipsLIR *retChainingCell)
1392{
1393 /* a0 = the Dalvik PC of the callsite */
1394 loadConstant(cUnit, r_A0, (int) (cUnit->method->insns + mir->offset));
1395
1396 newLIR1(cUnit, kMipsJal, (int) calleeAddr);
1397 genUnconditionalBranch(cUnit, retChainingCell);
1398
1399 // FIXME
1400 cUnit->printMe = true;
1401}
1402
1403/* Geneate a branch to go back to the interpreter */
1404static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
1405{
1406 /* a0 = dalvik pc */
1407 dvmCompilerFlushAllRegs(cUnit);
1408 loadConstant(cUnit, r_A0, (int) (cUnit->method->insns + offset));
1409#if 0 /* MIPSTODO tempoary workaround unaligned access on sigma hardware
1410 this can removed when we're not punting to genInterpSingleStep
1411 for opcodes that haven't been activated yet */
1412 loadWordDisp(cUnit, r_A0, offsetof(Object, clazz), r_A3);
1413#endif
1414 loadWordDisp(cUnit, rSELF, offsetof(Thread,
1415 jitToInterpEntries.dvmJitToInterpPunt), r_A1);
1416
1417 opReg(cUnit, kOpBlx, r_A1);
1418}
1419
1420/*
1421 * Attempt to single step one instruction using the interpreter and return
1422 * to the compiled code for the next Dalvik instruction
1423 */
1424static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
1425{
1426 int flags = dexGetFlagsFromOpcode(mir->dalvikInsn.opcode);
1427 int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn;
1428
1429 // Single stepping is considered loop mode breaker
1430 if (cUnit->jitMode == kJitLoop) {
1431 cUnit->quitLoopMode = true;
1432 return;
1433 }
1434
1435 //If already optimized out, just ignore
1436 if (mir->dalvikInsn.opcode == OP_NOP)
1437 return;
1438
1439 //Ugly, but necessary. Flush all Dalvik regs so Interp can find them
1440 dvmCompilerFlushAllRegs(cUnit);
1441
1442 if ((mir->next == NULL) || (flags & flagsToCheck)) {
1443 genPuntToInterp(cUnit, mir->offset);
1444 return;
1445 }
1446 int entryAddr = offsetof(Thread,
1447 jitToInterpEntries.dvmJitToInterpSingleStep);
1448 loadWordDisp(cUnit, rSELF, entryAddr, r_A2);
1449 /* a0 = dalvik pc */
1450 loadConstant(cUnit, r_A0, (int) (cUnit->method->insns + mir->offset));
1451 /* a1 = dalvik pc of following instruction */
1452 loadConstant(cUnit, r_A1, (int) (cUnit->method->insns + mir->next->offset));
1453 opReg(cUnit, kOpBlx, r_A2);
1454}
1455
1456/*
1457 * To prevent a thread in a monitor wait from blocking the Jit from
1458 * resetting the code cache, heavyweight monitor lock will not
1459 * be allowed to return to an existing translation. Instead, we will
1460 * handle them by branching to a handler, which will in turn call the
1461 * runtime lock routine and then branch directly back to the
1462 * interpreter main loop. Given the high cost of the heavyweight
1463 * lock operation, this additional cost should be slight (especially when
1464 * considering that we expect the vast majority of lock operations to
1465 * use the fast-path thin lock bypass).
1466 */
1467static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
1468{
1469 bool isEnter = (mir->dalvikInsn.opcode == OP_MONITOR_ENTER);
1470 genExportPC(cUnit, mir);
1471 dvmCompilerFlushAllRegs(cUnit); /* Send everything to home location */
1472 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1473 loadValueDirectFixed(cUnit, rlSrc, r_A1);
1474 genRegCopy(cUnit, r_A0, rSELF);
1475 genNullCheck(cUnit, rlSrc.sRegLow, r_A1, mir->offset, NULL);
1476 if (isEnter) {
1477 /* Get dPC of next insn */
1478 loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
1479 dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
1480 genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
1481 } else {
1482 LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmUnlockObject);
1483 /* Do the call */
1484 opReg(cUnit, kOpBlx, r_T9);
1485 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
1486 /* Did we throw? */
1487 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
1488 loadConstant(cUnit, r_A0,
1489 (int) (cUnit->method->insns + mir->offset +
1490 dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
1491 genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
1492 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
1493 target->defMask = ENCODE_ALL;
1494 branchOver->generic.target = (LIR *) target;
1495 dvmCompilerClobberCallRegs(cUnit);
1496 }
1497}
1498/*#endif*/
1499
1500/*
1501 * Fetch *self->info.breakFlags. If the breakFlags are non-zero,
1502 * punt to the interpreter.
1503 */
1504static void genSuspendPoll(CompilationUnit *cUnit, MIR *mir)
1505{
1506 int rTemp = dvmCompilerAllocTemp(cUnit);
1507 MipsLIR *ld;
1508 ld = loadBaseDisp(cUnit, NULL, rSELF,
1509 offsetof(Thread, interpBreak.ctl.breakFlags),
1510 rTemp, kUnsignedByte, INVALID_SREG);
1511 setMemRefType(ld, true /* isLoad */, kMustNotAlias);
1512 genRegImmCheck(cUnit, kMipsCondNe, rTemp, 0, mir->offset, NULL);
1513}
1514
1515/*
1516 * The following are the first-level codegen routines that analyze the format
1517 * of each bytecode then either dispatch special purpose codegen routines
1518 * or produce corresponding Thumb instructions directly.
1519 */
1520
1521static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
1522 BasicBlock *bb, MipsLIR *labelList)
1523{
1524 /* backward branch? */
1525 bool backwardBranch = (bb->taken->startOffset <= mir->offset);
1526
1527 if (backwardBranch &&
1528 (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
1529 genSuspendPoll(cUnit, mir);
1530 }
1531
1532 int numPredecessors = dvmCountSetBits(bb->taken->predecessors);
1533 /*
1534 * Things could be hoisted out of the taken block into the predecessor, so
1535 * make sure it is dominated by the predecessor.
1536 */
1537 if (numPredecessors == 1 && bb->taken->visited == false &&
1538 bb->taken->blockType == kDalvikByteCode) {
1539 cUnit->nextCodegenBlock = bb->taken;
1540 } else {
1541 /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
1542 genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
1543 }
1544 return false;
1545}
1546
1547static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
1548{
1549 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
1550 if ((dalvikOpcode >= OP_UNUSED_3E) && (dalvikOpcode <= OP_UNUSED_43)) {
1551 LOGE("Codegen: got unused opcode %#x",dalvikOpcode);
1552 return true;
1553 }
1554 switch (dalvikOpcode) {
1555 case OP_RETURN_VOID_BARRIER:
Elliott Hughes100dbe02012-07-17 16:31:30 -07001556 dvmCompilerGenMemBarrier(cUnit, 0);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001557 // Intentional fallthrough
1558 case OP_RETURN_VOID:
1559 genReturnCommon(cUnit,mir);
1560 break;
1561 case OP_UNUSED_73:
1562 case OP_UNUSED_79:
1563 case OP_UNUSED_7A:
Raghu Gandhama8b91c52012-05-02 14:27:16 -07001564 LOGE("Codegen: got unused opcode %#x",dalvikOpcode);
1565 return true;
1566 case OP_NOP:
1567 break;
1568 default:
1569 return true;
1570 }
1571 return false;
1572}
1573
1574static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
1575{
1576 RegLocation rlDest;
1577 RegLocation rlResult;
1578 if (mir->ssaRep->numDefs == 2) {
1579 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1580 } else {
1581 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1582 }
1583
1584 switch (mir->dalvikInsn.opcode) {
1585 case OP_CONST:
1586 case OP_CONST_4: {
1587 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1588 loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
1589 storeValue(cUnit, rlDest, rlResult);
1590 break;
1591 }
1592 case OP_CONST_WIDE_32: {
1593 //TUNING: single routine to load constant pair for support doubles
1594 //TUNING: load 0/-1 separately to avoid load dependency
1595 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1596 loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
1597 opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
1598 rlResult.lowReg, 31);
1599 storeValueWide(cUnit, rlDest, rlResult);
1600 break;
1601 }
1602 default:
1603 return true;
1604 }
1605 return false;
1606}
1607
1608static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
1609{
1610 RegLocation rlDest;
1611 RegLocation rlResult;
1612 if (mir->ssaRep->numDefs == 2) {
1613 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1614 } else {
1615 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1616 }
1617 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1618
1619 switch (mir->dalvikInsn.opcode) {
1620 case OP_CONST_HIGH16: {
1621 loadConstantNoClobber(cUnit, rlResult.lowReg,
1622 mir->dalvikInsn.vB << 16);
1623 storeValue(cUnit, rlDest, rlResult);
1624 break;
1625 }
1626 case OP_CONST_WIDE_HIGH16: {
1627 loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
1628 0, mir->dalvikInsn.vB << 16);
1629 storeValueWide(cUnit, rlDest, rlResult);
1630 break;
1631 }
1632 default:
1633 return true;
1634 }
1635 return false;
1636}
1637
1638static bool handleFmt20bc_Fmt40sc(CompilationUnit *cUnit, MIR *mir)
1639{
1640 /* For OP_THROW_VERIFICATION_ERROR & OP_THROW_VERIFICATION_ERROR_JUMBO */
1641 genInterpSingleStep(cUnit, mir);
1642 return false;
1643}
1644
1645static bool handleFmt21c_Fmt31c_Fmt41c(CompilationUnit *cUnit, MIR *mir)
1646{
1647 RegLocation rlResult;
1648 RegLocation rlDest;
1649 RegLocation rlSrc;
1650
1651 switch (mir->dalvikInsn.opcode) {
1652 case OP_CONST_STRING_JUMBO:
1653 case OP_CONST_STRING: {
1654 void *strPtr = (void*)
1655 (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
1656
1657 if (strPtr == NULL) {
1658 BAIL_LOOP_COMPILATION();
1659 LOGE("Unexpected null string");
1660 dvmAbort();
1661 }
1662
1663 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1664 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1665 loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr );
1666 storeValue(cUnit, rlDest, rlResult);
1667 break;
1668 }
1669 case OP_CONST_CLASS:
1670 case OP_CONST_CLASS_JUMBO: {
1671 void *classPtr = (void*)
1672 (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1673
1674 if (classPtr == NULL) {
1675 BAIL_LOOP_COMPILATION();
1676 LOGE("Unexpected null class");
1677 dvmAbort();
1678 }
1679
1680 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1681 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1682 loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr );
1683 storeValue(cUnit, rlDest, rlResult);
1684 break;
1685 }
1686 case OP_SGET:
1687 case OP_SGET_VOLATILE:
1688 case OP_SGET_VOLATILE_JUMBO:
1689 case OP_SGET_JUMBO:
1690 case OP_SGET_OBJECT:
1691 case OP_SGET_OBJECT_VOLATILE:
1692 case OP_SGET_OBJECT_VOLATILE_JUMBO:
1693 case OP_SGET_OBJECT_JUMBO:
1694 case OP_SGET_BOOLEAN:
1695 case OP_SGET_BOOLEAN_JUMBO:
1696 case OP_SGET_CHAR:
1697 case OP_SGET_CHAR_JUMBO:
1698 case OP_SGET_BYTE:
1699 case OP_SGET_BYTE_JUMBO:
1700 case OP_SGET_SHORT:
1701 case OP_SGET_SHORT_JUMBO: {
1702 int valOffset = OFFSETOF_MEMBER(StaticField, value);
1703 int tReg = dvmCompilerAllocTemp(cUnit);
1704 bool isVolatile;
1705 const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1706 mir->meta.calleeMethod : cUnit->method;
1707 void *fieldPtr = (void*)
1708 (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1709
1710 if (fieldPtr == NULL) {
1711 BAIL_LOOP_COMPILATION();
1712 LOGE("Unexpected null static field");
1713 dvmAbort();
1714 }
1715
1716 /*
1717 * On SMP systems, Dalvik opcodes found to be referencing
1718 * volatile fields are rewritten to their _VOLATILE variant.
1719 * However, this does not happen on non-SMP systems. The JIT
1720 * still needs to know about volatility to avoid unsafe
1721 * optimizations so we determine volatility based on either
1722 * the opcode or the field access flags.
1723 */
1724#if ANDROID_SMP != 0
1725 Opcode opcode = mir->dalvikInsn.opcode;
1726 isVolatile = (opcode == OP_SGET_VOLATILE) ||
1727 (opcode == OP_SGET_VOLATILE_JUMBO) ||
1728 (opcode == OP_SGET_OBJECT_VOLATILE) ||
1729 (opcode == OP_SGET_OBJECT_VOLATILE_JUMBO);
1730 assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
1731#else
1732 isVolatile = dvmIsVolatileField((Field *) fieldPtr);
1733#endif
1734
1735 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1736 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1737 loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
1738
1739 if (isVolatile) {
1740 dvmCompilerGenMemBarrier(cUnit, 0);
1741 }
1742 HEAP_ACCESS_SHADOW(true);
1743 loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
1744 HEAP_ACCESS_SHADOW(false);
1745
1746 storeValue(cUnit, rlDest, rlResult);
1747 break;
1748 }
1749 case OP_SGET_WIDE:
1750 case OP_SGET_WIDE_JUMBO: {
1751 int valOffset = OFFSETOF_MEMBER(StaticField, value);
1752 const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1753 mir->meta.calleeMethod : cUnit->method;
1754 void *fieldPtr = (void*)
1755 (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1756
1757 if (fieldPtr == NULL) {
1758 BAIL_LOOP_COMPILATION();
1759 LOGE("Unexpected null static field");
1760 dvmAbort();
1761 }
1762
1763 int tReg = dvmCompilerAllocTemp(cUnit);
1764 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
1765 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
1766 loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
1767
1768 HEAP_ACCESS_SHADOW(true);
1769 loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
1770 HEAP_ACCESS_SHADOW(false);
1771
1772 storeValueWide(cUnit, rlDest, rlResult);
1773 break;
1774 }
1775 case OP_SPUT:
1776 case OP_SPUT_VOLATILE:
1777 case OP_SPUT_VOLATILE_JUMBO:
1778 case OP_SPUT_JUMBO:
1779 case OP_SPUT_OBJECT:
1780 case OP_SPUT_OBJECT_VOLATILE:
1781 case OP_SPUT_OBJECT_VOLATILE_JUMBO:
1782 case OP_SPUT_OBJECT_JUMBO:
1783 case OP_SPUT_BOOLEAN:
1784 case OP_SPUT_BOOLEAN_JUMBO:
1785 case OP_SPUT_CHAR:
1786 case OP_SPUT_CHAR_JUMBO:
1787 case OP_SPUT_BYTE:
1788 case OP_SPUT_BYTE_JUMBO:
1789 case OP_SPUT_SHORT:
1790 case OP_SPUT_SHORT_JUMBO: {
1791 int valOffset = OFFSETOF_MEMBER(StaticField, value);
1792 int tReg = dvmCompilerAllocTemp(cUnit);
1793 int objHead = 0;
1794 bool isVolatile;
1795 bool isSputObject;
1796 const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1797 mir->meta.calleeMethod : cUnit->method;
1798 void *fieldPtr = (void*)
1799 (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1800 Opcode opcode = mir->dalvikInsn.opcode;
1801
1802 if (fieldPtr == NULL) {
1803 BAIL_LOOP_COMPILATION();
1804 LOGE("Unexpected null static field");
1805 dvmAbort();
1806 }
1807
1808#if ANDROID_SMP != 0
1809 isVolatile = (opcode == OP_SPUT_VOLATILE) ||
1810 (opcode == OP_SPUT_VOLATILE_JUMBO) ||
1811 (opcode == OP_SPUT_OBJECT_VOLATILE) ||
1812 (opcode == OP_SPUT_OBJECT_VOLATILE_JUMBO);
1813 assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
1814#else
1815 isVolatile = dvmIsVolatileField((Field *) fieldPtr);
1816#endif
1817
1818 isSputObject = (opcode == OP_SPUT_OBJECT) ||
1819 (opcode == OP_SPUT_OBJECT_JUMBO) ||
1820 (opcode == OP_SPUT_OBJECT_VOLATILE) ||
1821 (opcode == OP_SPUT_OBJECT_VOLATILE_JUMBO);
1822
1823 rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1824 rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
1825 loadConstant(cUnit, tReg, (int) fieldPtr);
1826 if (isSputObject) {
1827 objHead = dvmCompilerAllocTemp(cUnit);
1828 loadWordDisp(cUnit, tReg, OFFSETOF_MEMBER(Field, clazz), objHead);
1829 }
1830 if (isVolatile) {
1831 dvmCompilerGenMemBarrier(cUnit, 0);
1832 }
1833 HEAP_ACCESS_SHADOW(true);
1834 storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg);
1835 dvmCompilerFreeTemp(cUnit, tReg);
1836 HEAP_ACCESS_SHADOW(false);
1837 if (isVolatile) {
1838 dvmCompilerGenMemBarrier(cUnit, 0);
1839 }
1840 if (isSputObject) {
1841 /* NOTE: marking card based sfield->clazz */
1842 markCard(cUnit, rlSrc.lowReg, objHead);
1843 dvmCompilerFreeTemp(cUnit, objHead);
1844 }
1845
1846 break;
1847 }
1848 case OP_SPUT_WIDE:
1849 case OP_SPUT_WIDE_JUMBO: {
1850 int tReg = dvmCompilerAllocTemp(cUnit);
1851 int valOffset = OFFSETOF_MEMBER(StaticField, value);
1852 const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
1853 mir->meta.calleeMethod : cUnit->method;
1854 void *fieldPtr = (void*)
1855 (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
1856
1857 if (fieldPtr == NULL) {
1858 BAIL_LOOP_COMPILATION();
1859 LOGE("Unexpected null static field");
1860 dvmAbort();
1861 }
1862
1863 rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
1864 rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
1865 loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
1866
1867 HEAP_ACCESS_SHADOW(true);
1868 storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
1869 HEAP_ACCESS_SHADOW(false);
1870 break;
1871 }
1872 case OP_NEW_INSTANCE:
1873 case OP_NEW_INSTANCE_JUMBO: {
1874 /*
1875 * Obey the calling convention and don't mess with the register
1876 * usage.
