blob: 27eb4bc63096471c08d7d4a271d20c062727221a [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEConvolutionLayer.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include <cmath>
#include <tuple>
using namespace arm_compute;
NEConvolutionLayer::NEConvolutionLayer()
: _input_im2col_kernel(), _input_interleave_kernel(), _weights_reshape_kernel(), _weights_transposed_kernel(), _mm_kernel(), _output_col2im_kernel(), _input_im2col_reshaped(),
_input_interleaved_reshaped(), _weights_reshaped(), _weights_transposed(), _gemm_output(), _is_first_run(false), _has_bias(false)
{
}
void NEConvolutionLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::F32);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
ARM_COMPUTE_ERROR_ON(weights->info()->dimension(2) != input->info()->dimension(2));
ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4);
if(biases != nullptr)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
ARM_COMPUTE_ERROR_ON(biases->info()->dimension(0) != weights->info()->dimension(3));
ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1);
}
_has_bias = (biases != nullptr);
_is_first_run = true;
// Get parameters for conv_info
unsigned int stride_x, stride_y, pad_x, pad_y = 0;
std::tie(stride_x, stride_y) = conv_info.stride();
std::tie(pad_x, pad_y) = conv_info.pad();
// Get convolved dimensions
unsigned int conv_w = 0;
unsigned int conv_h = 0;
std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), weights->info()->dimension(0),
stride_x, stride_y, pad_x, pad_y, conv_info.round());
ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(0) != conv_w) || (output->info()->dimension(1) != conv_h), "Output shape does not match the expected one");
// Create tensor to store the reshaped weights
const size_t mat_weights_cols = weights->info()->dimension(3);
const size_t mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + ((_has_bias) ? 1 : 0);
const TensorShape shape_wr(mat_weights_cols, mat_weights_rows);
TensorInfo info_wr(shape_wr, 1, weights->info()->data_type());
_weights_reshaped.allocator()->init(info_wr);
// Create tensor to store transposed weights
TensorShape shape_wt(mat_weights_rows * 4, static_cast<size_t>(std::ceil(mat_weights_cols / 4.f)));
TensorInfo info_wt(shape_wt, 1, weights->info()->data_type());
_weights_transposed.allocator()->init(info_wt);
// Create tensor to store im2col reshaped inputs
const size_t mat_input_cols = mat_weights_rows;
const size_t mat_input_rows = conv_w * conv_h;
TensorShape shape_im2col = input->info()->tensor_shape();
shape_im2col.set(0, mat_input_cols);
shape_im2col.set(1, mat_input_rows);
shape_im2col.set(2, 1);
TensorInfo info_im2col(shape_im2col, 1, input->info()->data_type());
_input_im2col_reshaped.allocator()->init(info_im2col);
// Create tensor to prepare input tensor for GEMM
TensorShape shape_interleaved = shape_im2col;
shape_interleaved.set(0, shape_interleaved.x() * 4);
shape_interleaved.set(1, std::ceil(static_cast<float>(shape_interleaved.y()) / 4));
TensorInfo info_interleaved(shape_interleaved, 1, input->info()->data_type());
_input_interleaved_reshaped.allocator()->init(info_interleaved);
// Create GEMM output tensor
TensorShape shape_gemm = _input_im2col_reshaped.info()->tensor_shape();
shape_gemm.set(0, mat_weights_cols);
shape_gemm.set(1, mat_input_rows);
TensorInfo info_gemm(shape_gemm, 1, input->info()->data_type());
_gemm_output.allocator()->init(info_gemm);
// Configure kernels
_input_im2col_kernel.configure(input, &_input_im2col_reshaped, std::make_pair(conv_w, conv_h), conv_info, _has_bias);
_input_interleave_kernel.configure(&_input_im2col_reshaped, &_input_interleaved_reshaped);
_weights_reshape_kernel.configure(weights, biases, &_weights_reshaped);
_weights_transposed_kernel.configure(&_weights_reshaped, &_weights_transposed);
_mm_kernel.configure(&_input_interleaved_reshaped, &_weights_transposed, &_gemm_output, 1.0f);
_output_col2im_kernel.configure(&_gemm_output, output, std::make_pair(conv_w, conv_h));
// Allocate the tensors once the all configure methods have been called
_weights_reshaped.allocator()->allocate();
_weights_transposed.allocator()->allocate();
_input_im2col_reshaped.allocator()->allocate();
_input_interleaved_reshaped.allocator()->allocate();
_gemm_output.allocator()->allocate();
}
void NEConvolutionLayer::run()
{
// Run weights reshaping (Runs once for every configure)
if(_is_first_run)
{
_is_first_run = false;
NEScheduler::get().multithread(&_weights_reshape_kernel, 3);
NEScheduler::get().multithread(&_weights_transposed_kernel);
}
// Run input reshaping
NEScheduler::get().multithread(&_input_im2col_kernel);
// Run interleave
NEScheduler::get().multithread(&_input_interleave_kernel);
// Runs GEMM on reshaped matrices
NEScheduler::get().multithread(&_mm_kernel);
// Reshape output matrix
NEScheduler::get().multithread(&_output_col2im_kernel);
}