blob: be7cc2d0e1dcea28a18966efe41665cbc4f69362 [file] [log] [blame]
Anthony Barbier06ea0482018-02-22 15:45:35 +00001/*
2 * Copyright (c) 2017-2018 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/NEON/functions/NEGEMMConvolutionLayer.h"
25
Anthony Barbier06ea0482018-02-22 15:45:35 +000026#include "arm_compute/core/Size2D.h"
27#include "arm_compute/core/Utils.h"
28#include "arm_compute/core/Validate.h"
Jenkins52ba29e2018-08-29 15:32:11 +000029#include "arm_compute/core/utils/misc/ShapeCalculator.h"
Anthony Barbier06ea0482018-02-22 15:45:35 +000030#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
31#include "arm_compute/runtime/NEON/NEScheduler.h"
32#include "support/ToolchainSupport.h"
33
Anthony Barbier06ea0482018-02-22 15:45:35 +000034#include <cmath>
Jenkinsb9abeae2018-11-22 11:58:08 +000035#include <set>
Anthony Barbier06ea0482018-02-22 15:45:35 +000036#include <tuple>
37
Jenkins52ba29e2018-08-29 15:32:11 +000038using namespace arm_compute;
39using namespace arm_compute::misc::shape_calculator;
Anthony Barbier06ea0482018-02-22 15:45:35 +000040
Jenkins52ba29e2018-08-29 15:32:11 +000041NEConvolutionLayerReshapeWeights::NEConvolutionLayerReshapeWeights()
42 : _weights_reshape_kernel()
Anthony Barbier06ea0482018-02-22 15:45:35 +000043{
44}
45
Jenkins52ba29e2018-08-29 15:32:11 +000046void NEConvolutionLayerReshapeWeights::configure(const ITensor *weights, const ITensor *biases, ITensor *output)
Anthony Barbier06ea0482018-02-22 15:45:35 +000047{
48 // Perform validation step
49 ARM_COMPUTE_ERROR_ON_NULLPTR(weights, output);
50 ARM_COMPUTE_ERROR_THROW_ON(NEConvolutionLayerReshapeWeights::validate(weights->info(),
51 (biases != nullptr) ? biases->info() : nullptr,
Jenkins52ba29e2018-08-29 15:32:11 +000052 output->info()));
Anthony Barbier06ea0482018-02-22 15:45:35 +000053
Jenkins52ba29e2018-08-29 15:32:11 +000054 const bool append_biases = (biases != nullptr) && !is_data_type_quantized_asymmetric(weights->info()->data_type());
Anthony Barbier06ea0482018-02-22 15:45:35 +000055 const ITensor *biases_to_use = (append_biases) ? biases : nullptr;
56
Jenkins52ba29e2018-08-29 15:32:11 +000057 _weights_reshape_kernel.configure(weights, biases_to_use, output);
Anthony Barbier06ea0482018-02-22 15:45:35 +000058
59 output->info()->set_quantization_info(weights->info()->quantization_info());
60}
61
Jenkins52ba29e2018-08-29 15:32:11 +000062Status NEConvolutionLayerReshapeWeights::validate(const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output)
Anthony Barbier06ea0482018-02-22 15:45:35 +000063{
Jenkins52ba29e2018-08-29 15:32:11 +000064 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(weights);
65 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
Anthony Barbier06ea0482018-02-22 15:45:35 +000066 ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
Anthony Barbier06ea0482018-02-22 15:45:35 +000067
Jenkins52ba29e2018-08-29 15:32:11 +000068 if(biases != nullptr)
Anthony Barbier06ea0482018-02-22 15:45:35 +000069 {
Jenkins52ba29e2018-08-29 15:32:11 +000070 const int idx_kernels = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::BATCHES);
Anthony Barbier06ea0482018-02-22 15:45:35 +000071 ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(weights->data_type()));
72 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
Jenkins52ba29e2018-08-29 15:32:11 +000073 ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels));
Anthony Barbier06ea0482018-02-22 15:45:35 +000074 ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
75 }
76
Jenkins52ba29e2018-08-29 15:32:11 +000077 if((output != nullptr) && (output->total_size() != 0))
Anthony Barbier06ea0482018-02-22 15:45:35 +000078 {
Jenkins52ba29e2018-08-29 15:32:11 +000079 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output);
Anthony Barbier06ea0482018-02-22 15:45:35 +000080
Jenkins52ba29e2018-08-29 15:32:11 +000081 NEWeightsReshapeKernel::validate(weights, biases, output);
Anthony Barbier06ea0482018-02-22 15:45:35 +000082 }
83
84 return Status{};
85}
86
87void NEConvolutionLayerReshapeWeights::run()
88{
Anthony Barbier06ea0482018-02-22 15:45:35 +000089 NEScheduler::get().schedule(&_weights_reshape_kernel, 3);
Anthony Barbier06ea0482018-02-22 15:45:35 +000090}
91
