blob: 394952996e4e729ccc5ac5f63be7ccff1ec699c0 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NESoftmaxLayer.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/NEON/kernels/NESoftmaxLayerKernel.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include <cfloat>
using namespace arm_compute;
NESoftmaxLayer::NESoftmaxLayer()
: _max_kernel(), _shift_exp_sum_kernel(), _norm_kernel(), _fill_border_kernel(), _max(), _sum(), _tmp()
{
}
void NESoftmaxLayer::configure(ITensor *input, ITensor *output)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::F32);
// Create intermediate tensors shapes
TensorInfo tensor_info_tmp(input->info()->tensor_shape(), input->info()->num_channels(), input->info()->data_type());
tensor_info_tmp.auto_padding();
_tmp.allocator()->init(tensor_info_tmp);
_tmp.allocator()->allocate();
TensorShape shape = input->info()->tensor_shape();
shape.set(0, 1);
TensorInfo tensor_info_max_sum(shape, input->info()->num_channels(), input->info()->data_type());
tensor_info_max_sum.auto_padding();
_max.allocator()->init(tensor_info_max_sum);
_max.allocator()->allocate();
_sum.allocator()->init(tensor_info_max_sum);
_sum.allocator()->allocate();
// Configure Kernels
_fill_border_kernel.configure(input, 3, BorderMode::CONSTANT, PixelValue(-FLT_MAX));
_max_kernel.configure(input, &_max);
_shift_exp_sum_kernel.configure(input, &_max, &_tmp, &_sum);
_norm_kernel.configure(&_tmp, &_sum, output);
}
void NESoftmaxLayer::run()
{
NEScheduler::get().multithread(&_fill_border_kernel);
NEScheduler::get().multithread(&_max_kernel);
NEScheduler::get().multithread(&_shift_exp_sum_kernel);
NEScheduler::get().multithread(&_norm_kernel);
}