1877 */
1878 ClassObject *classPtr = (ClassObject *)
1879 (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1880
1881 if (classPtr == NULL) {
1882 BAIL_LOOP_COMPILATION();
1883 LOGE("Unexpected null class");
1884 dvmAbort();
1885 }
1886
1887 /*
1888 * If it is going to throw, it should not make to the trace to begin
1889 * with. However, Alloc might throw, so we need to genExportPC()
1890 */
1891 assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
1892 dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
1893 genExportPC(cUnit, mir);
1894 LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmAllocObject);
1895 loadConstant(cUnit, r_A0, (int) classPtr);
1896 loadConstant(cUnit, r_A1, ALLOC_DONT_TRACK);
1897 opReg(cUnit, kOpBlx, r_T9);
1898 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
1899 dvmCompilerClobberCallRegs(cUnit);
1900 /* generate a branch over if allocation is successful */
1901 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
1902
1903 /*
1904 * OOM exception needs to be thrown here and cannot re-execute
1905 */
1906 loadConstant(cUnit, r_A0,
1907 (int) (cUnit->method->insns + mir->offset));
1908 genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
1909 /* noreturn */
1910
1911 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
1912 target->defMask = ENCODE_ALL;
1913 branchOver->generic.target = (LIR *) target;
1914 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1915 rlResult = dvmCompilerGetReturn(cUnit);
1916 storeValue(cUnit, rlDest, rlResult);
1917 break;
1918 }
1919 case OP_CHECK_CAST:
1920 case OP_CHECK_CAST_JUMBO: {
1921 /*
1922 * Obey the calling convention and don't mess with the register
1923 * usage.
1924 */
1925 ClassObject *classPtr =
1926 (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
1927 /*
1928 * Note: It is possible that classPtr is NULL at this point,
1929 * even though this instruction has been successfully interpreted.
1930 * If the previous interpretation had a null source, the
1931 * interpreter would not have bothered to resolve the clazz.
1932 * Bail out to the interpreter in this case, and log it
1933 * so that we can tell if it happens frequently.
1934 */
1935 if (classPtr == NULL) {
1936 BAIL_LOOP_COMPILATION();
1937 LOGVV("null clazz in OP_CHECK_CAST, single-stepping");
1938 genInterpSingleStep(cUnit, mir);
1939 return false;
1940 }
1941 dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
1942 loadConstant(cUnit, r_A1, (int) classPtr );
1943 rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
1944 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
1945 MipsLIR *branch1 = opCompareBranch(cUnit, kMipsBeqz, rlSrc.lowReg, -1);
1946 /*
1947 * rlSrc.lowReg now contains object->clazz. Note that
1948 * it could have been allocated r_A0, but we're okay so long
1949 * as we don't do anything desctructive until r_A0 is loaded
1950 * with clazz.
1951 */
1952 /* r_A0 now contains object->clazz */
1953 loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r_A0);
1954 LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmInstanceofNonTrivial);
1955 MipsLIR *branch2 = opCompareBranch(cUnit, kMipsBeq, r_A0, r_A1);
1956 opReg(cUnit, kOpBlx, r_T9);
1957 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
1958 dvmCompilerClobberCallRegs(cUnit);
1959 /*
1960 * If null, check cast failed - punt to the interpreter. Because
1961 * interpreter will be the one throwing, we don't need to
1962 * genExportPC() here.
1963 */
1964 genRegCopy(cUnit, r_A0, r_V0);
1965 genZeroCheck(cUnit, r_V0, mir->offset, NULL);
1966 /* check cast passed - branch target here */
1967 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
1968 target->defMask = ENCODE_ALL;
1969 branch1->generic.target = (LIR *)target;
1970 branch2->generic.target = (LIR *)target;
1971 break;
1972 }
1973 case OP_SGET_WIDE_VOLATILE:
1974 case OP_SGET_WIDE_VOLATILE_JUMBO:
1975 case OP_SPUT_WIDE_VOLATILE:
1976 case OP_SPUT_WIDE_VOLATILE_JUMBO:
1977 genInterpSingleStep(cUnit, mir);
1978 break;
1979 default:
1980 return true;
1981 }
1982 return false;
1983}
1984
1985static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
1986{
1987 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
1988 RegLocation rlResult;
1989 switch (dalvikOpcode) {
1990 case OP_MOVE_EXCEPTION: {
1991 int exOffset = offsetof(Thread, exception);
1992 int resetReg = dvmCompilerAllocTemp(cUnit);
1993 RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
1994 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
1995 loadWordDisp(cUnit, rSELF, exOffset, rlResult.lowReg);
1996 loadConstant(cUnit, resetReg, 0);
1997 storeWordDisp(cUnit, rSELF, exOffset, resetReg);
1998 storeValue(cUnit, rlDest, rlResult);
1999 break;
2000 }
2001 case OP_MOVE_RESULT:
2002 case OP_MOVE_RESULT_OBJECT: {
2003 /* An inlined move result is effectively no-op */
2004 if (mir->OptimizationFlags & MIR_INLINED)
2005 break;
2006 RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2007 RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
2008 rlSrc.fp = rlDest.fp;
2009 storeValue(cUnit, rlDest, rlSrc);
2010 break;
2011 }
2012 case OP_MOVE_RESULT_WIDE: {
2013 /* An inlined move result is effectively no-op */
2014 if (mir->OptimizationFlags & MIR_INLINED)
2015 break;
2016 RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2017 RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
2018 rlSrc.fp = rlDest.fp;
2019 storeValueWide(cUnit, rlDest, rlSrc);
2020 break;
2021 }
2022 case OP_RETURN_WIDE: {
2023 RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2024 RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
2025 rlDest.fp = rlSrc.fp;
2026 storeValueWide(cUnit, rlDest, rlSrc);
2027 genReturnCommon(cUnit,mir);
2028 break;
2029 }
2030 case OP_RETURN:
2031 case OP_RETURN_OBJECT: {
2032 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2033 RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
2034 rlDest.fp = rlSrc.fp;
2035 storeValue(cUnit, rlDest, rlSrc);
2036 genReturnCommon(cUnit, mir);
2037 break;
2038 }
2039 case OP_MONITOR_EXIT:
2040 case OP_MONITOR_ENTER:
2041 genMonitor(cUnit, mir);
2042 break;
2043 case OP_THROW:
2044 genInterpSingleStep(cUnit, mir);
2045 break;
2046 default:
2047 return true;
2048 }
2049 return false;
2050}
2051
2052static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
2053{
2054 Opcode opcode = mir->dalvikInsn.opcode;
2055 RegLocation rlDest;
2056 RegLocation rlSrc;
2057 RegLocation rlResult;
2058
2059 if ( (opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
2060 return genArithOp( cUnit, mir );
2061 }
2062
2063 if (mir->ssaRep->numUses == 2)
2064 rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2065 else
2066 rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2067 if (mir->ssaRep->numDefs == 2)
2068 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2069 else
2070 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2071
2072 switch (opcode) {
2073 case OP_DOUBLE_TO_INT:
2074 case OP_INT_TO_FLOAT:
2075 case OP_FLOAT_TO_INT:
2076 case OP_DOUBLE_TO_FLOAT:
2077 case OP_FLOAT_TO_DOUBLE:
2078 case OP_INT_TO_DOUBLE:
2079 case OP_FLOAT_TO_LONG:
2080 case OP_LONG_TO_FLOAT:
2081 case OP_DOUBLE_TO_LONG:
2082 case OP_LONG_TO_DOUBLE:
2083 return genConversion(cUnit, mir);
2084 case OP_NEG_INT:
2085 case OP_NOT_INT:
2086 return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
2087 case OP_NEG_LONG:
2088 case OP_NOT_LONG:
2089 return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
2090 case OP_NEG_FLOAT:
2091 return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
2092 case OP_NEG_DOUBLE:
2093 return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
2094 case OP_MOVE_WIDE:
2095 storeValueWide(cUnit, rlDest, rlSrc);
2096 break;
2097 case OP_INT_TO_LONG:
2098 rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc);
2099 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2100 //TUNING: shouldn't loadValueDirect already check for phys reg?
2101 if (rlSrc.location == kLocPhysReg) {
2102 genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
2103 } else {
2104 loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
2105 }
2106 opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
2107 rlResult.lowReg, 31);
2108 storeValueWide(cUnit, rlDest, rlResult);
2109 break;
2110 case OP_LONG_TO_INT:
2111 rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc);
2112 rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc);
2113 // Intentional fallthrough
2114 case OP_MOVE:
2115 case OP_MOVE_OBJECT:
2116 storeValue(cUnit, rlDest, rlSrc);
2117 break;
2118 case OP_INT_TO_BYTE:
2119 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2120 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2121 opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
2122 storeValue(cUnit, rlDest, rlResult);
2123 break;
2124 case OP_INT_TO_SHORT:
2125 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2126 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2127 opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
2128 storeValue(cUnit, rlDest, rlResult);
2129 break;
2130 case OP_INT_TO_CHAR:
2131 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2132 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2133 opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
2134 storeValue(cUnit, rlDest, rlResult);
2135 break;
2136 case OP_ARRAY_LENGTH: {
2137 int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
2138 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2139 genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
2140 mir->offset, NULL);
2141 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2142 loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
2143 rlResult.lowReg);
2144 storeValue(cUnit, rlDest, rlResult);
2145 break;
2146 }
2147 default:
2148 return true;
2149 }
2150 return false;
2151}
2152
2153static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
2154{
2155 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2156 RegLocation rlDest;
2157 RegLocation rlResult;
2158 int BBBB = mir->dalvikInsn.vB;
2159 if (dalvikOpcode == OP_CONST_WIDE_16) {
2160 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2161 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2162 loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
2163 //TUNING: do high separately to avoid load dependency
2164 opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
2165 storeValueWide(cUnit, rlDest, rlResult);
2166 } else if (dalvikOpcode == OP_CONST_16) {
2167 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2168 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
2169 loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
2170 storeValue(cUnit, rlDest, rlResult);
2171 } else
2172 return true;
2173 return false;
2174}
2175
2176/* Compare agaist zero */
2177static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
2178 MipsLIR *labelList)
2179{
2180 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2181 MipsOpCode opc = kMipsNop;
2182 int rt = -1;
2183 /* backward branch? */
2184 bool backwardBranch = (bb->taken->startOffset <= mir->offset);
2185
2186 if (backwardBranch &&
2187 (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
2188 genSuspendPoll(cUnit, mir);
2189 }
2190
2191 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2192 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2193
2194 switch (dalvikOpcode) {
2195 case OP_IF_EQZ:
2196 opc = kMipsBeqz;
2197 break;
2198 case OP_IF_NEZ:
2199 opc = kMipsBne;
2200 rt = r_ZERO;
2201 break;
2202 case OP_IF_LTZ:
2203 opc = kMipsBltz;
2204 break;
2205 case OP_IF_GEZ:
2206 opc = kMipsBgez;
2207 break;
2208 case OP_IF_GTZ:
2209 opc = kMipsBgtz;
2210 break;
2211 case OP_IF_LEZ:
2212 opc = kMipsBlez;
2213 break;
2214 default:
2215 LOGE("Unexpected opcode (%d) for Fmt21t", dalvikOpcode);
2216 dvmCompilerAbort(cUnit);
2217 }
2218 genConditionalBranchMips(cUnit, opc, rlSrc.lowReg, rt, &labelList[bb->taken->id]);
2219 /* This mostly likely will be optimized away in a later phase */
2220 genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
2221 return false;
2222}
2223
2224static bool isPowerOfTwo(int x)
2225{
2226 return (x & (x - 1)) == 0;
2227}
2228
2229// Returns true if no more than two bits are set in 'x'.
2230static bool isPopCountLE2(unsigned int x)
2231{
2232 x &= x - 1;
2233 return (x & (x - 1)) == 0;
2234}
2235
2236// Returns the index of the lowest set bit in 'x'.
2237static int lowestSetBit(unsigned int x) {
2238 int bit_posn = 0;
2239 while ((x & 0xf) == 0) {
2240 bit_posn += 4;
2241 x >>= 4;
2242 }
2243 while ((x & 1) == 0) {
2244 bit_posn++;
2245 x >>= 1;
2246 }
2247 return bit_posn;
2248}
2249
2250// Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit'
2251// and store the result in 'rlDest'.
2252static bool handleEasyDivide(CompilationUnit *cUnit, Opcode dalvikOpcode,
2253 RegLocation rlSrc, RegLocation rlDest, int lit)
2254{
2255 if (lit < 2 || !isPowerOfTwo(lit)) {
2256 return false;
2257 }
2258 int k = lowestSetBit(lit);
2259 if (k >= 30) {
2260 // Avoid special cases.
2261 return false;
2262 }
2263 bool div = (dalvikOpcode == OP_DIV_INT_LIT8 || dalvikOpcode == OP_DIV_INT_LIT16);
2264 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2265 RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2266 if (div) {
2267 int tReg = dvmCompilerAllocTemp(cUnit);
2268 if (lit == 2) {
2269 // Division by 2 is by far the most common division by constant.
2270 opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k);
2271 opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
2272 opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
2273 } else {
2274 opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31);
2275 opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k);
2276 opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
2277 opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
2278 }
2279 } else {
2280 int cReg = dvmCompilerAllocTemp(cUnit);
2281 loadConstant(cUnit, cReg, lit - 1);
2282 int tReg1 = dvmCompilerAllocTemp(cUnit);
2283 int tReg2 = dvmCompilerAllocTemp(cUnit);
2284 if (lit == 2) {
2285 opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k);
2286 opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
2287 opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
2288 opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
2289 } else {
2290 opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31);
2291 opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k);
2292 opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
2293 opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
2294 opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
2295 }
2296 }
2297 storeValue(cUnit, rlDest, rlResult);
2298 return true;
2299}
2300
2301// Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit'
2302// and store the result in 'rlDest'.
2303static bool handleEasyMultiply(CompilationUnit *cUnit,
2304 RegLocation rlSrc, RegLocation rlDest, int lit)
2305{
2306 // Can we simplify this multiplication?
2307 bool powerOfTwo = false;
2308 bool popCountLE2 = false;
2309 bool powerOfTwoMinusOne = false;
2310 if (lit < 2) {
2311 // Avoid special cases.
2312 return false;
2313 } else if (isPowerOfTwo(lit)) {
2314 powerOfTwo = true;
2315 } else if (isPopCountLE2(lit)) {
2316 popCountLE2 = true;
2317 } else if (isPowerOfTwo(lit + 1)) {
2318 powerOfTwoMinusOne = true;
2319 } else {
2320 return false;
2321 }
2322 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2323 RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2324 if (powerOfTwo) {
2325 // Shift.
2326 opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg,
2327 lowestSetBit(lit));
2328 } else if (popCountLE2) {
2329 // Shift and add and shift.
2330 int firstBit = lowestSetBit(lit);
2331 int secondBit = lowestSetBit(lit ^ (1 << firstBit));
2332 genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit,
2333 firstBit, secondBit);
2334 } else {
2335 // Reverse subtract: (src << (shift + 1)) - src.