Anthony Barbier06ea0482018-02-22 15:45:35 +000092NEGEMMConvolutionLayer::NEGEMMConvolutionLayer(const std::shared_ptr<IMemoryManager> &memory_manager)
Jenkins514be652019-02-28 12:25:18 +000093 : _memory_group(memory_manager), _reshape_weights(), _im2col_kernel(), _mm_gemm(memory_manager), _mm_gemmlowp(memory_manager), _gemmlowp_output_stage(), _col2im_kernel(), _activationlayer_function(),
Jenkins52ba29e2018-08-29 15:32:11 +000094 _add_bias_kernel(), _reshape_layer(), _original_weights(nullptr), _im2col_output(), _weights_reshaped(), _gemm_output(), _tmp_output(), _data_layout(DataLayout::NCHW), _append_bias(false),
95 _skip_im2col(false), _skip_col2im(false), _is_quantized(false), _is_activationlayer_enabled(false), _is_prepared(false)
Anthony Barbier06ea0482018-02-22 15:45:35 +000096{
97}
98
Jenkins52ba29e2018-08-29 15:32:11 +000099void NEGEMMConvolutionLayer::configure_mm(const ITensor *input, const ITensor *weights, ITensor *output, int gemm_3d_depth)
Anthony Barbier06ea0482018-02-22 15:45:35 +0000100{
Jenkins52ba29e2018-08-29 15:32:11 +0000101 ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights);
102 ARM_COMPUTE_ERROR_THROW_ON(validate_mm(input->info(), weights->info(), output->info(), gemm_3d_depth, _skip_im2col));
103
Jenkinsb9abeae2018-11-22 11:58:08 +0000104 const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
105 gemm_3d_depth, _skip_im2col /* Reinterpret the input as 3D if im2col is skipped */);
106
Anthony Barbier06ea0482018-02-22 15:45:35 +0000107 if(_is_quantized)
108 {
109 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
110 // Extract and negate input and weights offset
111 const QuantizationInfo input_quantization_info = input->info()->quantization_info();
112 const QuantizationInfo weights_quantization_info = weights->info()->quantization_info();
113
114 input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset));
115 weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
116
Jenkinsb9abeae2018-11-22 11:58:08 +0000117 _mm_gemmlowp.configure(input, weights, nullptr, output, gemm_info);
Anthony Barbier06ea0482018-02-22 15:45:35 +0000118
119 // Revert back QuantizatioInfo as input and weights could be used in other convolution layers
120 input->info()->set_quantization_info(input_quantization_info);
121 weights->info()->set_quantization_info(weights_quantization_info);
122 }
123 else
124 {
Jenkins52ba29e2018-08-29 15:32:11 +0000125 // Configure matrix multiply function
Jenkinsb9abeae2018-11-22 11:58:08 +0000126 _mm_gemm.configure(input, weights, nullptr, output, 1.0f, 0.0f, gemm_info);
Anthony Barbier06ea0482018-02-22 15:45:35 +0000127 }
128}
129
Jenkins52ba29e2018-08-29 15:32:11 +0000130Status NEGEMMConvolutionLayer::validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output, int gemm_3d_depth, bool skip_im2col)
Anthony Barbier06ea0482018-02-22 15:45:35 +0000131{
Jenkins52ba29e2018-08-29 15:32:11 +0000132 const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
Anthony Barbier06ea0482018-02-22 15:45:35 +0000133
Jenkinsb9abeae2018-11-22 11:58:08 +0000134 const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */,
135 gemm_3d_depth, skip_im2col /* Reinterpret the input as 3D if im2col is skipped */);
Jenkins52ba29e2018-08-29 15:32:11 +0000136 if(is_quantized)
Anthony Barbier06ea0482018-02-22 15:45:35 +0000137 {
Jenkins52ba29e2018-08-29 15:32:11 +0000138 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
139 // Extract and negate input and weights offset
140 const QuantizationInfo input_quantization_info = input->quantization_info();
141 const QuantizationInfo weights_quantization_info = weights->quantization_info();
Anthony Barbier06ea0482018-02-22 15:45:35 +0000142
Jenkins52ba29e2018-08-29 15:32:11 +0000143 std::unique_ptr<ITensorInfo> input_qa = input->clone();
144 std::unique_ptr<ITensorInfo> weights_qa = weights->clone();
145 input_qa->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset));
146 weights_qa->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
147
148 // Perform validation step on GEMMLowp
Jenkinsb9abeae2018-11-22 11:58:08 +0000149 return NEGEMMLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), nullptr, output, gemm_info);
Anthony Barbier06ea0482018-02-22 15:45:35 +0000150 }
151 else
152 {
Jenkins52ba29e2018-08-29 15:32:11 +0000153 // Perform validation step on Matrix multiply function
