| /* |
| * Copyright (c) 2017 ARM Limited. |
| * |
| * SPDX-License-Identifier: MIT |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to |
| * deal in the Software without restriction, including without limitation the |
| * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or |
| * sell copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in all |
| * copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| #include "arm_compute/runtime/CL/functions/CLFullyConnectedLayer.h" |
| |
| #include "arm_compute/core/Validate.h" |
| #include "arm_compute/runtime/CL/CLScheduler.h" |
| |
| using namespace arm_compute; |
| |
| CLFullyConnectedLayer::CLFullyConnectedLayer() |
| : _conv_function(), _gemm_function(), _transpose_kernel(), _acc_biases_kernel(), _run_func(), _weights_transpose(), _is_first_run(true), _run_acc_biases(false) |
| { |
| } |
| |
| void CLFullyConnectedLayer::configure(ICLTensor *input, ICLTensor *weights, const ICLTensor *biases, ICLTensor *output) |
| { |
| ARM_COMPUTE_ERROR_ON((weights->info()->num_dimensions() != 2) && (weights->info()->num_dimensions() != 4)); |
| |
| // Make sure that in the fully connected layer connected to fully connected layer case, the first dimension of the weights and input are same. |
| ARM_COMPUTE_ERROR_ON((weights->info()->num_dimensions() == 2) && (input->info()->dimension(0) != weights->info()->dimension(0))); |
| |
| if(weights->info()->num_dimensions() != 2) |
| { |
| _conv_function.configure(input, weights, biases, output, PadStrideInfo(1, 1, 0, 0, DimensionRoundingType::FLOOR)); |
| _run_func = &CLFullyConnectedLayer::run_conv; |
| return; |
| } |
| |
| TensorShape shape_trans(weights->info()->dimension(1), weights->info()->dimension(0)); |
| _weights_transpose.allocator()->init(TensorInfo(shape_trans, 1, weights->info()->data_type())); |
| |
| // Configure kernels |
| _transpose_kernel.configure(weights, &_weights_transpose); |
| _gemm_function.configure(input, &_weights_transpose, nullptr, output, 1.0f, 0.0f); |
| if(biases != nullptr) |
| { |
| _acc_biases_kernel.configure(output, biases); |
| _run_acc_biases = true; |
| } |
| |
| _run_func = &CLFullyConnectedLayer::run_fc; |
| |
| // Allocate intermediate buffers |
| _weights_transpose.allocator()->allocate(); |
| } |
| |
| void CLFullyConnectedLayer::run_conv() |
| { |
| _conv_function.run(); |
| } |
| |
| void CLFullyConnectedLayer::run_fc() |
| { |
| if(_is_first_run) |
| { |
| _is_first_run = false; |
| CLScheduler::get().enqueue(_transpose_kernel); |
| } |
| |
| _gemm_function.run(); |
| |
| if(_run_acc_biases) |
| { |
| CLScheduler::get().enqueue(_acc_biases_kernel); |
| } |
| } |
| |
| void CLFullyConnectedLayer::run() |
| { |
| ARM_COMPUTE_ERROR_ON(_run_func == nullptr); |
| (this->*_run_func)(); |
| } |