2336 assert(powerOfTwoMinusOne);
2337 // TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1)
2338 int tReg = dvmCompilerAllocTemp(cUnit);
2339 opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1));
2340 opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg);
2341 }
2342 storeValue(cUnit, rlDest, rlResult);
2343 return true;
2344}
2345
2346static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
2347{
2348 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2349 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2350 RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2351 RegLocation rlResult;
2352 int lit = mir->dalvikInsn.vC;
2353 OpKind op = (OpKind)0; /* Make gcc happy */
2354 int shiftOp = false;
2355
2356 switch (dalvikOpcode) {
2357 case OP_RSUB_INT_LIT8:
2358 case OP_RSUB_INT: {
2359 int tReg;
2360 //TUNING: add support for use of Arm rsub op
2361 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2362 tReg = dvmCompilerAllocTemp(cUnit);
2363 loadConstant(cUnit, tReg, lit);
2364 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2365 opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
2366 tReg, rlSrc.lowReg);
2367 storeValue(cUnit, rlDest, rlResult);
2368 return false;
2369 break;
2370 }
2371
2372 case OP_ADD_INT_LIT8:
2373 case OP_ADD_INT_LIT16:
2374 op = kOpAdd;
2375 break;
2376 case OP_MUL_INT_LIT8:
2377 case OP_MUL_INT_LIT16: {
2378 if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) {
2379 return false;
2380 }
2381 op = kOpMul;
2382 break;
2383 }
2384 case OP_AND_INT_LIT8:
2385 case OP_AND_INT_LIT16:
2386 op = kOpAnd;
2387 break;
2388 case OP_OR_INT_LIT8:
2389 case OP_OR_INT_LIT16:
2390 op = kOpOr;
2391 break;
2392 case OP_XOR_INT_LIT8:
2393 case OP_XOR_INT_LIT16:
2394 op = kOpXor;
2395 break;
2396 case OP_SHL_INT_LIT8:
2397 lit &= 31;
2398 shiftOp = true;
2399 op = kOpLsl;
2400 break;
2401 case OP_SHR_INT_LIT8:
2402 lit &= 31;
2403 shiftOp = true;
2404 op = kOpAsr;
2405 break;
2406 case OP_USHR_INT_LIT8:
2407 lit &= 31;
2408 shiftOp = true;
2409 op = kOpLsr;
2410 break;
2411
2412 case OP_DIV_INT_LIT8:
2413 case OP_DIV_INT_LIT16:
2414 case OP_REM_INT_LIT8:
2415 case OP_REM_INT_LIT16: {
2416 if (lit == 0) {
2417 /* Let the interpreter deal with div by 0 */
2418 genInterpSingleStep(cUnit, mir);
2419 return false;
2420 }
2421 if (handleEasyDivide(cUnit, dalvikOpcode, rlSrc, rlDest, lit)) {
2422 return false;
2423 }
2424
2425 MipsOpCode opc;
2426 int divReg;
2427
2428 if ((dalvikOpcode == OP_DIV_INT_LIT8) ||
2429 (dalvikOpcode == OP_DIV_INT_LIT16)) {
2430 opc = kMipsMflo;
2431 divReg = r_LO;
2432 } else {
2433 opc = kMipsMfhi;
2434 divReg = r_HI;
2435 }
2436
2437 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2438 int tReg = dvmCompilerAllocTemp(cUnit);
2439 newLIR3(cUnit, kMipsAddiu, tReg, r_ZERO, lit);
2440 newLIR4(cUnit, kMipsDiv, r_HI, r_LO, rlSrc.lowReg, tReg);
2441 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2442 newLIR2(cUnit, opc, rlResult.lowReg, divReg);
2443 dvmCompilerFreeTemp(cUnit, tReg);
2444 storeValue(cUnit, rlDest, rlResult);
2445 return false;
2446 break;
2447 }
2448 default:
2449 return true;
2450 }
2451 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
2452 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
2453 // Avoid shifts by literal 0 - no support in Thumb. Change to copy
2454 if (shiftOp && (lit == 0)) {
2455 genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
2456 } else {
2457 opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
2458 }
2459 storeValue(cUnit, rlDest, rlResult);
2460 return false;
2461}
2462
2463static bool handleFmt22c_Fmt52c(CompilationUnit *cUnit, MIR *mir)
2464{
2465 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2466 int fieldOffset = -1;
2467 bool isVolatile = false;
2468 switch (dalvikOpcode) {
2469 /*
2470 * Wide volatiles currently handled via single step.
2471 * Add them here if generating in-line code.
2472 * case OP_IGET_WIDE_VOLATILE:
2473 * case OP_IGET_WIDE_VOLATILE_JUMBO:
2474 * case OP_IPUT_WIDE_VOLATILE:
2475 * case OP_IPUT_WIDE_VOLATILE_JUMBO:
2476 */
2477 case OP_IGET_VOLATILE:
2478 case OP_IGET_VOLATILE_JUMBO:
2479 case OP_IGET_OBJECT_VOLATILE:
2480 case OP_IGET_OBJECT_VOLATILE_JUMBO:
2481 case OP_IPUT_VOLATILE:
2482 case OP_IPUT_VOLATILE_JUMBO:
2483 case OP_IPUT_OBJECT_VOLATILE:
2484 case OP_IPUT_OBJECT_VOLATILE_JUMBO:
2485#if ANDROID_SMP != 0
2486 isVolatile = true;
2487 // NOTE: intentional fallthrough
2488#endif
2489 case OP_IGET:
2490 case OP_IGET_JUMBO:
2491 case OP_IGET_WIDE:
2492 case OP_IGET_WIDE_JUMBO:
2493 case OP_IGET_OBJECT:
2494 case OP_IGET_OBJECT_JUMBO:
2495 case OP_IGET_BOOLEAN:
2496 case OP_IGET_BOOLEAN_JUMBO:
2497 case OP_IGET_BYTE:
2498 case OP_IGET_BYTE_JUMBO:
2499 case OP_IGET_CHAR:
2500 case OP_IGET_CHAR_JUMBO:
2501 case OP_IGET_SHORT:
2502 case OP_IGET_SHORT_JUMBO:
2503 case OP_IPUT:
2504 case OP_IPUT_JUMBO:
2505 case OP_IPUT_WIDE:
2506 case OP_IPUT_WIDE_JUMBO:
2507 case OP_IPUT_OBJECT:
2508 case OP_IPUT_OBJECT_JUMBO:
2509 case OP_IPUT_BOOLEAN:
2510 case OP_IPUT_BOOLEAN_JUMBO:
2511 case OP_IPUT_BYTE:
2512 case OP_IPUT_BYTE_JUMBO:
2513 case OP_IPUT_CHAR:
2514 case OP_IPUT_CHAR_JUMBO:
2515 case OP_IPUT_SHORT:
2516 case OP_IPUT_SHORT_JUMBO: {
2517 const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
2518 mir->meta.calleeMethod : cUnit->method;
2519 Field *fieldPtr =
2520 method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
2521
2522 if (fieldPtr == NULL) {
2523 BAIL_LOOP_COMPILATION();
2524 LOGE("Unexpected null instance field");
2525 dvmAbort();
2526 }
2527#if ANDROID_SMP != 0
2528 assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
2529#else
2530 isVolatile = dvmIsVolatileField((Field *) fieldPtr);
2531#endif
2532 fieldOffset = ((InstField *)fieldPtr)->byteOffset;
2533 break;
2534 }
2535 default:
2536 break;
2537 }
2538
2539 switch (dalvikOpcode) {
2540 case OP_NEW_ARRAY:
2541 case OP_NEW_ARRAY_JUMBO: {
2542#if 0 /* 080 triggers assert in Interp.c:1290 for out of memory exception.
2543 i think the assert is in error and should be disabled. With
2544 asserts disabled, 080 passes. */
2545genInterpSingleStep(cUnit, mir);
2546return false;
2547#endif
2548 // Generates a call - use explicit registers
2549 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2550 RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2551 RegLocation rlResult;
2552 void *classPtr = (void*)
2553 (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
2554
2555 if (classPtr == NULL) {
2556 BAIL_LOOP_COMPILATION();
2557 LOGE("Unexpected null class");
2558 dvmAbort();
2559 }
2560
2561 dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
2562 genExportPC(cUnit, mir);
2563 loadValueDirectFixed(cUnit, rlSrc, r_A1); /* Len */
2564 loadConstant(cUnit, r_A0, (int) classPtr );
2565 LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmAllocArrayByClass);
2566 /*
2567 * "len < 0": bail to the interpreter to re-execute the
2568 * instruction
2569 */
2570 genRegImmCheck(cUnit, kMipsCondMi, r_A1, 0, mir->offset, NULL);
2571 loadConstant(cUnit, r_A2, ALLOC_DONT_TRACK);
2572 opReg(cUnit, kOpBlx, r_T9);
2573 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
2574 dvmCompilerClobberCallRegs(cUnit);
2575 /* generate a branch over if allocation is successful */
2576 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
2577 /*
2578 * OOM exception needs to be thrown here and cannot re-execute
2579 */
2580 loadConstant(cUnit, r_A0,
2581 (int) (cUnit->method->insns + mir->offset));
2582 genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
2583 /* noreturn */
2584
2585 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
2586 target->defMask = ENCODE_ALL;
2587 branchOver->generic.target = (LIR *) target;
2588 rlResult = dvmCompilerGetReturn(cUnit);
2589 storeValue(cUnit, rlDest, rlResult);
2590 break;
2591 }
2592 case OP_INSTANCE_OF:
2593 case OP_INSTANCE_OF_JUMBO: {
2594 // May generate a call - use explicit registers
2595 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
2596 RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2597 RegLocation rlResult;
2598 ClassObject *classPtr =
2599 (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
2600 /*
2601 * Note: It is possible that classPtr is NULL at this point,
2602 * even though this instruction has been successfully interpreted.
2603 * If the previous interpretation had a null source, the
2604 * interpreter would not have bothered to resolve the clazz.
2605 * Bail out to the interpreter in this case, and log it
2606 * so that we can tell if it happens frequently.
2607 */
2608 if (classPtr == NULL) {
2609 BAIL_LOOP_COMPILATION();
2610 LOGD("null clazz in OP_INSTANCE_OF, single-stepping");
2611 genInterpSingleStep(cUnit, mir);
2612 break;
2613 }
2614 dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
2615 loadValueDirectFixed(cUnit, rlSrc, r_V0); /* Ref */
2616 loadConstant(cUnit, r_A2, (int) classPtr );
2617 /* When taken r_V0 has NULL which can be used for store directly */
2618 MipsLIR *branch1 = opCompareBranch(cUnit, kMipsBeqz, r_V0, -1);
2619 /* r_A1 now contains object->clazz */
2620 loadWordDisp(cUnit, r_V0, offsetof(Object, clazz), r_A1);
2621 /* r_A1 now contains object->clazz */
2622 LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmInstanceofNonTrivial);
2623 loadConstant(cUnit, r_V0, 1); /* Assume true */
2624 MipsLIR *branch2 = opCompareBranch(cUnit, kMipsBeq, r_A1, r_A2);
2625 genRegCopy(cUnit, r_A0, r_A1);
2626 genRegCopy(cUnit, r_A1, r_A2);
2627 opReg(cUnit, kOpBlx, r_T9);
2628 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
2629 dvmCompilerClobberCallRegs(cUnit);
2630 /* branch target here */
2631 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
2632 target->defMask = ENCODE_ALL;
2633 rlResult = dvmCompilerGetReturn(cUnit);
2634 storeValue(cUnit, rlDest, rlResult);
2635 branch1->generic.target = (LIR *)target;
2636 branch2->generic.target = (LIR *)target;
2637 break;
2638 }
2639 case OP_IGET_WIDE:
2640 case OP_IGET_WIDE_JUMBO:
2641 genIGetWide(cUnit, mir, fieldOffset);
2642 break;
2643 case OP_IGET_VOLATILE:
2644 case OP_IGET_VOLATILE_JUMBO:
2645 case OP_IGET_OBJECT_VOLATILE:
2646 case OP_IGET_OBJECT_VOLATILE_JUMBO:
2647 case OP_IGET:
2648 case OP_IGET_JUMBO:
2649 case OP_IGET_OBJECT:
2650 case OP_IGET_OBJECT_JUMBO:
2651 case OP_IGET_BOOLEAN:
2652 case OP_IGET_BOOLEAN_JUMBO:
2653 case OP_IGET_BYTE:
2654 case OP_IGET_BYTE_JUMBO:
2655 case OP_IGET_CHAR:
2656 case OP_IGET_CHAR_JUMBO:
2657 case OP_IGET_SHORT:
2658 case OP_IGET_SHORT_JUMBO:
2659 genIGet(cUnit, mir, kWord, fieldOffset, isVolatile);
2660 break;
2661 case OP_IPUT_WIDE:
2662 case OP_IPUT_WIDE_JUMBO:
2663 genIPutWide(cUnit, mir, fieldOffset);
2664 break;
2665 case OP_IPUT_VOLATILE:
2666 case OP_IPUT_VOLATILE_JUMBO:
2667 case OP_IPUT:
2668 case OP_IPUT_JUMBO:
2669 case OP_IPUT_BOOLEAN:
2670 case OP_IPUT_BOOLEAN_JUMBO:
2671 case OP_IPUT_BYTE:
2672 case OP_IPUT_BYTE_JUMBO:
2673 case OP_IPUT_CHAR:
2674 case OP_IPUT_CHAR_JUMBO:
2675 case OP_IPUT_SHORT:
2676 case OP_IPUT_SHORT_JUMBO:
2677 genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile);
2678 break;
2679 case OP_IPUT_OBJECT_VOLATILE:
2680 case OP_IPUT_OBJECT_VOLATILE_JUMBO:
2681 case OP_IPUT_OBJECT:
2682 case OP_IPUT_OBJECT_JUMBO:
2683 genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile);
2684 break;
2685 case OP_IGET_WIDE_VOLATILE:
2686 case OP_IGET_WIDE_VOLATILE_JUMBO:
2687 case OP_IPUT_WIDE_VOLATILE:
2688 case OP_IPUT_WIDE_VOLATILE_JUMBO:
2689 genInterpSingleStep(cUnit, mir);
2690 break;
2691 default:
2692 return true;
2693 }
2694 return false;
2695}
2696
2697static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
2698{
2699 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2700 int fieldOffset = mir->dalvikInsn.vC;
2701 switch (dalvikOpcode) {
2702 case OP_IGET_QUICK:
2703 case OP_IGET_OBJECT_QUICK:
2704 genIGet(cUnit, mir, kWord, fieldOffset, false);
2705 break;
2706 case OP_IPUT_QUICK:
2707 genIPut(cUnit, mir, kWord, fieldOffset, false, false);
2708 break;
2709 case OP_IPUT_OBJECT_QUICK:
2710 genIPut(cUnit, mir, kWord, fieldOffset, true, false);
2711 break;
2712 case OP_IGET_WIDE_QUICK:
2713 genIGetWide(cUnit, mir, fieldOffset);
2714 break;
2715 case OP_IPUT_WIDE_QUICK:
2716 genIPutWide(cUnit, mir, fieldOffset);
2717 break;
2718 default:
2719 return true;
2720 }
2721 return false;
2722
2723}
2724
2725/* Compare against zero */
2726static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
2727 MipsLIR *labelList)
2728{
2729 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
2730 MipsConditionCode cond;
2731 MipsOpCode opc = kMipsNop;
2732 MipsLIR * test = NULL;
2733 /* backward branch? */
2734 bool backwardBranch = (bb->taken->startOffset <= mir->offset);
2735
2736 if (backwardBranch &&
2737 (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
2738 genSuspendPoll(cUnit, mir);
2739 }
2740
2741 RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
2742 RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
2743 rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
2744 rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
2745 int reg1 = rlSrc1.lowReg;
2746 int reg2 = rlSrc2.lowReg;
2747 int tReg;
2748
2749 switch (dalvikOpcode) {
2750 case OP_IF_EQ:
2751 opc = kMipsBeq;
2752 break;
2753 case OP_IF_NE:
2754 opc = kMipsBne;
2755 break;
2756 case OP_IF_LT:
2757 opc = kMipsBne;
2758 tReg = dvmCompilerAllocTemp(cUnit);
2759 test = newLIR3(cUnit, kMipsSlt, tReg, reg1, reg2);
2760 reg1 = tReg;
2761 reg2 = r_ZERO;
2762 break;
2763 case OP_IF_LE:
2764 opc = kMipsBeqz;
2765 tReg = dvmCompilerAllocTemp(cUnit);
2766 test = newLIR3(cUnit, kMipsSlt, tReg, reg2, reg1);
2767 reg1 = tReg;
2768 reg2 = -1;
2769 break;
2770 case OP_IF_GT:
2771 opc = kMipsBne;
2772 tReg = dvmCompilerAllocTemp(cUnit);
2773 test = newLIR3(cUnit, kMipsSlt, tReg, reg2, reg1);
2774 reg1 = tReg;
2775 reg2 = r_ZERO;
2776 break;
2777 case OP_IF_GE:
2778 opc = kMipsBeqz;
2779 tReg = dvmCompilerAllocTemp(cUnit);
2780 test = newLIR3(cUnit, kMipsSlt, tReg, reg1, reg2);
2781 reg1 = tReg;
2782 reg2 = -1;
2783 break;
2784 default:
2785 cond = (MipsConditionCode)0;
2786 LOGE("Unexpected opcode (%d) for Fmt22t", dalvikOpcode);
2787 dvmCompilerAbort(cUnit);
2788 }
2789
2790 genConditionalBranchMips(cUnit, opc, reg1, reg2, &labelList[bb->taken->id]);
2791 /* This mostly likely will be optimized away in a later phase */
2792 genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
2793 return false;
2794}
2795
2796static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
2797{
2798 Opcode opcode = mir->dalvikInsn.opcode;
2799
2800 switch (opcode) {
2801 case OP_MOVE_16:
2802 case OP_MOVE_OBJECT_16:
2803 case OP_MOVE_FROM16:
2804 case OP_MOVE_OBJECT_FROM16: {
2805 storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0),
2806 dvmCompilerGetSrc(cUnit, mir, 0));
2807 break;
2808 }
2809 case OP_MOVE_WIDE_16:
2810 case OP_MOVE_WIDE_FROM16: {
2811 storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1),
2812 dvmCompilerGetSrcWide(cUnit, mir, 0, 1));
2813 break;
2814 }
2815 default:
2816 return true;
2817 }
2818 return false;
2819}
2820
2821static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
2822{
2823 Opcode opcode = mir->dalvikInsn.opcode;
2824 RegLocation rlSrc1;
2825 RegLocation rlSrc2;
2826 RegLocation rlDest;
2827
2828 if ((opcode >= OP_ADD_INT) && (opcode <= OP_REM_DOUBLE)) {
2829 return genArithOp( cUnit, mir );
2830 }
2831
2832 /* APUTs have 3 sources and no targets */
2833 if (mir->ssaRep->numDefs == 0) {
2834 if (mir->ssaRep->numUses == 3) {
2835 rlDest = dvmCompilerGetSrc(cUnit, mir, 0);
2836 rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1);
2837 rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
2838 } else {
2839 assert(mir->ssaRep->numUses == 4);
2840 rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2841 rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2);
2842 rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3);
2843 }
2844 } else {
2845 /* Two sources and 1 dest. Deduce the operand sizes */
2846 if (mir->ssaRep->numUses == 4) {
2847 rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
2848 rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
2849 } else {
2850 assert(mir->ssaRep->numUses == 2);
2851 rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
2852 rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
2853 }
2854 if (mir->ssaRep->numDefs == 2) {
2855 rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
2856 } else {
2857 assert(mir->ssaRep->numDefs == 1);
2858 rlDest = dvmCompilerGetDest(cUnit, mir, 0);
2859 }
2860 }
2861
2862 switch (opcode) {
2863 case OP_CMPL_FLOAT:
2864 case OP_CMPG_FLOAT:
2865 case OP_CMPL_DOUBLE:
2866 case OP_CMPG_DOUBLE:
2867 return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
2868 case OP_CMP_LONG:
2869 genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
2870 break;
2871 case OP_AGET_WIDE:
2872 genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
2873 break;
2874 case OP_AGET:
2875 case OP_AGET_OBJECT:
2876 genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
2877 break;
2878 case OP_AGET_BOOLEAN:
2879 genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
2880 break;
2881 case OP_AGET_BYTE:
2882 genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
2883 break;
2884 case OP_AGET_CHAR:
2885 genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2886 break;
2887 case OP_AGET_SHORT:
2888 genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2889 break;
2890 case OP_APUT_WIDE:
2891 genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
2892 break;
2893 case OP_APUT:
2894 genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
2895 break;
2896 case OP_APUT_OBJECT:
2897 genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2);
2898 break;
2899 case OP_APUT_SHORT:
2900 case OP_APUT_CHAR:
2901 genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
2902 break;
2903 case OP_APUT_BYTE:
2904 case OP_APUT_BOOLEAN:
2905 genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
2906 break;
2907 default:
2908 return true;
2909 }
2910 return false;
2911}
2912
2913/*
2914 * Find the matching case.