154 return NEGEMM::validate(input, weights, nullptr, output, 1.0f, 0.0f, gemm_info);
155 }
156}
Anthony Barbier06ea0482018-02-22 15:45:35 +0000157
Jenkins52ba29e2018-08-29 15:32:11 +0000158Status NEGEMMConvolutionLayer::validate_gemm3d(DataType data_type, int gemm_3d_depth, bool skip_im2col)
159{
160 const bool is_quantized = is_data_type_quantized_asymmetric(data_type);
161 const DataType output_gemm_data_type = is_quantized ? DataType::S32 : data_type;
162 const unsigned int mult_y = skip_im2col ? 1U : gemm_3d_depth;
163 const unsigned int mult_z = skip_im2col ? gemm_3d_depth : 1U;
Anthony Barbier06ea0482018-02-22 15:45:35 +0000164
Jenkins52ba29e2018-08-29 15:32:11 +0000165 // Set dummy tensor shapes for the validation
166 const TensorInfo dummy_input_info(TensorShape(4U, 4U * mult_y, 1U * mult_z), 1, data_type);
167 const TensorInfo dummy_weights_info(TensorShape(4U, 4U), 1, data_type);
168 const TensorInfo dummy_output_info(TensorShape(4U, 4U, gemm_3d_depth), 1, output_gemm_data_type);
169
170 return validate_mm(&dummy_input_info, &dummy_weights_info, &dummy_output_info, gemm_3d_depth, skip_im2col);
171}
172
173void NEGEMMConvolutionLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info,
174 const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups)
175{
176 ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
177 ARM_COMPUTE_UNUSED(num_groups);
178 ARM_COMPUTE_ERROR_THROW_ON(NEGEMMConvolutionLayer::validate(input->info(),
179 weights->info(),
180 biases != nullptr ? biases->info() : nullptr,
181 output->info(),
182 conv_info,
183 weights_info,
184 dilation,
185 act_info,
186 num_groups));
187
188 const DataType data_type = input->info()->data_type();
189 const DataLayout data_layout = input->info()->data_layout();
190 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
191 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
Jenkins52ba29e2018-08-29 15:32:11 +0000192 const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
193
194 const unsigned int kernel_width = weights->info()->dimension(idx_width);
195 const unsigned int kernel_height = weights->info()->dimension(idx_height);
196
Jenkinsb9abeae2018-11-22 11:58:08 +0000197 _is_prepared = weights_info.retain_internal_weights();
198 _original_weights = weights;
199 _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
200 _data_layout = data_layout;
201 _skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
202 _append_bias = (biases != nullptr) && (!_is_quantized);
203 _is_activationlayer_enabled = act_info.enabled();
Jenkins52ba29e2018-08-29 15:32:11 +0000204
205 const ITensor *gemm_input_to_use = input;
206 ITensor *gemm_output_to_use = output;
207 ITensor *gemm_output_staged_to_use = output;
208
209 // Get convolved dimensions
210 unsigned int conv_w = 0;
211 unsigned int conv_h = 0;
212 std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(idx_width),
213 input->info()->dimension(idx_height),
214 kernel_width,
215 kernel_height,
216 conv_info,
217 dilation);
218
219 // Check if GEMM3D is supported
Jenkinsb9abeae2018-11-22 11:58:08 +0000220 if(data_layout == DataLayout::NHWC)
Jenkins52ba29e2018-08-29 15:32:11 +0000221 {
Jenkinsb9abeae2018-11-22 11:58:08 +0000222 _skip_col2im = bool(validate_gemm3d(input->info()->data_type(), conv_h, true));
Jenkins52ba29e2018-08-29 15:32:11 +0000223 // If not supported, we need to perform im2col and col2im (or reshape layer)
Jenkinsb9abeae2018-11-22 11:58:08 +0000224 if(!_skip_col2im)
Jenkins52ba29e2018-08-29 15:32:11 +0000225 {
226 _skip_im2col = false;
Anthony Barbier06ea0482018-02-22 15:45:35 +0000227 }
228 }
Jenkinsb9abeae2018-11-22 11:58:08 +0000229 else
230 {
231 _skip_col2im = false;
232 }
Anthony Barbier06ea0482018-02-22 15:45:35 +0000233
Jenkins52ba29e2018-08-29 15:32:11 +0000234 const ITensor *biases_to_use = (_append_bias && !_skip_im2col) ? biases : nullptr;
235
236 // Get parameters from conv_info
237 unsigned int stride_x = 0;
238 unsigned int stride_y = 0;
239 std::tie(stride_x, stride_y) = conv_info.stride();
240
241 unsigned int mat_weights_cols = weights->info()->dimension(idx_kernels);
Jenkins52ba29e2018-08-29 15:32:11 +0000242
243 // _weights_reshaped will be auto configured in the kernel.
