blob: 15cbfcedfba0dbe373a7b0fef1ad9cde64f64abb [file] [log] [blame]
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001/*
Jenkins514be652019-02-28 12:25:18 +00002 * Copyright (c) 2017-2019 ARM Limited.
Anthony Barbier8140e1e2017-12-14 23:48:46 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h"
25
26#include "arm_compute/core/CL/ICLTensor.h"
Jenkinsb3a371b2018-05-23 11:36:53 +010027#include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NCHWKernel.h"
28#include "arm_compute/core/CL/kernels/CLDepthwiseConvolutionLayer3x3NHWCKernel.h"
Jenkins514be652019-02-28 12:25:18 +000029#include "arm_compute/core/Helpers.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000030#include "arm_compute/core/PixelValue.h"
Anthony Barbier06ea0482018-02-22 15:45:35 +000031#include "arm_compute/core/utils/misc/ShapeCalculator.h"
32#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000033#include "arm_compute/runtime/CL/CLScheduler.h"
34#include "support/ToolchainSupport.h"
35
Jenkins514be652019-02-28 12:25:18 +000036namespace arm_compute
37{
Anthony Barbier06ea0482018-02-22 15:45:35 +000038using namespace arm_compute::misc;
39using namespace arm_compute::misc::shape_calculator;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000040
Jenkins514be652019-02-28 12:25:18 +000041CLDepthwiseConvolutionLayer3x3::CLDepthwiseConvolutionLayer3x3(std::shared_ptr<IMemoryManager> memory_manager)
42 : _memory_group(std::move(memory_manager)), _kernel(nullptr), _border_handler(), _permute_input_to_nchw(), _permute_weights_to_nchw(), _permute_output_to_nhwc(), _reshape_weights(), _permuted_input(),
43 _permuted_weights(), _permuted_output(), _original_weights(nullptr), _needs_permute(false), _needs_weights_reshape(false), _is_prepared(false)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000044{
45}
46
Jenkinsb3a371b2018-05-23 11:36:53 +010047void CLDepthwiseConvolutionLayer3x3::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, unsigned int depth_multiplier,
48 ActivationLayerInfo act_info)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000049{
Anthony Barbier06ea0482018-02-22 15:45:35 +000050 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
Anthony Barbier8140e1e2017-12-14 23:48:46 +000051 ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
52
Jenkins514be652019-02-28 12:25:18 +000053 const bool is_nhwc = input->info()->data_layout() == DataLayout::NHWC;
54
55 _needs_permute = is_nhwc && (depth_multiplier > 1);
56 _needs_weights_reshape = is_nhwc && (depth_multiplier == 1)
57 && is_data_type_quantized_asymmetric(input->info()->data_type());
58 _is_prepared = false;
59 _original_weights = weights;
60
61 ICLTensor *input_to_use = input;
62 const ICLTensor *weights_to_use = weights;
63 ICLTensor *output_to_use = output;
64
65 const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
66 const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device());
67 DepthwiseConvolutionReshapeInfo info;
68 info.c0 = 4;
69 info.transpose = is_stride_1 && is_dot8_supported;
70
71 if(_needs_permute)
Jenkinsb3a371b2018-05-23 11:36:53 +010072 {
Jenkins514be652019-02-28 12:25:18 +000073 _memory_group.manage(&_permuted_input);
74 _memory_group.manage(&_permuted_output);
75
76 // Configure the function to transform the input tensor from NHWC -> NCHW
77 _permute_input_to_nchw.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U));
78 _permuted_input.info()->set_data_layout(DataLayout::NCHW);
79
80 // Configure the function to transform the weights tensor from HWI -> IHW
81 _permute_weights_to_nchw.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U));
82 _permuted_weights.info()->set_data_layout(DataLayout::NCHW);
83
84 input_to_use = &_permuted_input;
85 weights_to_use = &_permuted_weights;
86 output_to_use = &_permuted_output;
87
Jenkinsb3a371b2018-05-23 11:36:53 +010088 _kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>();
89 }
Jenkins514be652019-02-28 12:25:18 +000090 else if(is_nhwc)
91 {
92 if(_needs_weights_reshape)
93 {
94 _reshape_weights.configure(weights, &_permuted_weights, info);
95 weights_to_use = &_permuted_weights;
96 }
97 _kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NHWCKernel>();
98 }
Jenkinsb3a371b2018-05-23 11:36:53 +010099 else