2915 *
2916 * return values:
2917 * r_RESULT0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
2918 * including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
2919 * r_RESULT1 (high 32-bit): the branch offset of the matching case (only for indexes
2920 * above MAX_CHAINED_SWITCH_CASES).
2921 *
2922 * Instructions around the call are:
2923 *
2924 * jalr &findPackedSwitchIndex
2925 * nop
2926 * lw gp, 84(sp) |
2927 * addu | 20 bytes for these 5 instructions
2928 * move | (NOTE: if this sequence is shortened or lengthened, then
2929 * jr | the 20 byte offset added below in 3 places must be changed
2930 * nop | accordingly.)
2931 * chaining cell for case 0 [16 bytes]
2932 * chaining cell for case 1 [16 bytes]
2933 * :
2934 * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [16 bytes]
2935 * chaining cell for case default [16 bytes]
2936 * noChain exit
2937 */
Elliott Hughes100dbe02012-07-17 16:31:30 -07002938static u8 findPackedSwitchIndex(const u2* switchData, int testVal)
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002939{
2940 int size;
2941 int firstKey;
2942 const int *entries;
2943 int index;
2944 int jumpIndex;
Elliott Hughes100dbe02012-07-17 16:31:30 -07002945 uintptr_t caseDPCOffset = 0;
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002946
2947 /*
2948 * Packed switch data format:
2949 * ushort ident = 0x0100 magic value
2950 * ushort size number of entries in the table
2951 * int first_key first (and lowest) switch case value
2952 * int targets[size] branch targets, relative to switch opcode
2953 *
2954 * Total size is (4+size*2) 16-bit code units.
2955 */
2956 size = switchData[1];
2957 assert(size > 0);
2958
2959 firstKey = switchData[2];
2960 firstKey |= switchData[3] << 16;
2961
2962
2963 /* The entries are guaranteed to be aligned on a 32-bit boundary;
2964 * we can treat them as a native int array.
2965 */
2966 entries = (const int*) &switchData[4];
2967 assert(((u4)entries & 0x3) == 0);
2968
2969 index = testVal - firstKey;
2970
2971 /* Jump to the default cell */
2972 if (index < 0 || index >= size) {
2973 jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
2974 /* Jump to the non-chaining exit point */
2975 } else if (index >= MAX_CHAINED_SWITCH_CASES) {
2976 jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
2977#ifdef HAVE_LITTLE_ENDIAN
2978 caseDPCOffset = entries[index];
2979#else
2980 caseDPCOffset = (unsigned int)entries[index] >> 16 | entries[index] << 16;
2981#endif
2982 /* Jump to the inline chaining cell */
2983 } else {
2984 jumpIndex = index;
2985 }
2986
Elliott Hughes100dbe02012-07-17 16:31:30 -07002987 return (((u8) caseDPCOffset) << 32) | (u8) (jumpIndex * CHAIN_CELL_NORMAL_SIZE + 20);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002988}
2989
2990/* See comments for findPackedSwitchIndex */
Elliott Hughes100dbe02012-07-17 16:31:30 -07002991static u8 findSparseSwitchIndex(const u2* switchData, int testVal)
Raghu Gandhama8b91c52012-05-02 14:27:16 -07002992{
2993 int size;
2994 const int *keys;
2995 const int *entries;
2996 /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
2997 int i;
2998
2999 /*
3000 * Sparse switch data format:
3001 * ushort ident = 0x0200 magic value
3002 * ushort size number of entries in the table; > 0
3003 * int keys[size] keys, sorted low-to-high; 32-bit aligned
3004 * int targets[size] branch targets, relative to switch opcode
3005 *
3006 * Total size is (2+size*4) 16-bit code units.
3007 */
3008
3009 size = switchData[1];
3010 assert(size > 0);
3011
3012 /* The keys are guaranteed to be aligned on a 32-bit boundary;
3013 * we can treat them as a native int array.
3014 */
3015 keys = (const int*) &switchData[2];
3016 assert(((u4)keys & 0x3) == 0);
3017
3018 /* The entries are guaranteed to be aligned on a 32-bit boundary;
3019 * we can treat them as a native int array.
3020 */
3021 entries = keys + size;
3022 assert(((u4)entries & 0x3) == 0);
3023
3024 /*
3025 * Run through the list of keys, which are guaranteed to
3026 * be sorted low-to-high.
3027 *
3028 * Most tables have 3-4 entries. Few have more than 10. A binary
3029 * search here is probably not useful.
3030 */
3031 for (i = 0; i < size; i++) {
3032#ifdef HAVE_LITTLE_ENDIAN
3033 int k = keys[i];
3034 if (k == testVal) {
3035 /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
3036 int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
3037 i : MAX_CHAINED_SWITCH_CASES + 1;
Elliott Hughes100dbe02012-07-17 16:31:30 -07003038 return (((u8) entries[i]) << 32) | (u8) (jumpIndex * CHAIN_CELL_NORMAL_SIZE + 20);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07003039#else
3040 int k = (unsigned int)keys[i] >> 16 | keys[i] << 16;
3041 if (k == testVal) {
3042 /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
3043 int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
3044 i : MAX_CHAINED_SWITCH_CASES + 1;
3045 int temp = (unsigned int)entries[i] >> 16 | entries[i] << 16;
Elliott Hughes100dbe02012-07-17 16:31:30 -07003046 return (((u8) temp) << 32) | (u8) (jumpIndex * CHAIN_CELL_NORMAL_SIZE + 20);
Raghu Gandhama8b91c52012-05-02 14:27:16 -07003047#endif
3048 } else if (k > testVal) {
3049 break;
3050 }
3051 }
3052 return MIN(size, MAX_CHAINED_SWITCH_CASES) * CHAIN_CELL_NORMAL_SIZE + 20;
3053}
3054
3055static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
3056{
3057 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
3058 switch (dalvikOpcode) {
3059 case OP_FILL_ARRAY_DATA: {
3060 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3061 // Making a call - use explicit registers
3062 dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
3063 genExportPC(cUnit, mir);
3064 loadValueDirectFixed(cUnit, rlSrc, r_A0);
3065 LOAD_FUNC_ADDR(cUnit, r_T9, (int)dvmInterpHandleFillArrayData);
3066 loadConstant(cUnit, r_A1,
3067 (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
3068 opReg(cUnit, kOpBlx, r_T9);
3069 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
3070 dvmCompilerClobberCallRegs(cUnit);
3071 /* generate a branch over if successful */
3072 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
3073 loadConstant(cUnit, r_A0,
3074 (int) (cUnit->method->insns + mir->offset));
3075 genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3076 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
3077 target->defMask = ENCODE_ALL;
3078 branchOver->generic.target = (LIR *) target;
3079 break;
3080 }
3081 /*
3082 * Compute the goto target of up to
3083 * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
3084 * See the comment before findPackedSwitchIndex for the code layout.
3085 */
3086 case OP_PACKED_SWITCH:
3087 case OP_SPARSE_SWITCH: {
3088 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3089 dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
3090 loadValueDirectFixed(cUnit, rlSrc, r_A1);
3091 dvmCompilerLockAllTemps(cUnit);
3092
3093 if (dalvikOpcode == OP_PACKED_SWITCH) {
3094 LOAD_FUNC_ADDR(cUnit, r_T9, (int)findPackedSwitchIndex);
3095 } else {
3096 LOAD_FUNC_ADDR(cUnit, r_T9, (int)findSparseSwitchIndex);
3097 }
3098 /* r_A0 <- Addr of the switch data */
3099 loadConstant(cUnit, r_A0,
3100 (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
3101 opReg(cUnit, kOpBlx, r_T9);
3102 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
3103 dvmCompilerClobberCallRegs(cUnit);
3104 /* pc <- computed goto target using value in RA */
3105 newLIR3(cUnit, kMipsAddu, r_A0, r_RA, r_RESULT0);
3106 newLIR2(cUnit, kMipsMove, r_A1, r_RESULT1);
3107 newLIR1(cUnit, kMipsJr, r_A0);
3108 newLIR0(cUnit, kMipsNop); /* for maintaining 20 byte offset */
3109 break;
3110 }
3111 default:
3112 return true;
3113 }
3114 return false;
3115}
3116
3117/*
3118 * See the example of predicted inlining listed before the
3119 * genValidationForPredictedInline function. The function here takes care the
3120 * branch over at 0x4858de78 and the misprediction target at 0x4858de7a.
3121 */
3122static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir,
3123 BasicBlock *bb,
3124 MipsLIR *labelList)
3125{
3126 BasicBlock *fallThrough = bb->fallThrough;
3127
3128 /* Bypass the move-result block if there is one */
3129 if (fallThrough->firstMIRInsn) {
3130 assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED);
3131 fallThrough = fallThrough->fallThrough;
3132 }
3133 /* Generate a branch over if the predicted inlining is correct */
3134 genUnconditionalBranch(cUnit, &labelList[fallThrough->id]);
3135
3136 /* Reset the register state */
3137 dvmCompilerResetRegPool(cUnit);
3138 dvmCompilerClobberAllRegs(cUnit);
3139 dvmCompilerResetNullCheck(cUnit);
3140
3141 /* Target for the slow invoke path */
3142 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
3143 target->defMask = ENCODE_ALL;
3144 /* Hook up the target to the verification branch */
3145 mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target;
3146}
3147
3148static bool handleFmt35c_3rc_5rc(CompilationUnit *cUnit, MIR *mir,
3149 BasicBlock *bb, MipsLIR *labelList)
3150{
3151 MipsLIR *retChainingCell = NULL;
3152 MipsLIR *pcrLabel = NULL;
3153
3154 /* An invoke with the MIR_INLINED is effectively a no-op */
3155 if (mir->OptimizationFlags & MIR_INLINED)
3156 return false;
3157
3158 if (bb->fallThrough != NULL)
3159 retChainingCell = &labelList[bb->fallThrough->id];
3160
3161 DecodedInstruction *dInsn = &mir->dalvikInsn;
3162 switch (mir->dalvikInsn.opcode) {
3163 /*
3164 * calleeMethod = this->clazz->vtable[
3165 * method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
3166 * ]
3167 */
3168 case OP_INVOKE_VIRTUAL:
3169 case OP_INVOKE_VIRTUAL_RANGE:
3170 case OP_INVOKE_VIRTUAL_JUMBO: {
3171 MipsLIR *predChainingCell = &labelList[bb->taken->id];
3172 int methodIndex =
3173 cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
3174 methodIndex;
3175
3176 /*
3177 * If the invoke has non-null misPredBranchOver, we need to generate
3178 * the non-inlined version of the invoke here to handle the
3179 * mispredicted case.