244 // Just append biases and do not transpose 1xW as it will be reshaped in NEGEMM
245 _reshape_weights.configure(weights, biases_to_use, &_weights_reshaped);
246
247 // Create tensor to store im2col reshaped inputs
Jenkinsb3a371b2018-05-23 11:36:53 +0100248 if(!_skip_im2col)
Anthony Barbier06ea0482018-02-22 15:45:35 +0000249 {
Jenkins52ba29e2018-08-29 15:32:11 +0000250 _memory_group.manage(&_im2col_output);
Jenkinsb3a371b2018-05-23 11:36:53 +0100251
Jenkins52ba29e2018-08-29 15:32:11 +0000252 // Configure
253 _im2col_kernel.configure(input, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, _append_bias, dilation);
Jenkinsb3a371b2018-05-23 11:36:53 +0100254
Jenkins52ba29e2018-08-29 15:32:11 +0000255 // Update GEMM input
256 gemm_input_to_use = &_im2col_output;
Jenkinsb3a371b2018-05-23 11:36:53 +0100257 }
258 else if(_append_bias)
259 {
260 // Configure add bias kernel
261 _add_bias_kernel.configure(output, biases, output, ConvertPolicy::SATURATE);
Anthony Barbier06ea0482018-02-22 15:45:35 +0000262 }
263
Jenkins52ba29e2018-08-29 15:32:11 +0000264 // Create temporary GEMM output tensor in case we cannot skip col2im
Jenkinsb9abeae2018-11-22 11:58:08 +0000265 if(!_skip_col2im || _is_quantized)
Anthony Barbier06ea0482018-02-22 15:45:35 +0000266 {
Jenkins52ba29e2018-08-29 15:32:11 +0000267 // GEMM output should be S32 for acquiring raw integer accumulator without quantized postprocessing for quantized asymmetric input.
268 const DataType gemm_data_type = _is_quantized ? DataType::S32 : data_type;
Jenkinsb9abeae2018-11-22 11:58:08 +0000269 TensorShape shape_gemm;
270
271 if(_is_quantized && _skip_col2im)
272 {
273 shape_gemm = output->info()->tensor_shape();
274 }
275 else
276 {
277 // Calculate GEMM output shape
278 shape_gemm = _im2col_output.info()->tensor_shape();
279 shape_gemm.set(0, mat_weights_cols);
280 shape_gemm.set(1, conv_w * conv_h);
281 }
282
283 // FIXME: input->clone() doesn't work with subtensors for grouped convolutions.
Jenkins52ba29e2018-08-29 15:32:11 +0000284 TensorInfo info_gemm(shape_gemm, 1, gemm_data_type);
Jenkinsb9abeae2018-11-22 11:58:08 +0000285 info_gemm.set_quantization_info(output->info()->quantization_info()).set_data_layout(input->info()->data_layout());
Jenkins52ba29e2018-08-29 15:32:11 +0000286 _gemm_output.allocator()->init(info_gemm);
287 _memory_group.manage(&_gemm_output);
288
289 // Update GEMM output
290 gemm_output_to_use = &_gemm_output;
Anthony Barbier06ea0482018-02-22 15:45:35 +0000291 }
292
Jenkins52ba29e2018-08-29 15:32:11 +0000293 // Configure GEMM
Jenkinsb9abeae2018-11-22 11:58:08 +0000294 // In case we need to skip col2im, GEMM3D (gemm_3d_depth != 0) must be called in order to avoid reshaping the output matrix
295 const unsigned int gemm_3d_depth = _skip_col2im ? conv_h : 0;
296 configure_mm(gemm_input_to_use, &_weights_reshaped, gemm_output_to_use, gemm_3d_depth);
Jenkins52ba29e2018-08-29 15:32:11 +0000297
Jenkinsb3a371b2018-05-23 11:36:53 +0100298 if(!_skip_im2col)
Anthony Barbier06ea0482018-02-22 15:45:35 +0000299 {
Jenkins52ba29e2018-08-29 15:32:11 +0000300 _im2col_output.allocator()->allocate();
301 }
Anthony Barbier06ea0482018-02-22 15:45:35 +0000302
Jenkins52ba29e2018-08-29 15:32:11 +0000303 // Configure output stage for quantized case
304 if(_is_quantized)
305 {
Jenkinsb9abeae2018-11-22 11:58:08 +0000306 const QuantizationInfo input_quant_info = input->info()->quantization_info();
307 const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input_quant_info : output->info()->quantization_info();
Jenkins52ba29e2018-08-29 15:32:11 +0000308
Jenkinsb9abeae2018-11-22 11:58:08 +0000309 float multiplier = input_quant_info.scale * weights->info()->quantization_info().scale / output_quant_info.scale;
Jenkins52ba29e2018-08-29 15:32:11 +0000310 int output_multiplier, output_shift;
311 quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
312
Jenkinsb9abeae2018-11-22 11:58:08 +0000313 if(!_skip_col2im)
314 {
315 _memory_group.manage(&_tmp_output);