100 {
Jenkins514be652019-02-28 12:25:18 +0000101 _kernel = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3NCHWKernel>();
Jenkinsb3a371b2018-05-23 11:36:53 +0100102 }
103
Jenkins514be652019-02-28 12:25:18 +0000104 // Configure kernel
Jenkinsb3a371b2018-05-23 11:36:53 +0100105 _kernel->set_target(CLScheduler::get().target());
Jenkins514be652019-02-28 12:25:18 +0000106 _kernel->configure(input_to_use, weights_to_use, biases, output_to_use, conv_info, depth_multiplier, act_info);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000107
Jenkins514be652019-02-28 12:25:18 +0000108 // Permute output if needed
109 if(_needs_permute)
110 {
111 // Configure the function to transform the convoluted output to ACL's native ordering format NCHW
112 _permuted_output.info()->set_data_layout(DataLayout::NCHW);
113 _permute_output_to_nhwc.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U));
114
115 // Allocate tensors
116 _permuted_input.allocator()->allocate();
117 _permuted_output.allocator()->allocate();
118 }
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000119 // Configure border handler
120 PixelValue &&zero_value(0.f);
121 if(is_data_type_quantized_asymmetric(input->info()->data_type()))
122 {
123 zero_value = PixelValue(static_cast<uint8_t>(input->info()->quantization_info().offset));
124 }
Jenkins514be652019-02-28 12:25:18 +0000125 _border_handler.configure(input_to_use, _kernel->border_size(), BorderMode::CONSTANT, zero_value);
Jenkinsb3a371b2018-05-23 11:36:53 +0100126}
127
128Status CLDepthwiseConvolutionLayer3x3::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
129 unsigned int depth_multiplier,
130 ActivationLayerInfo act_info, GPUTarget gpu_target)
131{
132 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
Jenkins52ba29e2018-08-29 15:32:11 +0000133 ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
Jenkinsb3a371b2018-05-23 11:36:53 +0100134
Jenkins514be652019-02-28 12:25:18 +0000135 const bool is_nhwc = input->data_layout() == DataLayout::NHWC;
136 const bool needs_permute = is_nhwc && (depth_multiplier > 1);
137 const bool needs_weights_reshape = is_nhwc && (depth_multiplier == 1);
138 const bool is_stride_1 = ((conv_info.stride().first == conv_info.stride().second) && (conv_info.stride().first == 1));
139 const bool is_dot8_supported = dot8_supported(CLKernelLibrary::get().get_device());
140 DepthwiseConvolutionReshapeInfo info;
141 info.c0 = 4;
142 info.transpose = is_stride_1 && is_dot8_supported;
143
144 if(needs_permute)
Jenkinsb3a371b2018-05-23 11:36:53 +0100145 {
Jenkins514be652019-02-28 12:25:18 +0000146 TensorShape permuted_input_shape = input->tensor_shape();
147 TensorShape permuted_weights_shape = weights->tensor_shape();
148 TensorShape permuted_output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier);
149
150 permute(permuted_input_shape, PermutationVector(1U, 2U, 0U));
151 permute(permuted_weights_shape, PermutationVector(1U, 2U, 0U));
152 permute(permuted_output_shape, PermutationVector(1U, 2U, 0U));
153
154 const TensorInfo permuted_input = input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_input_shape).set_data_layout(DataLayout::NCHW);
155 const TensorInfo permuted_weights = weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_weights_shape).set_data_layout(DataLayout::NCHW);
156 const TensorInfo permuted_output = output->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_output_shape).set_data_layout(DataLayout::NCHW);
157
158 ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(&permuted_input, &permuted_weights, biases, &permuted_output, conv_info, depth_multiplier, act_info, gpu_target));
159 }
160 else if(is_nhwc)
161 {
162 if(needs_weights_reshape)
163 {
164 auto reshaped_weights_shape = arm_compute::misc::shape_calculator::compute_reshaped_depthwise_weights_shape(*weights, info);
165 ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, &weights->clone()->set_tensor_shape(reshaped_weights_shape), biases, output, conv_info, depth_multiplier,
166 act_info));
167 }
168 ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NHWCKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info));
169 }
170 else
171 {
172 ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayer3x3NCHWKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, gpu_target));