3180 */
3181 if (mir->meta.callsiteInfo->misPredBranchOver) {
3182 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3183 }
3184
3185 if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL)
3186 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3187 else
3188 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3189
3190 genInvokeVirtualCommon(cUnit, mir, methodIndex,
3191 retChainingCell,
3192 predChainingCell,
3193 pcrLabel);
3194 break;
3195 }
3196 /*
3197 * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
3198 * ->pResMethods[BBBB]->methodIndex]
3199 */
3200 case OP_INVOKE_SUPER:
3201 case OP_INVOKE_SUPER_RANGE:
3202 case OP_INVOKE_SUPER_JUMBO: {
3203 /* Grab the method ptr directly from what the interpreter sees */
3204 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3205 assert(calleeMethod == cUnit->method->clazz->super->vtable[
3206 cUnit->method->clazz->pDvmDex->
3207 pResMethods[dInsn->vB]->methodIndex]);
3208
3209 if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER)
3210 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3211 else
3212 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3213
3214 if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3215 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3216 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3217 assert(calleeAddr);
3218 genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
3219 retChainingCell);
3220 } else {
3221 /* r_A0 = calleeMethod */
3222 loadConstant(cUnit, r_A0, (int) calleeMethod);
3223
3224 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3225 calleeMethod);
3226 }
3227 break;
3228 }
3229 /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
3230 case OP_INVOKE_DIRECT:
3231 case OP_INVOKE_DIRECT_RANGE:
3232 case OP_INVOKE_DIRECT_JUMBO: {
3233 /* Grab the method ptr directly from what the interpreter sees */
3234 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3235 assert(calleeMethod ==
3236 cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
3237
3238 if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT)
3239 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3240 else
3241 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3242
3243 /* r_A0 = calleeMethod */
3244 loadConstant(cUnit, r_A0, (int) calleeMethod);
3245
3246 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3247 calleeMethod);
3248 break;
3249 }
3250 /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
3251 case OP_INVOKE_STATIC:
3252 case OP_INVOKE_STATIC_RANGE:
3253 case OP_INVOKE_STATIC_JUMBO: {
3254 /* Grab the method ptr directly from what the interpreter sees */
3255 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3256 assert(calleeMethod ==
3257 cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
3258
3259 if (mir->dalvikInsn.opcode == OP_INVOKE_STATIC)
3260 genProcessArgsNoRange(cUnit, mir, dInsn,
3261 NULL /* no null check */);
3262 else
3263 genProcessArgsRange(cUnit, mir, dInsn,
3264 NULL /* no null check */);
3265
3266 if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3267 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3268 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3269 assert(calleeAddr);
3270 genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
3271 retChainingCell);
3272 } else {
3273 /* r_A0 = calleeMethod */
3274 loadConstant(cUnit, r_A0, (int) calleeMethod);
3275
3276 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3277 calleeMethod);
3278 }
3279 break;
3280 }
3281
3282 /*
3283 * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
3284 * BBBB, method, method->clazz->pDvmDex)
3285 *
3286 * The following is an example of generated code for
3287 * "invoke-interface v0"
3288 *
3289 * -------- dalvik offset: 0x000f @ invoke-interface (PI) v2
3290 * 0x2f140c54 : lw a0,8(s1) # genProcessArgsNoRange
3291 * 0x2f140c58 : addiu s4,s1,0xffffffe8(-24)
3292 * 0x2f140c5c : beqz a0,0x2f140d5c (L0x11f864)
3293 * 0x2f140c60 : pref 1,0(s4)
3294 * -------- BARRIER
3295 * 0x2f140c64 : sw a0,0(s4)
3296 * 0x2f140c68 : addiu s4,s4,0x0004(4)
3297 * -------- BARRIER
3298 * 0x2f140c6c : lui s0,0x2d23(11555) # dalvikPC
3299 * 0x2f140c70 : ori s0,s0,0x2d2365a6(757294502)
3300 * 0x2f140c74 : lahi/lui a1,0x2f14(12052) # a1 <- &retChainingCell
3301 * 0x2f140c78 : lalo/ori a1,a1,0x2f140d38(789843256)
3302 * 0x2f140c7c : lahi/lui a2,0x2f14(12052) # a2 <- &predictedChainingCell
3303 * 0x2f140c80 : lalo/ori a2,a2,0x2f140d80(789843328)
3304 * 0x2f140c84 : jal 0x2f1311ec(789778924) # call TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
3305 * 0x2f140c88 : nop
3306 * 0x2f140c8c : b 0x2f140d80 (L0x11efc0) # off to the predicted chain
3307 * 0x2f140c90 : nop
3308 * 0x2f140c94 : b 0x2f140d60 (L0x12457c) # punt to the interpreter
3309 * 0x2f140c98 : lui a0,0x2d23(11555)
3310 * 0x2f140c9c : move s5,a1 # prepare for dvmFindInterfaceMethodInCache
3311 * 0x2f140ca0 : move s6,a2
3312 * 0x2f140ca4 : move s7,a3
3313 * 0x2f140ca8 : move a0,a3
3314 * 0x2f140cac : ori a1,zero,0x2b42(11074)
3315 * 0x2f140cb0 : lui a2,0x2c92(11410)
3316 * 0x2f140cb4 : ori a2,a2,0x2c92adf8(747810296)
3317 * 0x2f140cb8 : lui a3,0x0009(9)
3318 * 0x2f140cbc : ori a3,a3,0x924b8(599224)
3319 * 0x2f140cc0 : lui t9,0x2ab2(10930)
3320 * 0x2f140cc4 : ori t9,t9,0x2ab2a48c(716350604)
3321 * 0x2f140cc8 : jalr ra,t9 # call dvmFindInterfaceMethodInCache
3322 * 0x2f140ccc : nop
3323 * 0x2f140cd0 : lw gp,84(sp)
3324 * 0x2f140cd4 : move a0,v0
3325 * 0x2f140cd8 : bne v0,zero,0x2f140cf0 (L0x120064)
3326 * 0x2f140cdc : nop
3327 * 0x2f140ce0 : lui a0,0x2d23(11555) # a0 <- dalvikPC
3328 * 0x2f140ce4 : ori a0,a0,0x2d2365a6(757294502)
3329 * 0x2f140ce8 : jal 0x2f131720(789780256) # call TEMPLATE_THROW_EXCEPTION_COMMON
3330 * 0x2f140cec : nop
3331 * 0x2f140cf0 : move a1,s5 # a1 <- &retChainingCell
3332 * 0x2f140cf4 : bgtz s5,0x2f140d20 (L0x120324) # >0? don't rechain
3333 * 0x2f140cf8 : nop
3334 * 0x2f140cfc : lui t9,0x2aba(10938) # prepare for dvmJitToPatchPredictedChain
3335 * 0x2f140d00 : ori t9,t9,0x2abae3c4(716891076)
3336 * 0x2f140d04 : move a1,s2
3337 * 0x2f140d08 : move a2,s6
3338 * 0x2f140d0c : move a3,s7
3339 * 0x2f140d10 : jalr ra,t9 # call dvmJitToPatchPredictedChain
3340 * 0x2f140d14 : nop
3341 * 0x2f140d18 : lw gp,84(sp)
3342 * 0x2f140d1c : move a0,v0
3343 * 0x2f140d20 : lahi/lui a1,0x2f14(12052)
3344 * 0x2f140d24 : lalo/ori a1,a1,0x2f140d38(789843256) # a1 <- &retChainingCell
3345 * 0x2f140d28 : jal 0x2f1310c4(789778628) # call TEMPLATE_INVOKE_METHOD_NO_OPT
3346 * 0x2f140d2c : nop
3347 * 0x2f140d30 : b 0x2f140d60 (L0x12457c)
3348 * 0x2f140d34 : lui a0,0x2d23(11555)
3349 * 0x2f140d38 : .align4
3350 * -------- dalvik offset: 0x0012 @ move-result (PI) v1, (#0), (#0)
3351 * 0x2f140d38 : lw a2,16(s2)
3352 * 0x2f140d3c : sw a2,4(s1)
3353 * 0x2f140d40 : b 0x2f140d74 (L0x1246fc)
3354 * 0x2f140d44 : lw a0,116(s2)
3355 * 0x2f140d48 : undefined
3356 * -------- reconstruct dalvik PC : 0x2d2365a6 @ +0x000f
3357 * 0x2f140d4c : lui a0,0x2d23(11555)
3358 * 0x2f140d50 : ori a0,a0,0x2d2365a6(757294502)
3359 * 0x2f140d54 : b 0x2f140d68 (L0x12463c)
3360 * 0x2f140d58 : lw a1,108(s2)
3361 * -------- reconstruct dalvik PC : 0x2d2365a6 @ +0x000f
3362 * 0x2f140d5c : lui a0,0x2d23(11555)
3363 * 0x2f140d60 : ori a0,a0,0x2d2365a6(757294502)
3364 * Exception_Handling:
3365 * 0x2f140d64 : lw a1,108(s2)
3366 * 0x2f140d68 : jalr ra,a1
3367 * 0x2f140d6c : nop
3368 * 0x2f140d70 : .align4
3369 * -------- chaining cell (hot): 0x0013
3370 * 0x2f140d70 : lw a0,116(s2)
3371 * 0x2f140d74 : jalr ra,a0
3372 * 0x2f140d78 : nop
3373 * 0x2f140d7c : data 0x2d2365ae(757294510)
3374 * 0x2f140d80 : .align4
3375 * -------- chaining cell (predicted): N/A
3376 * 0x2f140d80 : data 0xe7fe(59390)
3377 * 0x2f140d84 : data 0x0000(0)
3378 * 0x2f140d88 : data 0x0000(0)
3379 * 0x2f140d8c : data 0x0000(0)
3380 * 0x2f140d90 : data 0x0000(0)
3381 * -------- end of chaining cells (0x0190)
3382 */
3383 case OP_INVOKE_INTERFACE:
3384 case OP_INVOKE_INTERFACE_RANGE:
3385 case OP_INVOKE_INTERFACE_JUMBO: {
3386 MipsLIR *predChainingCell = &labelList[bb->taken->id];
3387
3388 /*
3389 * If the invoke has non-null misPredBranchOver, we need to generate
3390 * the non-inlined version of the invoke here to handle the
3391 * mispredicted case.
3392 */
3393 if (mir->meta.callsiteInfo->misPredBranchOver) {
3394 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3395 }
3396
3397 if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE)
3398 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3399 else
3400 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3401
3402 /* "this" is already left in r_A0 by genProcessArgs* */
3403
3404 /* r4PC = dalvikCallsite */
3405 loadConstant(cUnit, r4PC,
3406 (int) (cUnit->method->insns + mir->offset));
3407
3408 /* r_A1 = &retChainingCell */
3409 MipsLIR *addrRetChain = newLIR2(cUnit, kMipsLahi, r_A1, 0);
3410 addrRetChain->generic.target = (LIR *) retChainingCell;
3411 addrRetChain = newLIR3(cUnit, kMipsLalo, r_A1, r_A1, 0);
3412 addrRetChain->generic.target = (LIR *) retChainingCell;
3413
3414
3415 /* r_A2 = &predictedChainingCell */
3416 MipsLIR *predictedChainingCell = newLIR2(cUnit, kMipsLahi, r_A2, 0);
3417 predictedChainingCell->generic.target = (LIR *) predChainingCell;
3418 predictedChainingCell = newLIR3(cUnit, kMipsLalo, r_A2, r_A2, 0);
3419 predictedChainingCell->generic.target = (LIR *) predChainingCell;
3420
3421 genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
3422 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
3423 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
3424
3425 /* return through ra - jump to the chaining cell */
3426 genUnconditionalBranch(cUnit, predChainingCell);
3427
3428 /*
3429 * null-check on "this" may have been eliminated, but we still need
3430 * a PC-reconstruction label for stack overflow bailout.
3431 */
3432 if (pcrLabel == NULL) {
3433 int dPC = (int) (cUnit->method->insns + mir->offset);
3434 pcrLabel = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
3435 pcrLabel->opcode = kMipsPseudoPCReconstructionCell;
3436 pcrLabel->operands[0] = dPC;
3437 pcrLabel->operands[1] = mir->offset;
3438 /* Insert the place holder to the growable list */
3439 dvmInsertGrowableList(&cUnit->pcReconstructionList,
3440 (intptr_t) pcrLabel);
3441 }
3442
3443 /* return through ra+8 - punt to the interpreter */
3444 genUnconditionalBranch(cUnit, pcrLabel);
3445
3446 /*
3447 * return through ra+16 - fully resolve the callee method.
3448 * r_A1 <- count
3449 * r_A2 <- &predictedChainCell
3450 * r_A3 <- this->class
3451 * r4 <- dPC
3452 * r_S4 <- this->class->vtable
3453 */
3454
3455 /* Save count, &predictedChainCell, and class to high regs first */
3456 genRegCopy(cUnit, r_S5, r_A1);
3457 genRegCopy(cUnit, r_S6, r_A2);
3458 genRegCopy(cUnit, r_S7, r_A3);
3459
3460 /* r_A0 now contains this->clazz */
3461 genRegCopy(cUnit, r_A0, r_A3);
3462
3463 /* r_A1 = BBBB */
3464 loadConstant(cUnit, r_A1, dInsn->vB);
3465
3466 /* r_A2 = method (caller) */
3467 loadConstant(cUnit, r_A2, (int) cUnit->method);
3468
3469 /* r_A3 = pDvmDex */
3470 loadConstant(cUnit, r_A3, (int) cUnit->method->clazz->pDvmDex);
3471
3472 LOAD_FUNC_ADDR(cUnit, r_T9,
3473 (intptr_t) dvmFindInterfaceMethodInCache);
3474 opReg(cUnit, kOpBlx, r_T9);
3475 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
3476 /* r_V0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
3477 genRegCopy(cUnit, r_A0, r_V0);
3478
3479 dvmCompilerClobberCallRegs(cUnit);
3480 /* generate a branch over if the interface method is resolved */
3481 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
3482 /*
3483 * calleeMethod == NULL -> throw
3484 */
3485 loadConstant(cUnit, r_A0,
3486 (int) (cUnit->method->insns + mir->offset));
3487 genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3488 /* noreturn */
3489
3490 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
3491 target->defMask = ENCODE_ALL;
3492 branchOver->generic.target = (LIR *) target;
3493
3494 genRegCopy(cUnit, r_A1, r_S5);
3495
3496 /* Check if rechain limit is reached */
3497 MipsLIR *bypassRechaining = opCompareBranch(cUnit, kMipsBgtz, r_S5, -1);
3498
3499 LOAD_FUNC_ADDR(cUnit, r_T9, (int) dvmJitToPatchPredictedChain);
3500
3501 genRegCopy(cUnit, r_A1, rSELF);
3502 genRegCopy(cUnit, r_A2, r_S6);
3503 genRegCopy(cUnit, r_A3, r_S7);
3504
3505 /*
3506 * r_A0 = calleeMethod
3507 * r_A2 = &predictedChainingCell
3508 * r_A3 = class
3509 *
3510 * &returnChainingCell has been loaded into r_A1 but is not needed
3511 * when patching the chaining cell and will be clobbered upon
3512 * returning so it will be reconstructed again.
3513 */
3514 opReg(cUnit, kOpBlx, r_T9);
3515 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
3516 genRegCopy(cUnit, r_A0, r_V0);
3517
3518 /* r_A1 = &retChainingCell */
3519 addrRetChain = newLIR2(cUnit, kMipsLahi, r_A1, 0);
3520 addrRetChain->generic.target = (LIR *) retChainingCell;
3521 bypassRechaining->generic.target = (LIR *) addrRetChain;
3522 addrRetChain = newLIR3(cUnit, kMipsLalo, r_A1, r_A1, 0);
3523 addrRetChain->generic.target = (LIR *) retChainingCell;
3524
3525
3526 /*
3527 * r_A0 = this, r_A1 = calleeMethod,
3528 * r_A1 = &ChainingCell,
3529 * r4PC = callsiteDPC,
3530 */
3531 genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
3532 TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
3533 TEMPLATE_INVOKE_METHOD_NO_OPT);
3534
3535#if defined(WITH_JIT_TUNING)
3536 gDvmJit.invokePolymorphic++;
3537#endif
3538 /* Handle exceptions using the interpreter */
3539 genTrap(cUnit, mir->offset, pcrLabel);
3540 break;
3541 }
3542 case OP_INVOKE_OBJECT_INIT_JUMBO:
3543 case OP_INVOKE_OBJECT_INIT_RANGE:
3544 case OP_FILLED_NEW_ARRAY:
3545 case OP_FILLED_NEW_ARRAY_RANGE:
3546 case OP_FILLED_NEW_ARRAY_JUMBO: {
3547 /* Just let the interpreter deal with these */
3548 genInterpSingleStep(cUnit, mir);
3549 break;
3550 }
3551 default:
3552 return true;
3553 }
3554 return false;
3555}
3556
3557static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
3558 BasicBlock *bb, MipsLIR *labelList)
3559{
3560 MipsLIR *pcrLabel = NULL;
3561
3562 /* An invoke with the MIR_INLINED is effectively a no-op */
3563 if (mir->OptimizationFlags & MIR_INLINED)
3564 return false;
3565
3566 DecodedInstruction *dInsn = &mir->dalvikInsn;
3567 switch (mir->dalvikInsn.opcode) {
3568 /* calleeMethod = this->clazz->vtable[BBBB] */
3569 case OP_INVOKE_VIRTUAL_QUICK_RANGE:
3570 case OP_INVOKE_VIRTUAL_QUICK: {
3571 int methodIndex = dInsn->vB;
3572 MipsLIR *retChainingCell = &labelList[bb->fallThrough->id];
3573 MipsLIR *predChainingCell = &labelList[bb->taken->id];
3574
3575 /*
3576 * If the invoke has non-null misPredBranchOver, we need to generate
3577 * the non-inlined version of the invoke here to handle the
3578 * mispredicted case.
3579 */
3580 if (mir->meta.callsiteInfo->misPredBranchOver) {
3581 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
3582 }
3583
3584 if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL_QUICK)
3585 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3586 else
3587 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3588
3589 if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
3590 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3591 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
3592 assert(calleeAddr);
3593 genInvokeVirtualWholeMethod(cUnit, mir, calleeAddr,
3594 retChainingCell);
3595 }
3596
3597 genInvokeVirtualCommon(cUnit, mir, methodIndex,
3598 retChainingCell,
3599 predChainingCell,
3600 pcrLabel);
3601 break;
3602 }
3603 /* calleeMethod = method->clazz->super->vtable[BBBB] */
3604 case OP_INVOKE_SUPER_QUICK:
3605 case OP_INVOKE_SUPER_QUICK_RANGE: {
3606 /* Grab the method ptr directly from what the interpreter sees */
3607 const Method *calleeMethod = mir->meta.callsiteInfo->method;
3608 assert(calleeMethod ==
3609 cUnit->method->clazz->super->vtable[dInsn->vB]);
3610
3611 if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER_QUICK)
3612 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
3613 else
3614 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
3615
3616 /* r_A0 = calleeMethod */
3617 loadConstant(cUnit, r_A0, (int) calleeMethod);
3618
3619 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
3620 calleeMethod);
3621 break;
3622 }
3623 default:
3624 return true;
3625 }
3626 return false;
3627}
3628
3629/*
3630 * This operation is complex enough that we'll do it partly inline
3631 * and partly with a handler. NOTE: the handler uses hardcoded
3632 * values for string object offsets and must be revisitied if the
3633 * layout changes.
3634 */
3635static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
3636{
3637#if defined(USE_GLOBAL_STRING_DEFS)
3638 return handleExecuteInlineC(cUnit, mir);
3639#else
3640 MipsLIR *rollback;
3641 RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
3642 RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1);
3643
3644 loadValueDirectFixed(cUnit, rlThis, r_A0);
3645 loadValueDirectFixed(cUnit, rlComp, r_A1);
3646 /* Test objects for NULL */
3647 rollback = genNullCheck(cUnit, rlThis.sRegLow, r_A0, mir->offset, NULL);
3648 genNullCheck(cUnit, rlComp.sRegLow, r_A1, mir->offset, rollback);
3649 /*
3650 * TUNING: we could check for object pointer equality before invoking
3651 * handler. Unclear whether the gain would be worth the added code size
3652 * expansion.
3653 */
3654 genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
3655 storeValue(cUnit, inlinedTarget(cUnit, mir, false),
3656 dvmCompilerGetReturn(cUnit));
3657 return false;
3658#endif
3659}
3660
3661static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir)
3662{
3663#if defined(USE_GLOBAL_STRING_DEFS)
3664 return handleExecuteInlineC(cUnit, mir);
3665#else
3666 RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
3667 RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1);
3668
3669 loadValueDirectFixed(cUnit, rlThis, r_A0);
3670 loadValueDirectFixed(cUnit, rlChar, r_A1);
3671
3672 RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2);
3673 loadValueDirectFixed(cUnit, rlStart, r_A2);
3674
3675 /* Test objects for NULL */
3676 genNullCheck(cUnit, rlThis.sRegLow, r_A0, mir->offset, NULL);
3677 genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
3678 storeValue(cUnit, inlinedTarget(cUnit, mir, false),
3679 dvmCompilerGetReturn(cUnit));
3680 return false;
3681#endif
3682}
3683
3684// Generates an inlined String.isEmpty or String.length.