316 gemm_output_staged_to_use = &_tmp_output;
317 }
Jenkins52ba29e2018-08-29 15:32:11 +0000318
Jenkinsb9abeae2018-11-22 11:58:08 +0000319 // Merge activation with output stage
320 int min_activation = 0;
321 int max_activation = 0;
322
323 const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
324 ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
325 ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
326 };
327 if(_is_activationlayer_enabled && supported_acts.count(act_info.activation()) != 0)
328 {
329 const int a_const_int = output_quant_info.quantize(act_info.a(), RoundingPolicy::TO_NEAREST_UP);
330 const int b_const_int = output_quant_info.quantize(act_info.b(), RoundingPolicy::TO_NEAREST_UP);
331
332 min_activation = act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU ? output_quant_info.offset : b_const_int;
333 max_activation = act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU ? 255 : a_const_int;
334
335 _is_activationlayer_enabled = false;
336 }
337
338 _gemmlowp_output_stage.configure(gemm_output_to_use, biases, gemm_output_staged_to_use, output_multiplier, output_shift, output_quant_info.offset, min_activation, max_activation);
Jenkins52ba29e2018-08-29 15:32:11 +0000339 }
340
341 if(!_skip_col2im)
342 {
343 if(_data_layout == DataLayout::NCHW)
Jenkinsb3a371b2018-05-23 11:36:53 +0100344 {
Jenkins52ba29e2018-08-29 15:32:11 +0000345 // Configure col2im
346 _col2im_kernel.configure(_is_quantized ? gemm_output_staged_to_use : gemm_output_to_use, output, Size2D(conv_w, conv_h));
Jenkinsb3a371b2018-05-23 11:36:53 +0100347 }
Jenkins52ba29e2018-08-29 15:32:11 +0000348 else
Jenkinsb3a371b2018-05-23 11:36:53 +0100349 {
Jenkins52ba29e2018-08-29 15:32:11 +0000350 // Configure reshape layer
351 _reshape_layer.configure(_is_quantized ? gemm_output_staged_to_use : gemm_output_to_use, output);
Jenkinsb3a371b2018-05-23 11:36:53 +0100352 }
Jenkins52ba29e2018-08-29 15:32:11 +0000353 }
Jenkinsb3a371b2018-05-23 11:36:53 +0100354
Jenkinsb9abeae2018-11-22 11:58:08 +0000355 if(_is_quantized && !_skip_col2im)
Jenkins52ba29e2018-08-29 15:32:11 +0000356 {
357 _tmp_output.allocator()->allocate();
358 }
359
Jenkinsb9abeae2018-11-22 11:58:08 +0000360 if(!_skip_col2im || _is_quantized)
Jenkins52ba29e2018-08-29 15:32:11 +0000361 {
Jenkinsb3a371b2018-05-23 11:36:53 +0100362 _gemm_output.allocator()->allocate();
Anthony Barbier06ea0482018-02-22 15:45:35 +0000363 }
364
Jenkins52ba29e2018-08-29 15:32:11 +0000365 ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(idx_width) != conv_w) || (output->info()->dimension(idx_height) != conv_h),
366 "Output shape does not match the expected one");
Jenkinsb3a371b2018-05-23 11:36:53 +0100367
Jenkinsb9abeae2018-11-22 11:58:08 +0000368 // Configure Activation Layer
Jenkinsb3a371b2018-05-23 11:36:53 +0100369 if(_is_activationlayer_enabled)
370 {
371 _activationlayer_function.configure(output, nullptr, act_info);
372 }
Jenkins52ba29e2018-08-29 15:32:11 +0000373
374 ARM_COMPUTE_UNUSED(weights_info);
Anthony Barbier06ea0482018-02-22 15:45:35 +0000375}
376
377Status NEGEMMConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
Jenkins52ba29e2018-08-29 15:32:11 +0000378 const WeightsInfo &weights_info, const Size2D &dilation, const ActivationLayerInfo &act_info, unsigned int num_groups)
Anthony Barbier06ea0482018-02-22 15:45:35 +0000379{
Jenkins52ba29e2018-08-29 15:32:11 +0000380 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
381 ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!");
382 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
383 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
384 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights);
385 ARM_COMPUTE_RETURN_ERROR_ON_MSG(num_groups > 1, "Grouping (num_groups != 1) is not supported on NEON");
Anthony Barbier06ea0482018-02-22 15:45:35 +0000386
Jenkinsb3a371b2018-05-23 11:36:53 +0100387 const DataLayout data_layout = input->data_layout();
