arm_compute v17.05
diff --git a/src/runtime/NEON/functions/NEConvolutionLayer.cpp b/src/runtime/NEON/functions/NEConvolutionLayer.cpp
index 27eb4bc..aae4a67 100644
--- a/src/runtime/NEON/functions/NEConvolutionLayer.cpp
+++ b/src/runtime/NEON/functions/NEConvolutionLayer.cpp
@@ -60,7 +60,10 @@
_is_first_run = true;
// Get parameters for conv_info
- unsigned int stride_x, stride_y, pad_x, pad_y = 0;
+ unsigned int stride_x = 0;
+ unsigned int stride_y = 0;
+ unsigned int pad_x = 0;
+ unsigned int pad_y = 0;
std::tie(stride_x, stride_y) = conv_info.stride();
std::tie(pad_x, pad_y) = conv_info.pad();
@@ -72,21 +75,21 @@
ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(0) != conv_w) || (output->info()->dimension(1) != conv_h), "Output shape does not match the expected one");
// Create tensor to store the reshaped weights
- const size_t mat_weights_cols = weights->info()->dimension(3);
- const size_t mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + ((_has_bias) ? 1 : 0);
- const TensorShape shape_wr(mat_weights_cols, mat_weights_rows);
- TensorInfo info_wr(shape_wr, 1, weights->info()->data_type());
+ const unsigned int mat_weights_cols = weights->info()->dimension(3);
+ const unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + (_has_bias ? 1 : 0);
+ TensorShape shape_wr(mat_weights_cols, mat_weights_rows);
+ TensorInfo info_wr(shape_wr, 1, weights->info()->data_type());
_weights_reshaped.allocator()->init(info_wr);
// Create tensor to store transposed weights
- TensorShape shape_wt(mat_weights_rows * 4, static_cast<size_t>(std::ceil(mat_weights_cols / 4.f)));
+ TensorShape shape_wt(mat_weights_rows * 4, static_cast<unsigned int>(std::ceil(mat_weights_cols / 4.f)));
TensorInfo info_wt(shape_wt, 1, weights->info()->data_type());
_weights_transposed.allocator()->init(info_wt);
// Create tensor to store im2col reshaped inputs
- const size_t mat_input_cols = mat_weights_rows;
- const size_t mat_input_rows = conv_w * conv_h;
- TensorShape shape_im2col = input->info()->tensor_shape();
+ const unsigned int mat_input_cols = mat_weights_rows;
+ const unsigned int mat_input_rows = conv_w * conv_h;
+ TensorShape shape_im2col = input->info()->tensor_shape();
shape_im2col.set(0, mat_input_cols);
shape_im2col.set(1, mat_input_rows);
shape_im2col.set(2, 1);
@@ -96,7 +99,7 @@
// Create tensor to prepare input tensor for GEMM
TensorShape shape_interleaved = shape_im2col;
shape_interleaved.set(0, shape_interleaved.x() * 4);
- shape_interleaved.set(1, std::ceil(static_cast<float>(shape_interleaved.y()) / 4));
+ shape_interleaved.set(1, std::ceil(shape_interleaved.y() / 4.f));
TensorInfo info_interleaved(shape_interleaved, 1, input->info()->data_type());
_input_interleaved_reshaped.allocator()->init(info_interleaved);