3685static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir,
3686 bool isEmpty)
3687{
3688 // dst = src.length();
3689 RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
3690 RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3691 rlObj = loadValue(cUnit, rlObj, kCoreReg);
3692 RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3693 genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);
3694 loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count,
3695 rlResult.lowReg);
3696 if (isEmpty) {
3697 // dst = (dst == 0);
3698 int tReg = dvmCompilerAllocTemp(cUnit);
3699 newLIR3(cUnit, kMipsSltu, tReg, r_ZERO, rlResult.lowReg);
3700 opRegRegImm(cUnit, kOpXor, rlResult.lowReg, tReg, 1);
3701 }
3702 storeValue(cUnit, rlDest, rlResult);
3703 return false;
3704}
3705
3706static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
3707{
3708 return genInlinedStringIsEmptyOrLength(cUnit, mir, false);
3709}
3710
3711static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir)
3712{
3713 return genInlinedStringIsEmptyOrLength(cUnit, mir, true);
3714}
3715
3716static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
3717{
3718 int contents = OFFSETOF_MEMBER(ArrayObject, contents);
3719 RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
3720 RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1);
3721 RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3722 RegLocation rlResult;
3723 rlObj = loadValue(cUnit, rlObj, kCoreReg);
3724 rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
3725 int regMax = dvmCompilerAllocTemp(cUnit);
3726 int regOff = dvmCompilerAllocTemp(cUnit);
3727 int regPtr = dvmCompilerAllocTemp(cUnit);
3728 MipsLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg,
3729 mir->offset, NULL);
3730 loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax);
3731 loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff);
3732 loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr);
3733 genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel);
3734 dvmCompilerFreeTemp(cUnit, regMax);
3735 opRegImm(cUnit, kOpAdd, regPtr, contents);
3736 opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
3737 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3738 loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
3739 storeValue(cUnit, rlDest, rlResult);
3740 return false;
3741}
3742
3743static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
3744{
3745 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3746 rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
3747 RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3748 RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3749 int signReg = dvmCompilerAllocTemp(cUnit);
3750 /*
3751 * abs(x) = y<=x>>31, (x+y)^y.
3752 * Thumb2's IT block also yields 3 instructions, but imposes
3753 * scheduling constraints.
3754 */
3755 opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
3756 opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
3757 opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
3758 storeValue(cUnit, rlDest, rlResult);
3759 return false;
3760}
3761
3762static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
3763{
3764 RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
3765 RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
3766 rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
3767 RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3768 int signReg = dvmCompilerAllocTemp(cUnit);
3769 int tReg = dvmCompilerAllocTemp(cUnit);
3770 /*
3771 * abs(x) = y<=x>>31, (x+y)^y.
3772 * Thumb2 IT block allows slightly shorter sequence,
3773 * but introduces a scheduling barrier. Stick with this
3774 * mechanism for now.
3775 */
3776 opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
3777 opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
3778 newLIR3(cUnit, kMipsSltu, tReg, rlResult.lowReg, signReg);
3779 opRegRegReg(cUnit, kOpAdd, rlResult.highReg, rlSrc.highReg, signReg);
3780 opRegRegReg(cUnit, kOpAdd, rlResult.highReg, rlResult.highReg, tReg);
3781 opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
3782 opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
3783 dvmCompilerFreeTemp(cUnit, signReg);
3784 dvmCompilerFreeTemp(cUnit, tReg);
3785 storeValueWide(cUnit, rlDest, rlResult);
3786 return false;
3787}
3788
3789static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir)
3790{
3791 // Just move from source to destination...
3792 RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
3793 RegLocation rlDest = inlinedTarget(cUnit, mir, false);
3794 storeValue(cUnit, rlDest, rlSrc);
3795 return false;
3796}
3797
3798static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir)
3799{
3800 // Just move from source to destination...
3801 RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
3802 RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
3803 storeValueWide(cUnit, rlDest, rlSrc);
3804 return false;
3805}
3806/*
3807 * JITs a call to a C function.
3808 * TODO: use this for faster native method invocation for simple native
3809 * methods (http://b/3069458).
3810 */
3811static bool handleExecuteInlineC(CompilationUnit *cUnit, MIR *mir)
3812{
3813 DecodedInstruction *dInsn = &mir->dalvikInsn;
3814 int operation = dInsn->vB;
3815 unsigned int i;
3816 const InlineOperation* inLineTable = dvmGetInlineOpsTable();
3817 uintptr_t fn = (int) inLineTable[operation].func;
3818 if (fn == 0) {
3819 dvmCompilerAbort(cUnit);
3820 }
3821 dvmCompilerFlushAllRegs(cUnit); /* Everything to home location */
3822 dvmCompilerClobberCallRegs(cUnit);
3823 dvmCompilerClobber(cUnit, r4PC);
3824 dvmCompilerClobber(cUnit, rINST);
3825 int offset = offsetof(Thread, interpSave.retval);
3826 opRegRegImm(cUnit, kOpAdd, r4PC, rSELF, offset);
3827 newLIR3(cUnit, kMipsSw, r4PC, 16, r_SP); /* sp has plenty of space */
3828 genExportPC(cUnit, mir);
3829 assert(dInsn->vA <= 4);
3830 for (i=0; i < dInsn->vA; i++) {
3831 loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i+r_A0);
3832 }
3833 LOAD_FUNC_ADDR(cUnit, r_T9, fn);
3834 opReg(cUnit, kOpBlx, r_T9);
3835 newLIR3(cUnit, kMipsLw, r_GP, STACK_OFFSET_GP, r_SP);
3836 /* NULL? */
3837 MipsLIR *branchOver = opCompareBranch(cUnit, kMipsBne, r_V0, r_ZERO);
3838 loadConstant(cUnit, r_A0, (int) (cUnit->method->insns + mir->offset));
3839 genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
3840 MipsLIR *target = newLIR0(cUnit, kMipsPseudoTargetLabel);
3841 target->defMask = ENCODE_ALL;
3842 branchOver->generic.target = (LIR *) target;
3843 return false;
3844}
3845
3846/*
3847 * NOTE: Handles both range and non-range versions (arguments
3848 * have already been normalized by this point).
3849 */
3850static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir)
3851{
3852 DecodedInstruction *dInsn = &mir->dalvikInsn;
3853 assert(dInsn->opcode == OP_EXECUTE_INLINE_RANGE ||
3854 dInsn->opcode == OP_EXECUTE_INLINE);
3855 switch (dInsn->vB) {
3856 case INLINE_EMPTYINLINEMETHOD:
3857 return false; /* Nop */
3858
3859 /* These ones we potentially JIT inline. */
3860 case INLINE_STRING_LENGTH:
3861 return genInlinedStringLength(cUnit, mir);
3862 case INLINE_STRING_IS_EMPTY:
3863 return genInlinedStringIsEmpty(cUnit, mir);
3864 case INLINE_MATH_ABS_INT:
3865 return genInlinedAbsInt(cUnit, mir);
3866 case INLINE_MATH_ABS_LONG:
3867 return genInlinedAbsLong(cUnit, mir);
3868 case INLINE_MATH_MIN_INT:
3869 return genInlinedMinMaxInt(cUnit, mir, true);
3870 case INLINE_MATH_MAX_INT:
3871 return genInlinedMinMaxInt(cUnit, mir, false);
3872 case INLINE_STRING_CHARAT:
3873 return genInlinedStringCharAt(cUnit, mir);
3874 case INLINE_MATH_SQRT:
3875 return genInlineSqrt(cUnit, mir);
3876 case INLINE_MATH_ABS_FLOAT:
3877 return genInlinedAbsFloat(cUnit, mir);
3878 case INLINE_MATH_ABS_DOUBLE:
3879 return genInlinedAbsDouble(cUnit, mir);
3880 case INLINE_STRING_COMPARETO:
3881 return genInlinedCompareTo(cUnit, mir);
3882 case INLINE_STRING_FASTINDEXOF_II:
3883 return genInlinedFastIndexOf(cUnit, mir);
3884 case INLINE_FLOAT_TO_RAW_INT_BITS:
3885 case INLINE_INT_BITS_TO_FLOAT:
3886 return genInlinedIntFloatConversion(cUnit, mir);
3887 case INLINE_DOUBLE_TO_RAW_LONG_BITS:
3888 case INLINE_LONG_BITS_TO_DOUBLE:
3889 return genInlinedLongDoubleConversion(cUnit, mir);
3890
3891 /*
3892 * These ones we just JIT a call to a C function for.
3893 * TODO: special-case these in the other "invoke" call paths.
3894 */
3895 case INLINE_STRING_EQUALS:
3896 case INLINE_MATH_COS:
3897 case INLINE_MATH_SIN:
3898 case INLINE_FLOAT_TO_INT_BITS:
3899 case INLINE_DOUBLE_TO_LONG_BITS:
3900 return handleExecuteInlineC(cUnit, mir);
3901 }
3902 dvmCompilerAbort(cUnit);
3903 return false; // Not reachable; keeps compiler happy.
3904}
3905
3906static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
3907{
3908 //TUNING: We're using core regs here - not optimal when target is a double
3909 RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
3910 RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
3911 loadConstantNoClobber(cUnit, rlResult.lowReg,
3912 mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
3913 loadConstantNoClobber(cUnit, rlResult.highReg,
3914 (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
3915 storeValueWide(cUnit, rlDest, rlResult);
3916 return false;
3917}
3918
3919/*
3920 * The following are special processing routines that handle transfer of
3921 * controls between compiled code and the interpreter. Certain VM states like
3922 * Dalvik PC and special-purpose registers are reconstructed here.
3923 */
3924
3925/* Chaining cell for code that may need warmup. */
3926static void handleNormalChainingCell(CompilationUnit *cUnit,
3927 unsigned int offset)
3928{
3929 newLIR3(cUnit, kMipsLw, r_A0,
3930 offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal),
3931 rSELF);
3932 newLIR2(cUnit, kMipsJalr, r_RA, r_A0);
3933 addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3934}
3935
3936/*
3937 * Chaining cell for instructions that immediately following already translated
3938 * code.
3939 */
3940static void handleHotChainingCell(CompilationUnit *cUnit,
3941 unsigned int offset)
3942{
3943 newLIR3(cUnit, kMipsLw, r_A0,
3944 offsetof(Thread, jitToInterpEntries.dvmJitToInterpTraceSelect),
3945 rSELF);
3946 newLIR2(cUnit, kMipsJalr, r_RA, r_A0);
3947 addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3948}
3949
3950/* Chaining cell for branches that branch back into the same basic block */
3951static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
3952 unsigned int offset)
3953{
3954 /*
3955 * Use raw instruction constructors to guarantee that the generated
3956 * instructions fit the predefined cell size.
3957 */
3958#if defined(WITH_SELF_VERIFICATION)
3959 newLIR3(cUnit, kMipsLw, r_A0,
3960 offsetof(Thread, jitToInterpEntries.dvmJitToInterpBackwardBranch),
3961 rSELF);
3962#else
3963 newLIR3(cUnit, kMipsLw, r_A0,
3964 offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal),
3965 rSELF);
3966#endif
3967 newLIR2(cUnit, kMipsJalr, r_RA, r_A0);
3968 addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
3969}
3970
3971/* Chaining cell for monomorphic method invocations. */
3972static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
3973 const Method *callee)
3974{
3975 newLIR3(cUnit, kMipsLw, r_A0,
3976 offsetof(Thread, jitToInterpEntries.dvmJitToInterpTraceSelect),
3977 rSELF);
3978 newLIR2(cUnit, kMipsJalr, r_RA, r_A0);
3979 addWordData(cUnit, NULL, (int) (callee->insns));
3980}
3981
3982/* Chaining cell for monomorphic method invocations. */
3983static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
3984{
3985 /* Should not be executed in the initial state */
3986 addWordData(cUnit, NULL, PREDICTED_CHAIN_BX_PAIR_INIT);
3987 /* branch delay slot nop */
3988 addWordData(cUnit, NULL, PREDICTED_CHAIN_DELAY_SLOT_INIT);
3989 /* To be filled: class */
3990 addWordData(cUnit, NULL, PREDICTED_CHAIN_CLAZZ_INIT);
3991 /* To be filled: method */
3992 addWordData(cUnit, NULL, PREDICTED_CHAIN_METHOD_INIT);
3993 /*
3994 * Rechain count. The initial value of 0 here will trigger chaining upon
3995 * the first invocation of this callsite.
3996 */
3997 addWordData(cUnit, NULL, PREDICTED_CHAIN_COUNTER_INIT);
3998}
3999
4000/* Load the Dalvik PC into a0 and jump to the specified target */
4001static void handlePCReconstruction(CompilationUnit *cUnit,
4002 MipsLIR *targetLabel)
4003{
4004 MipsLIR **pcrLabel =
4005 (MipsLIR **) cUnit->pcReconstructionList.elemList;
4006 int numElems = cUnit->pcReconstructionList.numUsed;
4007 int i;
4008
4009 /*
4010 * We should never reach here through fall-through code, so insert
4011 * a bomb to signal troubles immediately.
4012 */
4013 if (numElems) {
4014 newLIR0(cUnit, kMipsUndefined);
4015 }
4016
4017 for (i = 0; i < numElems; i++) {
4018 dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
4019 /* a0 = dalvik PC */
4020 loadConstant(cUnit, r_A0, pcrLabel[i]->operands[0]);
4021 genUnconditionalBranch(cUnit, targetLabel);
4022 }
4023}
4024
4025static const char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
4026 "kMirOpPhi",
4027 "kMirOpNullNRangeUpCheck",
4028 "kMirOpNullNRangeDownCheck",
4029 "kMirOpLowerBound",
4030 "kMirOpPunt",
4031 "kMirOpCheckInlinePrediction",
4032};
4033
4034/*
4035 * vA = arrayReg;
4036 * vB = idxReg;
4037 * vC = endConditionReg;
4038 * arg[0] = maxC
4039 * arg[1] = minC
4040 * arg[2] = loopBranchConditionCode
4041 */
4042static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
4043{
4044 /*
4045 * NOTE: these synthesized blocks don't have ssa names assigned
4046 * for Dalvik registers. However, because they dominate the following
4047 * blocks we can simply use the Dalvik name w/ subscript 0 as the
4048 * ssa name.
4049 */
4050 DecodedInstruction *dInsn = &mir->dalvikInsn;
4051 const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
4052 const int maxC = dInsn->arg[0];
4053 int regLength;
4054 RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
4055 RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
4056
4057 /* regArray <- arrayRef */
4058 rlArray = loadValue(cUnit, rlArray, kCoreReg);
4059 rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
4060 genRegImmCheck(cUnit, kMipsCondEq, rlArray.lowReg, 0, 0,
4061 (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4062
4063 /* regLength <- len(arrayRef) */
4064 regLength = dvmCompilerAllocTemp(cUnit);
4065 loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
4066
4067 int delta = maxC;
4068 /*
4069 * If the loop end condition is ">=" instead of ">", then the largest value
4070 * of the index is "endCondition - 1".
4071 */
4072 if (dInsn->arg[2] == OP_IF_GE) {
4073 delta--;
4074 }
4075
4076 if (delta) {
4077 int tReg = dvmCompilerAllocTemp(cUnit);
4078 opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
4079 rlIdxEnd.lowReg = tReg;
4080 dvmCompilerFreeTemp(cUnit, tReg);
4081 }
4082 /* Punt if "regIdxEnd < len(Array)" is false */
4083 genRegRegCheck(cUnit, kMipsCondGe, rlIdxEnd.lowReg, regLength, 0,
4084 (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4085}
4086
4087/*
4088 * vA = arrayReg;
4089 * vB = idxReg;
4090 * vC = endConditionReg;
4091 * arg[0] = maxC
4092 * arg[1] = minC
4093 * arg[2] = loopBranchConditionCode
4094 */
4095static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
4096{
4097 DecodedInstruction *dInsn = &mir->dalvikInsn;
4098 const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
4099 const int regLength = dvmCompilerAllocTemp(cUnit);
4100 const int maxC = dInsn->arg[0];
4101 RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
4102 RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
4103
4104 /* regArray <- arrayRef */
4105 rlArray = loadValue(cUnit, rlArray, kCoreReg);
4106 rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
4107 genRegImmCheck(cUnit, kMipsCondEq, rlArray.lowReg, 0, 0,
4108 (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4109
4110 /* regLength <- len(arrayRef) */
4111 loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
4112
4113 if (maxC) {
4114 int tReg = dvmCompilerAllocTemp(cUnit);
4115 opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
4116 rlIdxInit.lowReg = tReg;
4117 dvmCompilerFreeTemp(cUnit, tReg);
4118 }
4119
4120 /* Punt if "regIdxInit < len(Array)" is false */
4121 genRegRegCheck(cUnit, kMipsCondGe, rlIdxInit.lowReg, regLength, 0,
4122 (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4123}
4124
4125/*
4126 * vA = idxReg;
4127 * vB = minC;
4128 */
4129static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
4130{
4131 DecodedInstruction *dInsn = &mir->dalvikInsn;
4132 const int minC = dInsn->vB;
4133 RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
4134
4135 /* regIdx <- initial index value */
4136 rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
4137
4138 /* Punt if "regIdxInit + minC >= 0" is false */
4139 genRegImmCheck(cUnit, kMipsCondLt, rlIdx.lowReg, -minC, 0,
4140 (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4141}
4142
4143/*
4144 * vC = this
4145 *
4146 * A predicted inlining target looks like the following, where instructions
4147 * between 0x2f130d24 and 0x2f130d40 are checking if the predicted class
4148 * matches "this", and the verificaion code is generated by this routine.