Jenkinsb3a371b2018-05-23 11:36:53 +0100173 }
174
Jenkins514be652019-02-28 12:25:18 +0000175 return Status{};
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000176}
177
178void CLDepthwiseConvolutionLayer3x3::run()
179{
Jenkins514be652019-02-28 12:25:18 +0000180 prepare();
181
182 _memory_group.acquire();
183
184 if(_needs_permute)
185 {
186 _permute_input_to_nchw.run();
187 }
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000188 CLScheduler::get().enqueue(_border_handler);
Jenkinsb3a371b2018-05-23 11:36:53 +0100189 CLScheduler::get().enqueue(*_kernel);
Jenkins514be652019-02-28 12:25:18 +0000190
191 if(_needs_permute)
192 {
193 _permute_output_to_nhwc.run();
194 }
195
196 _memory_group.release();
197}
198
199void CLDepthwiseConvolutionLayer3x3::prepare()
200{
201 if(!_is_prepared)
202 {
203 if(_needs_permute)
204 {
205 ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
206
207 _permuted_weights.allocator()->allocate();
208 _permute_weights_to_nchw.run();
209 _original_weights->mark_as_unused();
210 }
211
212 if(_needs_weights_reshape)
213 {
214 ARM_COMPUTE_ERROR_ON(_needs_permute);
215 ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
216 _permuted_weights.allocator()->allocate();
217 CLScheduler::get().enqueue(_reshape_weights);
218 _original_weights->mark_as_unused();
219 }
220 _is_prepared = true;
221 }
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000222}
223
224CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayer()
Jenkinsb9abeae2018-11-22 11:58:08 +0000225 : _im2col_kernel(), _weights_reshape_kernel(), _v2mm_kernel(), _vector_to_tensor_kernel(), _output_stage_kernel(), _activationlayer_function(), _v2mm_input_fill_border(), _v2mm_weights_fill_border(),
Jenkins514be652019-02-28 12:25:18 +0000226 _input_reshaped(), _weights_reshaped(), _v2mm_output(), _output_reshaped(), _is_prepared(false), _is_quantized(false), _is_activationlayer_enabled(false), _original_weights(nullptr),
227 _optimised_function(nullptr)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000228{
229}
230
Jenkinsb9abeae2018-11-22 11:58:08 +0000231void CLDepthwiseConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info,
232 unsigned int depth_multiplier, const ActivationLayerInfo &act_info)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000233{
Jenkinsb3a371b2018-05-23 11:36:53 +0100234 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000235 ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
Jenkins52ba29e2018-08-29 15:32:11 +0000236 ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000237
Jenkins52ba29e2018-08-29 15:32:11 +0000238 const size_t idx_w = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH);
239 const size_t idx_h = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000240
Jenkins514be652019-02-28 12:25:18 +0000241 const bool can_run_optimised_3x3_kernel = (weights->info()->dimension(idx_w) == 3) && (weights->info()->dimension(idx_h) == 3);
Jenkins52ba29e2018-08-29 15:32:11 +0000242
Jenkins514be652019-02-28 12:25:18 +0000243 if(bool(can_run_optimised_3x3_kernel))
Anthony Barbier06ea0482018-02-22 15:45:35 +0000244 {
Jenkins514be652019-02-28 12:25:18 +0000245 auto f = arm_compute::support::cpp14::make_unique<CLDepthwiseConvolutionLayer3x3>();
246 f->configure(input, weights, biases, output, conv_info, depth_multiplier, act_info);
247 _optimised_function = std::move(f);
Anthony Barbier06ea0482018-02-22 15:45:35 +0000248 }
Jenkins514be652019-02-28 12:25:18 +0000249 else
Anthony Barbier06ea0482018-02-22 15:45:35 +0000250 {
Jenkins514be652019-02-28 12:25:18 +0000251 const size_t idx_c = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::CHANNEL);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000252
Jenkins514be652019-02-28 12:25:18 +0000253 const size_t weights_w = weights->info()->dimension(idx_w);
254 const size_t weights_h = weights->info()->dimension(idx_h);
255 const size_t weights_z = weights->info()->dimension(idx_c);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000256
Jenkins514be652019-02-28 12:25:18 +0000257 _is_prepared = false;
258 _original_weights = weights;
259 _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