Jenkins52ba29e2018-08-29 15:32:11 +0000388 const DataType data_type = input->data_type();
Jenkinsb3a371b2018-05-23 11:36:53 +0100389 const int idx_width = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
390 const int idx_height = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
Jenkins52ba29e2018-08-29 15:32:11 +0000391 const int idx_channel = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
392 const int idx_kernels = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
Jenkinsb3a371b2018-05-23 11:36:53 +0100393
Jenkins52ba29e2018-08-29 15:32:11 +0000394 const unsigned int kernel_width = weights->dimension(idx_width);
395 const unsigned int kernel_height = weights->dimension(idx_height);
Anthony Barbier06ea0482018-02-22 15:45:35 +0000396
Jenkins52ba29e2018-08-29 15:32:11 +0000397 TensorInfo im2col_reshaped_info, info_gemm, tmp_info, weights_reshaped_info;
398 const ITensorInfo *gemm_input_to_use = input;
399 const ITensorInfo *gemm_output_to_use = output;
400 const ITensorInfo *gemm_output_staged_to_use = output;
401 const ITensorInfo *weights_to_use = weights;
Anthony Barbier06ea0482018-02-22 15:45:35 +0000402
Jenkinsb9abeae2018-11-22 11:58:08 +0000403 const bool is_quantized = is_data_type_quantized_asymmetric(data_type);
404 const bool append_bias = (biases != nullptr) && (!is_quantized);
405 bool skip_im2col = (data_layout == DataLayout::NHWC && kernel_width == 1 && kernel_height == 1 && conv_info.stride().first == 1 && conv_info.stride().second == 1);
406 bool is_activation_enabled = act_info.enabled();
Anthony Barbier06ea0482018-02-22 15:45:35 +0000407
Jenkins52ba29e2018-08-29 15:32:11 +0000408 // Get convolved dimensions
409 unsigned int conv_w = 0;
410 unsigned int conv_h = 0;
Anthony Barbier06ea0482018-02-22 15:45:35 +0000411
Jenkins52ba29e2018-08-29 15:32:11 +0000412 std::tie(conv_w, conv_h) = scaled_dimensions(input->dimension(idx_width),
413 input->dimension(idx_height),
414 kernel_width,
415 kernel_height,
416 conv_info,
417 dilation);
418
419 // Check if GEMM3D is supported
Jenkinsb9abeae2018-11-22 11:58:08 +0000420 bool skip_col2im = false;
421 if(data_layout == DataLayout::NHWC)
422 {
423 skip_col2im = bool(validate_gemm3d(input->data_type(), conv_h, true));
424 // If not supported, we need to perform im2col and col2im (or reshape layer)
425 if(!skip_col2im)
426 {
427 skip_im2col = false;
428 }
429 }
430
Jenkins52ba29e2018-08-29 15:32:11 +0000431 if(skip_col2im)
Anthony Barbier06ea0482018-02-22 15:45:35 +0000432 {
Jenkins52ba29e2018-08-29 15:32:11 +0000433 // If not supported, we need to perform im2col and col2im (or reshape layer)
434 if(!bool(validate_gemm3d(input->data_type(), conv_h, skip_im2col)))
435 {
436 skip_im2col = false;
437 skip_col2im = false;
438 }
Anthony Barbier06ea0482018-02-22 15:45:35 +0000439 }
Anthony Barbier06ea0482018-02-22 15:45:35 +0000440
Jenkins52ba29e2018-08-29 15:32:11 +0000441 const unsigned bias_element = (append_bias && !skip_im2col) ? 1 : 0;
442 const ITensorInfo *biases_to_use = (append_bias && !skip_im2col) ? biases : nullptr;
443
444 ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_channel) != input->dimension(idx_channel));
445 ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
446
447 // Validate biases
448 if(biases != nullptr)
449 {
450 if(is_quantized)
451 {
452 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
453 }
454 else
455 {
456 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
457 }
458 ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(idx_kernels));
459 ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
460 }
461
462 if(act_info.enabled())
463 {
464 ARM_COMPUTE_ERROR_ON(act_info.b() > act_info.a());
465 }
466
467 unsigned int mat_weights_cols = weights->dimension(idx_kernels);
468 unsigned int mat_weights_rows = weights->dimension(idx_width) * weights->dimension(idx_height) * weights->dimension(idx_channel) + bias_element;
469
470 // Output tensor auto inizialization if not yet initialized