4149 *
4150 * (C) means the instruction is inlined from the callee, and (PI) means the
4151 * instruction is the predicted inlined invoke, whose corresponding
4152 * instructions are still generated to handle the mispredicted case.
4153 *
4154 * D/dalvikvm( 2377): -------- kMirOpCheckInlinePrediction
4155 * D/dalvikvm( 2377): 0x2f130d24 (0020): lw v0,16(s1)
4156 * D/dalvikvm( 2377): 0x2f130d28 (0024): lui v1,0x0011(17)
4157 * D/dalvikvm( 2377): 0x2f130d2c (0028): ori v1,v1,0x11e418(1172504)
4158 * D/dalvikvm( 2377): 0x2f130d30 (002c): beqz v0,0x2f130df0 (L0x11f1f0)
4159 * D/dalvikvm( 2377): 0x2f130d34 (0030): pref 0,0(v0)
4160 * D/dalvikvm( 2377): 0x2f130d38 (0034): lw a0,0(v0)
4161 * D/dalvikvm( 2377): 0x2f130d3c (0038): bne v1,a0,0x2f130d54 (L0x11f518)
4162 * D/dalvikvm( 2377): 0x2f130d40 (003c): pref 0,8(v0)
4163 * D/dalvikvm( 2377): -------- dalvik offset: 0x000a @ +iget-object-quick (C) v3, v4, (#8)
4164 * D/dalvikvm( 2377): 0x2f130d44 (0040): lw a1,8(v0)
4165 * D/dalvikvm( 2377): -------- dalvik offset: 0x000a @ +invoke-virtual-quick (PI) v4
4166 * D/dalvikvm( 2377): 0x2f130d48 (0044): sw a1,12(s1)
4167 * D/dalvikvm( 2377): 0x2f130d4c (0048): b 0x2f130e18 (L0x120150)
4168 * D/dalvikvm( 2377): 0x2f130d50 (004c): lw a0,116(s2)
4169 * D/dalvikvm( 2377): L0x11f518:
4170 * D/dalvikvm( 2377): 0x2f130d54 (0050): lw a0,16(s1)
4171 * D/dalvikvm( 2377): 0x2f130d58 (0054): addiu s4,s1,0xffffffe8(-24)
4172 * D/dalvikvm( 2377): 0x2f130d5c (0058): beqz a0,0x2f130e00 (L0x11f618)
4173 * D/dalvikvm( 2377): 0x2f130d60 (005c): pref 1,0(s4)
4174 * D/dalvikvm( 2377): -------- BARRIER
4175 * D/dalvikvm( 2377): 0x2f130d64 (0060): sw a0,0(s4)
4176 * D/dalvikvm( 2377): 0x2f130d68 (0064): addiu s4,s4,0x0004(4)
4177 * D/dalvikvm( 2377): -------- BARRIER
4178 * D/dalvikvm( 2377): 0x2f130d6c (0068): lui s0,0x2d22(11554)
4179 * D/dalvikvm( 2377): 0x2f130d70 (006c): ori s0,s0,0x2d228464(757236836)
4180 * D/dalvikvm( 2377): 0x2f130d74 (0070): lahi/lui a1,0x2f13(12051)
4181 * D/dalvikvm( 2377): 0x2f130d78 (0074): lalo/ori a1,a1,0x2f130ddc(789777884)
4182 * D/dalvikvm( 2377): 0x2f130d7c (0078): lahi/lui a2,0x2f13(12051)
4183 * D/dalvikvm( 2377): 0x2f130d80 (007c): lalo/ori a2,a2,0x2f130e24(789777956)
4184 * D/dalvikvm( 2377): 0x2f130d84 (0080): jal 0x2f12d1ec(789762540)
4185 * D/dalvikvm( 2377): 0x2f130d88 (0084): nop
4186 * D/dalvikvm( 2377): 0x2f130d8c (0088): b 0x2f130e24 (L0x11ed6c)
4187 * D/dalvikvm( 2377): 0x2f130d90 (008c): nop
4188 * D/dalvikvm( 2377): 0x2f130d94 (0090): b 0x2f130e04 (L0x11ffd0)
4189 * D/dalvikvm( 2377): 0x2f130d98 (0094): lui a0,0x2d22(11554)
4190 * D/dalvikvm( 2377): 0x2f130d9c (0098): lw a0,44(s4)
4191 * D/dalvikvm( 2377): 0x2f130da0 (009c): bgtz a1,0x2f130dc4 (L0x11fb98)
4192 * D/dalvikvm( 2377): 0x2f130da4 (00a0): nop
4193 * D/dalvikvm( 2377): 0x2f130da8 (00a4): lui t9,0x2aba(10938)
4194 * D/dalvikvm( 2377): 0x2f130dac (00a8): ori t9,t9,0x2abae3f8(716891128)
4195 * D/dalvikvm( 2377): 0x2f130db0 (00ac): move a1,s2
4196 * D/dalvikvm( 2377): 0x2f130db4 (00b0): jalr ra,t9
4197 * D/dalvikvm( 2377): 0x2f130db8 (00b4): nop
4198 * D/dalvikvm( 2377): 0x2f130dbc (00b8): lw gp,84(sp)
4199 * D/dalvikvm( 2377): 0x2f130dc0 (00bc): move a0,v0
4200 * D/dalvikvm( 2377): 0x2f130dc4 (00c0): lahi/lui a1,0x2f13(12051)
4201 * D/dalvikvm( 2377): 0x2f130dc8 (00c4): lalo/ori a1,a1,0x2f130ddc(789777884)
4202 * D/dalvikvm( 2377): 0x2f130dcc (00c8): jal 0x2f12d0c4(789762244)
4203 * D/dalvikvm( 2377): 0x2f130dd0 (00cc): nop
4204 * D/dalvikvm( 2377): 0x2f130dd4 (00d0): b 0x2f130e04 (L0x11ffd0)
4205 * D/dalvikvm( 2377): 0x2f130dd8 (00d4): lui a0,0x2d22(11554)
4206 * D/dalvikvm( 2377): 0x2f130ddc (00d8): .align4
4207 * D/dalvikvm( 2377): L0x11ed2c:
4208 * D/dalvikvm( 2377): -------- dalvik offset: 0x000d @ move-result-object (PI) v3, (#0), (#0)
4209 * D/dalvikvm( 2377): 0x2f130ddc (00d8): lw a2,16(s2)
4210 * D/dalvikvm( 2377): 0x2f130de0 (00dc): sw a2,12(s1)
4211 * D/dalvikvm( 2377): 0x2f130de4 (00e0): b 0x2f130e18 (L0x120150)
4212 * D/dalvikvm( 2377): 0x2f130de8 (00e4): lw a0,116(s2)
4213 * D/dalvikvm( 2377): 0x2f130dec (00e8): undefined
4214 * D/dalvikvm( 2377): L0x11f1f0:
4215 * D/dalvikvm( 2377): -------- reconstruct dalvik PC : 0x2d228464 @ +0x000a
4216 * D/dalvikvm( 2377): 0x2f130df0 (00ec): lui a0,0x2d22(11554)
4217 * D/dalvikvm( 2377): 0x2f130df4 (00f0): ori a0,a0,0x2d228464(757236836)
4218 * D/dalvikvm( 2377): 0x2f130df8 (00f4): b 0x2f130e0c (L0x120090)
4219 * D/dalvikvm( 2377): 0x2f130dfc (00f8): lw a1,108(s2)
4220 * D/dalvikvm( 2377): L0x11f618:
4221 * D/dalvikvm( 2377): -------- reconstruct dalvik PC : 0x2d228464 @ +0x000a
4222 * D/dalvikvm( 2377): 0x2f130e00 (00fc): lui a0,0x2d22(11554)
4223 * D/dalvikvm( 2377): 0x2f130e04 (0100): ori a0,a0,0x2d228464(757236836)
4224 * D/dalvikvm( 2377): Exception_Handling:
4225 * D/dalvikvm( 2377): 0x2f130e08 (0104): lw a1,108(s2)
4226 * D/dalvikvm( 2377): 0x2f130e0c (0108): jalr ra,a1
4227 * D/dalvikvm( 2377): 0x2f130e10 (010c): nop
4228 * D/dalvikvm( 2377): 0x2f130e14 (0110): .align4
4229 * D/dalvikvm( 2377): L0x11edac:
4230 * D/dalvikvm( 2377): -------- chaining cell (hot): 0x000e
4231 * D/dalvikvm( 2377): 0x2f130e14 (0110): lw a0,116(s2)
4232 * D/dalvikvm( 2377): 0x2f130e18 (0114): jalr ra,a0
4233 * D/dalvikvm( 2377): 0x2f130e1c (0118): nop
4234 * D/dalvikvm( 2377): 0x2f130e20 (011c): data 0x2d22846c(757236844)
4235 * D/dalvikvm( 2377): 0x2f130e24 (0120): .align4
4236 * D/dalvikvm( 2377): L0x11ed6c:
4237 * D/dalvikvm( 2377): -------- chaining cell (predicted)
4238 * D/dalvikvm( 2377): 0x2f130e24 (0120): data 0xe7fe(59390)
4239 * D/dalvikvm( 2377): 0x2f130e28 (0124): data 0x0000(0)
4240 * D/dalvikvm( 2377): 0x2f130e2c (0128): data 0x0000(0)
4241 * D/dalvikvm( 2377): 0x2f130e30 (012c): data 0x0000(0)
4242 * D/dalvikvm( 2377): 0x2f130e34 (0130): data 0x0000(0)
4243 */
4244static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir)
4245{
4246 CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
4247 RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC];
4248
4249 rlThis = loadValue(cUnit, rlThis, kCoreReg);
4250 int regPredictedClass = dvmCompilerAllocTemp(cUnit);
4251 loadClassPointer(cUnit, regPredictedClass, (int) callsiteInfo);
4252 genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset,
4253 NULL);/* null object? */
4254 int regActualClass = dvmCompilerAllocTemp(cUnit);
4255 loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass);
4256// opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass);
4257 /*
4258 * Set the misPredBranchOver target so that it will be generated when the
4259 * code for the non-optimized invoke is generated.
4260 */
4261 callsiteInfo->misPredBranchOver = (LIR *) opCompareBranch(cUnit, kMipsBne, regPredictedClass, regActualClass);
4262}
4263
4264/* Extended MIR instructions like PHI */
4265static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
4266{
4267 int opOffset = mir->dalvikInsn.opcode - kMirOpFirst;
4268 char *msg = (char *)dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
4269 false);
4270 strcpy(msg, extendedMIROpNames[opOffset]);
4271 newLIR1(cUnit, kMipsPseudoExtended, (int) msg);
4272
4273 switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) {
4274 case kMirOpPhi: {
4275 char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
4276 newLIR1(cUnit, kMipsPseudoSSARep, (int) ssaString);
4277 break;
4278 }
4279 case kMirOpNullNRangeUpCheck: {
4280 genHoistedChecksForCountUpLoop(cUnit, mir);
4281 break;
4282 }
4283 case kMirOpNullNRangeDownCheck: {
4284 genHoistedChecksForCountDownLoop(cUnit, mir);
4285 break;
4286 }
4287 case kMirOpLowerBound: {
4288 genHoistedLowerBoundCheck(cUnit, mir);
4289 break;
4290 }
4291 case kMirOpPunt: {
4292 genUnconditionalBranch(cUnit,
4293 (MipsLIR *) cUnit->loopAnalysis->branchToPCR);
4294 break;
4295 }
4296 case kMirOpCheckInlinePrediction: {
4297 genValidationForPredictedInline(cUnit, mir);
4298 break;
4299 }
4300 default:
4301 break;
4302 }
4303}
4304
4305/*
4306 * Create a PC-reconstruction cell for the starting offset of this trace.
4307 * Since the PCR cell is placed near the end of the compiled code which is
4308 * usually out of range for a conditional branch, we put two branches (one
4309 * branch over to the loop body and one layover branch to the actual PCR) at the
4310 * end of the entry block.
4311 */
4312static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
4313 MipsLIR *bodyLabel)
4314{
4315 /* Set up the place holder to reconstruct this Dalvik PC */
4316 MipsLIR *pcrLabel = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
4317 pcrLabel->opcode = kMipsPseudoPCReconstructionCell;
4318 pcrLabel->operands[0] =
4319 (int) (cUnit->method->insns + entry->startOffset);
4320 pcrLabel->operands[1] = entry->startOffset;
4321 /* Insert the place holder to the growable list */
4322 dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
4323
4324 /*
4325 * Next, create two branches - one branch over to the loop body and the
4326 * other branch to the PCR cell to punt.
4327 */
4328 MipsLIR *branchToBody = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
4329 branchToBody->opcode = kMipsB;
4330 branchToBody->generic.target = (LIR *) bodyLabel;
4331 setupResourceMasks(branchToBody);
4332 cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
4333
4334 MipsLIR *branchToPCR = (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR), true);
4335 branchToPCR->opcode = kMipsB;
4336 branchToPCR->generic.target = (LIR *) pcrLabel;
4337 setupResourceMasks(branchToPCR);
4338 cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
4339}
4340
4341#if defined(WITH_SELF_VERIFICATION)
4342static bool selfVerificationPuntOps(MIR *mir)
4343{
4344assert(0); /* MIPSTODO port selfVerificationPuntOps() */
4345 DecodedInstruction *decInsn = &mir->dalvikInsn;
4346
4347 /*
4348 * All opcodes that can throw exceptions and use the
4349 * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace
4350 * under self-verification mode.
4351 */
4352 switch (decInsn->opcode) {
4353 case OP_MONITOR_ENTER:
4354 case OP_MONITOR_EXIT:
4355 case OP_NEW_INSTANCE:
4356 case OP_NEW_INSTANCE_JUMBO:
4357 case OP_NEW_ARRAY:
4358 case OP_NEW_ARRAY_JUMBO:
4359 case OP_CHECK_CAST:
4360 case OP_CHECK_CAST_JUMBO:
4361 case OP_MOVE_EXCEPTION:
4362 case OP_FILL_ARRAY_DATA:
4363 case OP_EXECUTE_INLINE:
4364 case OP_EXECUTE_INLINE_RANGE:
4365 return true;
4366 default:
4367 return false;
4368 }
4369}
4370#endif
4371
4372void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
4373{
4374 /* Used to hold the labels of each block */
4375 MipsLIR *labelList =
4376 (MipsLIR *) dvmCompilerNew(sizeof(MipsLIR) * cUnit->numBlocks, true);
4377 MipsLIR *headLIR = NULL;
4378 GrowableList chainingListByType[kChainingCellGap];
4379 int i;
4380
4381 /*
4382 * Initialize various types chaining lists.
4383 */
4384 for (i = 0; i < kChainingCellGap; i++) {
4385 dvmInitGrowableList(&chainingListByType[i], 2);
4386 }
4387
4388 /* Clear the visited flag for each block */
4389 dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag,
4390 kAllNodes, false /* isIterative */);
4391
4392 GrowableListIterator iterator;
4393 dvmGrowableListIteratorInit(&cUnit->blockList, &iterator);
4394
4395 /* Traces start with a profiling entry point. Generate it here */
4396 cUnit->profileCodeSize = genTraceProfileEntry(cUnit);
4397
4398 /* Handle the content in each basic block */
4399 for (i = 0; ; i++) {
4400 MIR *mir;
4401 BasicBlock *bb = (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
4402 if (bb == NULL) break;
4403 if (bb->visited == true) continue;
4404
4405 labelList[i].operands[0] = bb->startOffset;
4406
4407 if (bb->blockType >= kChainingCellGap) {
4408 if (bb->isFallThroughFromInvoke == true) {
4409 /* Align this block first since it is a return chaining cell */
4410 newLIR0(cUnit, kMipsPseudoPseudoAlign4);
4411 }
4412 /*
4413 * Append the label pseudo LIR first. Chaining cells will be handled
4414 * separately afterwards.