Jenkinsb9abeae2018-11-22 11:58:08 +0000260
Jenkins514be652019-02-28 12:25:18 +0000261 bool append_bias = (biases != nullptr) && !_is_quantized;
262 const GPUTarget gpu_target = CLScheduler::get().target();
Jenkinsb9abeae2018-11-22 11:58:08 +0000263
Jenkins514be652019-02-28 12:25:18 +0000264 // Calculate output shape
265 TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier);
266
267 // Output auto inizialitation if not yet initialized
268 auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape));
269 ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape);
270
271 // Output width and height
272 const unsigned int conv_w = output_shape[idx_w];
273 const unsigned int conv_h = output_shape[idx_h];
274
275 // Set up intermediate tensors
276 const size_t patch_size = weights_w * weights_h + ((append_bias) ? 1 : 0);
277 const size_t conv_size = conv_w * conv_h;
278
279 // Im2Col configuration
280 TensorShape shape_im2col = input->info()->tensor_shape();
281 shape_im2col.set(0, patch_size);
282 shape_im2col.set(1, conv_size);
283 shape_im2col.set(2, weights_z);
284 _input_reshaped.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col));
285 _im2col_kernel.set_target(gpu_target);
286 _im2col_kernel.configure(input, &_input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier);
287 CLScheduler::get().tune_kernel_static(_im2col_kernel);
288
289 // Weights reshape configuration
290 const TensorShape shape_weights_reshape(patch_size, weights_z);
291 _weights_reshaped.allocator()->init(weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape));
292 _weights_reshape_kernel.configure(weights, &_weights_reshaped, append_bias ? biases : nullptr);
293
294 // GEMV configuration
295 DataType v2mm_dt = (input->info()->data_type() == DataType::QASYMM8) ? DataType::S32 : input->info()->data_type();
296 TensorShape shape_v2mm_out = input->info()->tensor_shape();
297 shape_v2mm_out.set(0, conv_size * weights_z);
298 shape_v2mm_out.set(1, 1);
299 shape_v2mm_out.set(2, 1);
300 _v2mm_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out));
301 _v2mm_kernel.set_target(gpu_target);
302 _v2mm_kernel.configure(&_input_reshaped, &_weights_reshaped, &_v2mm_output);
303 CLScheduler::get().tune_kernel_static(_v2mm_kernel);
304 _output_reshaped.allocator()->init(_v2mm_output.info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape));
305 _vector_to_tensor_kernel.configure(&_v2mm_output, (_is_quantized) ? &_output_reshaped : output, conv_w, conv_h);
306
307 // Output staged configuration
308 if(_is_quantized)
309 {
310 const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info();
311
312 float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale;
313 int output_multiplier, output_shift;
314 quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
315 _output_stage_kernel.configure(&_output_reshaped, biases, output, output_multiplier, output_shift, output_quant_info.offset);
316 _output_reshaped.allocator()->allocate();
317 }
318
319 // Fill borders on inputs
320 PixelValue zero_in(static_cast<int32_t>(0));
321 PixelValue zero_w(static_cast<int32_t>(0));
322 if(_is_quantized)
323 {
324 zero_in = PixelValue(static_cast<int32_t>(input->info()->quantization_info().offset));
325 zero_w = PixelValue(static_cast<int32_t>(weights->info()->quantization_info().offset));
326 }
327 BorderSize border_size = _v2mm_kernel.border_size();
328 _v2mm_input_fill_border.configure(&_input_reshaped, border_size, BorderMode::CONSTANT, zero_in);
329
330 border_size.bottom = 0;
331 _v2mm_weights_fill_border.configure(&_weights_reshaped, border_size, BorderMode::CONSTANT, zero_w);
332
333 // Allocate intermediate tensors
334 _input_reshaped.allocator()->allocate();
335 _v2mm_output.allocator()->allocate();
336
337 //Configure Activation Layer
338 _is_activationlayer_enabled = act_info.enabled();
339
340 if(_is_activationlayer_enabled)
341 {
342 _activationlayer_function.configure(output, nullptr, act_info);
343 }
Jenkinsb9abeae2018-11-22 11:58:08 +0000344 }
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000345}
346
Jenkinsb3a371b2018-05-23 11:36:53 +0100347Status CLDepthwiseConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
Jenkinsb9abeae2018-11-22 11:58:08 +0000348 unsigned int depth_multiplier, const ActivationLayerInfo &act_info)