471 ARM_COMPUTE_RETURN_ON_ERROR(NEConvolutionLayerReshapeWeights::validate(weights, biases_to_use, nullptr));
472 weights_reshaped_info = TensorInfo(compute_weights_reshaped_shape(*weights, (append_bias && !skip_im2col)), 1, data_type);
473 weights_to_use = &weights_reshaped_info;
Jenkinsb3a371b2018-05-23 11:36:53 +0100474
475 if(!skip_im2col)
476 {
Jenkins52ba29e2018-08-29 15:32:11 +0000477 // Create tensor info for im2col reshaped inputs
478 // For NEON the batch size is on the fourth dimension
Jenkinsb9abeae2018-11-22 11:58:08 +0000479 // TODO (giaiod01): Auto-initialize the output shape of im2col COMPMID-1482
Jenkins52ba29e2018-08-29 15:32:11 +0000480 TensorShape shape_im2col = input->tensor_shape();
481 shape_im2col.set(0, mat_weights_rows);
482 shape_im2col.set(1, conv_w * conv_h);
483 shape_im2col.set(2, 1);
484
485 im2col_reshaped_info = TensorInfo(shape_im2col, 1, data_type);
486 im2col_reshaped_info.set_quantization_info(input->quantization_info());
487
488 ARM_COMPUTE_RETURN_ON_ERROR(NEIm2ColKernel::validate(input, &im2col_reshaped_info, Size2D(kernel_width, kernel_height), conv_info, append_bias, dilation));
489 gemm_input_to_use = &im2col_reshaped_info;
Jenkinsb3a371b2018-05-23 11:36:53 +0100490 }
491 else if(append_bias)
492 {
493 // Validate add bias kernel
494 ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAdditionKernel::validate(output, biases, output, ConvertPolicy::SATURATE));
495 }
Anthony Barbier06ea0482018-02-22 15:45:35 +0000496
Jenkins52ba29e2018-08-29 15:32:11 +0000497 // Create temporary GEMM output tensor in case we cannot skip col2im
Jenkinsb9abeae2018-11-22 11:58:08 +0000498 const DataType gemm_data_type = is_quantized ? DataType::S32 : data_type;
Jenkins52ba29e2018-08-29 15:32:11 +0000499 if(!skip_col2im)
Anthony Barbier06ea0482018-02-22 15:45:35 +0000500 {
Jenkins52ba29e2018-08-29 15:32:11 +0000501 TensorShape shape_gemm = gemm_input_to_use->tensor_shape();
502 shape_gemm.set(0, mat_weights_cols);
503 shape_gemm.set(1, conv_w * conv_h);
Jenkins52ba29e2018-08-29 15:32:11 +0000504 info_gemm = TensorInfo(shape_gemm, 1, gemm_data_type);
Jenkinsb3a371b2018-05-23 11:36:53 +0100505 }
Jenkinsb9abeae2018-11-22 11:58:08 +0000506 else
507 {
508 info_gemm = TensorInfo(output->tensor_shape(), 1, gemm_data_type);
509 }
510 info_gemm.set_quantization_info(output->quantization_info()).set_data_layout(input->data_layout());
511 gemm_output_to_use = &info_gemm;
Jenkinsb3a371b2018-05-23 11:36:53 +0100512
Jenkinsb9abeae2018-11-22 11:58:08 +0000513 ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemm_input_to_use, weights_to_use, gemm_output_to_use, skip_col2im ? conv_h : 0, skip_im2col));
Jenkinsb3a371b2018-05-23 11:36:53 +0100514
Jenkins52ba29e2018-08-29 15:32:11 +0000515 if(is_quantized)
516 {
Jenkinsb9abeae2018-11-22 11:58:08 +0000517 const QuantizationInfo input_quant_info = input->quantization_info();
518 const QuantizationInfo output_quant_info = (output->total_size() == 0) ? input_quant_info : output->quantization_info();
519 const float multiplier = input_quant_info.scale * weights_to_use->quantization_info().scale / output_quant_info.scale;
520 int output_multiplier, output_shift;
Jenkins52ba29e2018-08-29 15:32:11 +0000521 quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
522
Jenkinsb9abeae2018-11-22 11:58:08 +0000523 if(!skip_col2im)
524 {
525 tmp_info = TensorInfo(gemm_output_to_use->tensor_shape(), 1, DataType::QASYMM8);
526 tmp_info.set_quantization_info(output->quantization_info()).set_data_layout(data_layout);
527 gemm_output_staged_to_use = &tmp_info;
528 }
529
530 // Merge activation with output stage
531 int min_activation = 0;
532 int max_activation = 0;
533
534 const std::set<ActivationLayerInfo::ActivationFunction> supported_acts = { ActivationLayerInfo::ActivationFunction::RELU,
535 ActivationLayerInfo::ActivationFunction::BOUNDED_RELU,
536 ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU
537 };
538