4415 */
4416 dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
4417 }
4418
4419 if (bb->blockType == kEntryBlock) {
4420 labelList[i].opcode = kMipsPseudoEntryBlock;
4421 if (bb->firstMIRInsn == NULL) {
4422 continue;
4423 } else {
4424 setupLoopEntryBlock(cUnit, bb,
4425 &labelList[bb->fallThrough->id]);
4426 }
4427 } else if (bb->blockType == kExitBlock) {
4428 labelList[i].opcode = kMipsPseudoExitBlock;
4429 goto gen_fallthrough;
4430 } else if (bb->blockType == kDalvikByteCode) {
4431 if (bb->hidden == true) continue;
4432 labelList[i].opcode = kMipsPseudoNormalBlockLabel;
4433 /* Reset the register state */
4434 dvmCompilerResetRegPool(cUnit);
4435 dvmCompilerClobberAllRegs(cUnit);
4436 dvmCompilerResetNullCheck(cUnit);
4437 } else {
4438 switch (bb->blockType) {
4439 case kChainingCellNormal:
4440 labelList[i].opcode = kMipsPseudoChainingCellNormal;
4441 /* handle the codegen later */
4442 dvmInsertGrowableList(
4443 &chainingListByType[kChainingCellNormal], i);
4444 break;
4445 case kChainingCellInvokeSingleton:
4446 labelList[i].opcode =
4447 kMipsPseudoChainingCellInvokeSingleton;
4448 labelList[i].operands[0] =
4449 (int) bb->containingMethod;
4450 /* handle the codegen later */
4451 dvmInsertGrowableList(
4452 &chainingListByType[kChainingCellInvokeSingleton], i);
4453 break;
4454 case kChainingCellInvokePredicted:
4455 labelList[i].opcode =
4456 kMipsPseudoChainingCellInvokePredicted;
4457 /*
4458 * Move the cached method pointer from operand 1 to 0.
4459 * Operand 0 was clobbered earlier in this routine to store
4460 * the block starting offset, which is not applicable to
4461 * predicted chaining cell.
4462 */
4463 labelList[i].operands[0] = labelList[i].operands[1];
4464 /* handle the codegen later */
4465 dvmInsertGrowableList(
4466 &chainingListByType[kChainingCellInvokePredicted], i);
4467 break;
4468 case kChainingCellHot:
4469 labelList[i].opcode =
4470 kMipsPseudoChainingCellHot;
4471 /* handle the codegen later */
4472 dvmInsertGrowableList(
4473 &chainingListByType[kChainingCellHot], i);
4474 break;
4475 case kPCReconstruction:
4476 /* Make sure exception handling block is next */
4477 labelList[i].opcode =
4478 kMipsPseudoPCReconstructionBlockLabel;
4479 handlePCReconstruction(cUnit,
4480 &labelList[cUnit->puntBlock->id]);
4481 break;
4482 case kExceptionHandling:
4483 labelList[i].opcode = kMipsPseudoEHBlockLabel;
4484 if (cUnit->pcReconstructionList.numUsed) {
4485 loadWordDisp(cUnit, rSELF, offsetof(Thread,
4486 jitToInterpEntries.dvmJitToInterpPunt),
4487 r_A1);
4488 opReg(cUnit, kOpBlx, r_A1);
4489 }
4490 break;
4491 case kChainingCellBackwardBranch:
4492 labelList[i].opcode =
4493 kMipsPseudoChainingCellBackwardBranch;
4494 /* handle the codegen later */
4495 dvmInsertGrowableList(
4496 &chainingListByType[kChainingCellBackwardBranch],
4497 i);
4498 break;
4499 default:
4500 break;
4501 }
4502 continue;
4503 }
4504
4505 /*
4506 * Try to build a longer optimization unit. Currently if the previous
4507 * block ends with a goto, we continue adding instructions and don't
4508 * reset the register allocation pool.
4509 */
4510 for (BasicBlock *nextBB = bb; nextBB != NULL; nextBB = cUnit->nextCodegenBlock) {
4511 bb = nextBB;
4512 bb->visited = true;
4513 cUnit->nextCodegenBlock = NULL;
4514
4515 for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
4516
4517 dvmCompilerResetRegPool(cUnit);
4518 if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
4519 dvmCompilerClobberAllRegs(cUnit);
4520 }
4521
4522 if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
4523 dvmCompilerResetDefTracking(cUnit);
4524 }
4525
4526 if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) {
4527 handleExtendedMIR(cUnit, mir);
4528 continue;
4529 }
4530
4531 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
4532 InstructionFormat dalvikFormat =
4533 dexGetFormatFromOpcode(dalvikOpcode);
4534 const char *note;
4535 if (mir->OptimizationFlags & MIR_INLINED) {
4536 note = " (I)";
4537 } else if (mir->OptimizationFlags & MIR_INLINED_PRED) {
4538 note = " (PI)";
4539 } else if (mir->OptimizationFlags & MIR_CALLEE) {
4540 note = " (C)";
4541 } else {
4542 note = NULL;
4543 }
4544
4545 MipsLIR *boundaryLIR =
4546 newLIR2(cUnit, kMipsPseudoDalvikByteCodeBoundary,
4547 mir->offset,
4548 (int) dvmCompilerGetDalvikDisassembly(&mir->dalvikInsn,
4549 note));
4550 if (mir->ssaRep) {
4551 char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
4552 newLIR1(cUnit, kMipsPseudoSSARep, (int) ssaString);
4553 }
4554
4555 /* Remember the first LIR for this block */
4556 if (headLIR == NULL) {
4557 headLIR = boundaryLIR;
4558 /* Set the first boundaryLIR as a scheduling barrier */
4559 headLIR->defMask = ENCODE_ALL;
4560 }
4561
4562 bool notHandled;
4563 /*
4564 * Debugging: screen the opcode first to see if it is in the
4565 * do[-not]-compile list
4566 */
4567 bool singleStepMe = SINGLE_STEP_OP(dalvikOpcode);
4568#if defined(WITH_SELF_VERIFICATION)
4569 if (singleStepMe == false) {
4570 singleStepMe = selfVerificationPuntOps(mir);
4571 }
4572#endif
4573 if (singleStepMe || cUnit->allSingleStep) {
4574 notHandled = false;
4575 genInterpSingleStep(cUnit, mir);
4576 } else {
4577 opcodeCoverage[dalvikOpcode]++;
4578 switch (dalvikFormat) {
4579 case kFmt10t:
4580 case kFmt20t:
4581 case kFmt30t:
4582 notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
4583 mir, bb, labelList);
4584 break;
4585 case kFmt10x:
4586 notHandled = handleFmt10x(cUnit, mir);
4587 break;
4588 case kFmt11n:
4589 case kFmt31i:
4590 notHandled = handleFmt11n_Fmt31i(cUnit, mir);
4591 break;
4592 case kFmt11x:
4593 notHandled = handleFmt11x(cUnit, mir);
4594 break;
4595 case kFmt12x:
4596 notHandled = handleFmt12x(cUnit, mir);
4597 break;
4598 case kFmt20bc:
4599 case kFmt40sc:
4600 notHandled = handleFmt20bc_Fmt40sc(cUnit, mir);
4601 break;
4602 case kFmt21c:
4603 case kFmt31c:
4604 case kFmt41c:
4605 notHandled = handleFmt21c_Fmt31c_Fmt41c(cUnit, mir);
4606 break;
4607 case kFmt21h:
4608 notHandled = handleFmt21h(cUnit, mir);
4609 break;
4610 case kFmt21s:
4611 notHandled = handleFmt21s(cUnit, mir);
4612 break;
4613 case kFmt21t:
4614 notHandled = handleFmt21t(cUnit, mir, bb,
4615 labelList);
4616 break;
4617 case kFmt22b:
4618 case kFmt22s:
4619 notHandled = handleFmt22b_Fmt22s(cUnit, mir);
4620 break;
4621 case kFmt22c:
4622 case kFmt52c:
4623 notHandled = handleFmt22c_Fmt52c(cUnit, mir);
4624 break;
4625 case kFmt22cs:
4626 notHandled = handleFmt22cs(cUnit, mir);
4627 break;
4628 case kFmt22t:
4629 notHandled = handleFmt22t(cUnit, mir, bb,
4630 labelList);
4631 break;
4632 case kFmt22x:
4633 case kFmt32x:
4634 notHandled = handleFmt22x_Fmt32x(cUnit, mir);
4635 break;
4636 case kFmt23x:
4637 notHandled = handleFmt23x(cUnit, mir);
4638 break;
4639 case kFmt31t:
4640 notHandled = handleFmt31t(cUnit, mir);
4641 break;
4642 case kFmt3rc:
4643 case kFmt35c:
4644 case kFmt5rc:
4645 notHandled = handleFmt35c_3rc_5rc(cUnit, mir, bb,
4646 labelList);
4647 break;
4648 case kFmt3rms:
4649 case kFmt35ms:
4650 notHandled = handleFmt35ms_3rms(cUnit, mir,bb,
4651 labelList);
4652 break;
4653 case kFmt35mi:
4654 case kFmt3rmi:
4655 notHandled = handleExecuteInline(cUnit, mir);
4656 break;
4657 case kFmt51l:
4658 notHandled = handleFmt51l(cUnit, mir);
4659 break;
4660 default:
4661 notHandled = true;
4662 break;
4663 }
4664 }
4665 if (notHandled) {
4666 LOGE("%#06x: Opcode %#x (%s) / Fmt %d not handled",
4667 mir->offset,
4668 dalvikOpcode, dexGetOpcodeName(dalvikOpcode),
4669 dalvikFormat);
4670 dvmCompilerAbort(cUnit);
4671 break;
4672 }
4673 }
4674 }
4675
4676 if (bb->blockType == kEntryBlock) {
4677 dvmCompilerAppendLIR(cUnit,
4678 (LIR *) cUnit->loopAnalysis->branchToBody);
4679 dvmCompilerAppendLIR(cUnit,
4680 (LIR *) cUnit->loopAnalysis->branchToPCR);
4681 }
4682
4683 if (headLIR) {
4684 /*
4685 * Eliminate redundant loads/stores and delay stores into later
4686 * slots
4687 */
4688 dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
4689 cUnit->lastLIRInsn);
4690 /* Reset headLIR which is also the optimization boundary */
4691 headLIR = NULL;
4692 }
4693
4694gen_fallthrough:
4695 /*
4696 * Check if the block is terminated due to trace length constraint -
4697 * insert an unconditional branch to the chaining cell.
4698 */
4699 if (bb->needFallThroughBranch) {
4700 genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
4701 }
4702 }
4703
4704 /* Handle the chaining cells in predefined order */
4705 for (i = 0; i < kChainingCellGap; i++) {
4706 size_t j;
4707 int *blockIdList = (int *) chainingListByType[i].elemList;
4708
4709 cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
4710
4711 /* No chaining cells of this type */
4712 if (cUnit->numChainingCells[i] == 0)
4713 continue;
4714
4715 /* Record the first LIR for a new type of chaining cell */
4716 cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
4717
4718 for (j = 0; j < chainingListByType[i].numUsed; j++) {
4719 int blockId = blockIdList[j];
4720 BasicBlock *chainingBlock =
4721 (BasicBlock *) dvmGrowableListGetElement(&cUnit->blockList,
4722 blockId);
4723
4724 /* Align this chaining cell first */
4725 newLIR0(cUnit, kMipsPseudoPseudoAlign4);
4726
4727 /* Insert the pseudo chaining instruction */
4728 dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
4729
4730
4731 switch (chainingBlock->blockType) {
4732 case kChainingCellNormal:
4733 handleNormalChainingCell(cUnit, chainingBlock->startOffset);
4734 break;
4735 case kChainingCellInvokeSingleton:
4736 handleInvokeSingletonChainingCell(cUnit,
4737 chainingBlock->containingMethod);
4738 break;
4739 case kChainingCellInvokePredicted:
4740 handleInvokePredictedChainingCell(cUnit);
4741 break;
4742 case kChainingCellHot:
4743 handleHotChainingCell(cUnit, chainingBlock->startOffset);
4744 break;
4745 case kChainingCellBackwardBranch:
4746 handleBackwardBranchChainingCell(cUnit,
4747 chainingBlock->startOffset);
4748 break;
4749 default:
4750 LOGE("Bad blocktype %d", chainingBlock->blockType);
4751 dvmCompilerAbort(cUnit);
4752 }
4753 }
4754 }
4755
4756 /* Mark the bottom of chaining cells */
4757 cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kMipsChainingCellBottom);
4758
4759 /*
4760 * Generate the branch to the dvmJitToInterpNoChain entry point at the end
4761 * of all chaining cells for the overflow cases.
4762 */
4763 if (cUnit->switchOverflowPad) {
4764 loadConstant(cUnit, r_A0, (int) cUnit->switchOverflowPad);
4765 loadWordDisp(cUnit, rSELF, offsetof(Thread,
4766 jitToInterpEntries.dvmJitToInterpNoChain), r_A2);
4767 opRegReg(cUnit, kOpAdd, r_A1, r_A1);
4768 opRegRegReg(cUnit, kOpAdd, r4PC, r_A0, r_A1);
4769#if defined(WITH_JIT_TUNING)
4770 loadConstant(cUnit, r_A0, kSwitchOverflow);
4771#endif
4772 opReg(cUnit, kOpBlx, r_A2);
4773 }
4774
4775 dvmCompilerApplyGlobalOptimizations(cUnit);
4776
4777#if defined(WITH_SELF_VERIFICATION)
4778 selfVerificationBranchInsertPass(cUnit);
4779#endif
4780}
4781
4782/*
4783 * Accept the work and start compiling. Returns true if compilation
4784 * is attempted.
4785 */
4786bool dvmCompilerDoWork(CompilerWorkOrder *work)
4787{
4788 JitTraceDescription *desc;
4789 bool isCompile;
4790 bool success = true;
4791
4792 if (gDvmJit.codeCacheFull) {
4793 return false;
4794 }
4795
4796 switch (work->kind) {
4797 case kWorkOrderTrace:
4798 isCompile = true;
4799 /* Start compilation with maximally allowed trace length */
4800 desc = (JitTraceDescription *)work->info;
4801 success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
4802 work->bailPtr, 0 /* no hints */);
4803 break;
4804 case kWorkOrderTraceDebug: {
4805 bool oldPrintMe = gDvmJit.printMe;
4806 gDvmJit.printMe = true;
4807 isCompile = true;
4808 /* Start compilation with maximally allowed trace length */
4809 desc = (JitTraceDescription *)work->info;
4810 success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
4811 work->bailPtr, 0 /* no hints */);
4812 gDvmJit.printMe = oldPrintMe;
4813 break;
4814 }
4815 case kWorkOrderProfileMode:
4816 dvmJitChangeProfileMode((TraceProfilingModes)(int)work->info);
4817 isCompile = false;
4818 break;
4819 default:
4820 isCompile = false;
4821 LOGE("Jit: unknown work order type");
4822 assert(0); // Bail if debug build, discard otherwise
4823 }
4824 if (!success)
4825 work->result.codeAddress = NULL;
4826 return isCompile;
4827}
4828
4829/* Architectural-specific debugging helpers go here */
4830void dvmCompilerArchDump(void)
4831{
4832 /* Print compiled opcode in this VM instance */
4833 int i, start, streak;
4834 char buf[1024];
4835
4836 streak = i = 0;
4837 buf[0] = 0;
4838 while (opcodeCoverage[i] == 0 && i < 256) {
4839 i++;
4840 }
4841 if (i == 256) {
4842 return;
4843 }
4844 for (start = i++, streak = 1; i < 256; i++) {
4845 if (opcodeCoverage[i]) {
4846 streak++;
4847 } else {
4848 if (streak == 1) {
4849 sprintf(buf+strlen(buf), "%x,", start);
4850 } else {
4851 sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
4852 }
4853 streak = 0;
4854 while (opcodeCoverage[i] == 0 && i < 256) {
4855 i++;
4856 }
4857 if (i < 256) {
4858 streak = 1;
4859 start = i;
4860 }
4861 }
4862 }
4863 if (streak) {
4864 if (streak == 1) {
4865 sprintf(buf+strlen(buf), "%x", start);
4866 } else {
4867 sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
4868 }
4869 }
4870 if (strlen(buf)) {
4871 LOGD("dalvik.vm.jit.op = %s", buf);
4872 }
4873}
4874
4875/* Common initialization routine for an architecture family */
4876bool dvmCompilerArchInit()
4877{
4878 int i;
4879
4880 for (i = 0; i < kMipsLast; i++) {
4881 if (EncodingMap[i].opcode != i) {
4882 LOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
4883 EncodingMap[i].name, i, EncodingMap[i].opcode);
4884 dvmAbort(); // OK to dvmAbort - build error
4885 }
4886 }
4887
4888 return dvmCompilerArchVariantInit();
4889}
4890
4891void *dvmCompilerGetInterpretTemplate()
4892{
4893 return (void*) ((int)gDvmJit.codeCache +
4894 templateEntryOffsets[TEMPLATE_INTERPRET]);
4895}
4896
4897JitInstructionSetType dvmCompilerGetInterpretTemplateSet()
4898{
4899 return DALVIK_JIT_MIPS;
4900}
4901
4902/* Needed by the Assembler */
4903void dvmCompilerSetupResourceMasks(MipsLIR *lir)
4904{
4905 setupResourceMasks(lir);
4906}
4907
4908/* Needed by the ld/st optmizatons */
4909MipsLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
4910{
4911 return genRegCopyNoInsert(cUnit, rDest, rSrc);
4912}
4913
4914/* Needed by the register allocator */
4915MipsLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
4916{
4917 return genRegCopy(cUnit, rDest, rSrc);
4918}
4919
4920/* Needed by the register allocator */
4921void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
4922 int srcLo, int srcHi)
4923{
4924 genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
4925}
4926
4927void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
4928 int displacement, int rSrc, OpSize size)
4929{
4930 storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
4931}
4932
4933void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
4934 int displacement, int rSrcLo, int rSrcHi)
4935{
4936 storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
4937}