539 if(is_activation_enabled && supported_acts.count(act_info.activation()) != 0)
540 {
541 const int a_const_int = output_quant_info.quantize(act_info.a(), RoundingPolicy::TO_NEAREST_UP);
542 const int b_const_int = output_quant_info.quantize(act_info.b(), RoundingPolicy::TO_NEAREST_UP);
543
544 min_activation = act_info.activation() != ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU ? output_quant_info.offset : b_const_int;
545 max_activation = act_info.activation() == ActivationLayerInfo::ActivationFunction::RELU ? 255 : a_const_int;
546
547 is_activation_enabled = false;
548 }
Jenkins52ba29e2018-08-29 15:32:11 +0000549
550 // Validate output stage for quantized case
Jenkinsb9abeae2018-11-22 11:58:08 +0000551 NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::validate(gemm_output_to_use, biases, gemm_output_staged_to_use, min_activation, max_activation);
Jenkins52ba29e2018-08-29 15:32:11 +0000552 }
553
554 // Validate Col2Im/ReshapeLayer
555 if(!skip_col2im && (data_layout == DataLayout::NCHW))
556 {
557 ARM_COMPUTE_RETURN_ON_ERROR(NECol2ImKernel::validate(is_quantized ? gemm_output_staged_to_use : gemm_output_to_use,
558 output,
559 Size2D(conv_w, conv_h)));
560 }
561
562 //Validate Activation Layer
Jenkinsb9abeae2018-11-22 11:58:08 +0000563 if(is_activation_enabled)
Jenkinsb3a371b2018-05-23 11:36:53 +0100564 {
565 ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output, nullptr, act_info));
Anthony Barbier06ea0482018-02-22 15:45:35 +0000566 }
567
568 return Status{};
569}
570
571void NEGEMMConvolutionLayer::run()
572{
Jenkins52ba29e2018-08-29 15:32:11 +0000573 prepare();
Anthony Barbier06ea0482018-02-22 15:45:35 +0000574
575 _memory_group.acquire();
576
Jenkinsb3a371b2018-05-23 11:36:53 +0100577 if(!_skip_im2col)
578 {
579 // Run input reshaping
Jenkins52ba29e2018-08-29 15:32:11 +0000580 unsigned int y_dim = get_data_layout_dimension_index(_data_layout, DataLayoutDimension::HEIGHT);
581 NEScheduler::get().schedule(&_im2col_kernel, y_dim);
Jenkinsb3a371b2018-05-23 11:36:53 +0100582 }
Anthony Barbier06ea0482018-02-22 15:45:35 +0000583
Jenkins52ba29e2018-08-29 15:32:11 +0000584 // Runs NEGEMM or NEGEMMLowpMatrixMultiplyCore functions
585 if(_is_quantized)
Anthony Barbier06ea0482018-02-22 15:45:35 +0000586 {
Jenkins52ba29e2018-08-29 15:32:11 +0000587 // Run gemmlowp
588 _mm_gemmlowp.run();
589
590 // Run output stage
591 _gemmlowp_output_stage.run();
Anthony Barbier06ea0482018-02-22 15:45:35 +0000592 }
593 else
594 {
Jenkins52ba29e2018-08-29 15:32:11 +0000595 // Run gemm
596 _mm_gemm.run();
Anthony Barbier06ea0482018-02-22 15:45:35 +0000597 }
598
Jenkinsb3a371b2018-05-23 11:36:53 +0100599 if(_skip_im2col && _append_bias)
600 {
601 NEScheduler::get().schedule(&_add_bias_kernel, Window::DimY);
602 }
603
Anthony Barbier06ea0482018-02-22 15:45:35 +0000604 // Reshape output matrix
Jenkins52ba29e2018-08-29 15:32:11 +0000605 if(!_skip_col2im)
Jenkinsb3a371b2018-05-23 11:36:53 +0100606 {
Jenkins52ba29e2018-08-29 15:32:11 +0000607 if(_data_layout == DataLayout::NCHW)
608 {
609 NEScheduler::get().schedule(&_col2im_kernel, Window::DimY);
610 }
611 else
612 {
613 _reshape_layer.run();
614 }
Jenkinsb3a371b2018-05-23 11:36:53 +0100615 }
616
617 if(_is_activationlayer_enabled)
618 {
619 _activationlayer_function.run();
620 }
Anthony Barbier06ea0482018-02-22 15:45:35 +0000621
622 _memory_group.release();
623}
Jenkins52ba29e2018-08-29 15:32:11 +0000624
625void NEGEMMConvolutionLayer::prepare()
626{
627 if(!_is_prepared)
628 {
629 ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
630
631 // Run weights reshaping and mark original weights tensor as unused
632 _weights_reshaped.allocator()->allocate();
633 _reshape_weights.run();
634 _original_weights->mark_as_unused();
635
636 // Prepare GEMM
637 _is_quantized ? _mm_gemmlowp.prepare() : _mm_gemm.prepare();
638 if(!_weights_reshaped.is_used())
639 {
640 _weights_reshaped.allocator()->free();
641 }
642
643 _is_prepared = true;
644 }
645}