Jenkinsb3a371b2018-05-23 11:36:53 +0100349{
Jenkins52ba29e2018-08-29 15:32:11 +0000350 const size_t idx_w = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
351 const size_t idx_h = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
Jenkins52ba29e2018-08-29 15:32:11 +0000352
Jenkins514be652019-02-28 12:25:18 +0000353 const bool can_run_optimised_3x3_kernel = (weights->dimension(idx_w) == 3) && (weights->dimension(idx_h) == 3);
Jenkinsb3a371b2018-05-23 11:36:53 +0100354
Jenkins514be652019-02-28 12:25:18 +0000355 if(can_run_optimised_3x3_kernel)
Jenkinsb3a371b2018-05-23 11:36:53 +0100356 {
Jenkins514be652019-02-28 12:25:18 +0000357 const size_t idx_c = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);
Jenkinsb3a371b2018-05-23 11:36:53 +0100358
Jenkins514be652019-02-28 12:25:18 +0000359 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
360 ARM_COMPUTE_RETURN_ERROR_ON((input->dimension(idx_c) * depth_multiplier) != weights->dimension(idx_c));
361
362 const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
363 const bool append_bias = (biases != nullptr) && !is_quantized;
364 const TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier);
365 const size_t weights_w = weights->dimension(idx_w);
366 const size_t weights_h = weights->dimension(idx_h);
367 const size_t weights_z = weights->dimension(idx_c);
368 const unsigned int conv_w = output_shape[idx_w];
369 const unsigned int conv_h = output_shape[idx_h];
370 const size_t patch_size = weights_w * weights_h + ((append_bias) ? 1 : 0);
371 const size_t conv_size = conv_w * conv_h;
372
373 TensorShape shape_im2col = input->tensor_shape();
374 shape_im2col.set(0, patch_size);
375 shape_im2col.set(1, conv_size);
376 shape_im2col.set(2, weights_z);
377 TensorInfo input_reshaped(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col));
378 ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseIm2ColKernel::validate(input, &input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier));
379
380 const TensorShape shape_weights_reshape(patch_size, weights_z);
381 TensorInfo weights_reshaped(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape));
382 ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseConvolutionLayerReshapeWeightsGenericKernel::validate(weights, &weights_reshaped, append_bias ? biases : nullptr));
383
384 DataType v2mm_dt = (input->data_type() == DataType::QASYMM8) ? DataType::S32 : input->data_type();
385 TensorShape shape_v2mm_out = input->tensor_shape();
386 shape_v2mm_out.set(0, conv_size * weights_z);
387 shape_v2mm_out.set(1, 1);
388 shape_v2mm_out.set(2, 1);
389 TensorInfo v2mm_output(input->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out));
390 ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMMatrixVectorMultiplyKernel::validate(&input_reshaped, &weights_reshaped, &v2mm_output));
391
392 TensorInfo output_reshaped(v2mm_output.clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape));
393 ARM_COMPUTE_RETURN_ON_ERROR(CLDepthwiseVectorToTensorKernel::validate(&v2mm_output, (is_quantized) ? &output_reshaped : output, conv_w, conv_h));
394
395 if(is_quantized)
396 {
397 ARM_COMPUTE_RETURN_ON_ERROR(CLDirectConvolutionLayerOutputStageKernel::validate(&output_reshaped, biases, output));
398 }
399
400 // Validate Activation Layer
401 if(act_info.enabled())
402 {
403 ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output, nullptr, act_info));
404 }
405 }
406 else
Jenkinsb9abeae2018-11-22 11:58:08 +0000407 {
Jenkins514be652019-02-28 12:25:18 +0000408 CLDepthwiseConvolutionLayer3x3::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info);
Jenkinsb9abeae2018-11-22 11:58:08 +0000409 }
Jenkinsb3a371b2018-05-23 11:36:53 +0100410 return Status{};
411}
412
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000413void CLDepthwiseConvolutionLayer::run()
414{
Jenkins52ba29e2018-08-29 15:32:11 +0000415 prepare();
Jenkinsb3a371b2018-05-23 11:36:53 +0100416
Jenkins514be652019-02-28 12:25:18 +0000417 if(_optimised_function != nullptr)
Anthony Barbier06ea0482018-02-22 15:45:35 +0000418 {
Jenkins514be652019-02-28 12:25:18 +0000419 _optimised_function->run();
Anthony Barbier06ea0482018-02-22 15:45:35 +0000420 }
Jenkins514be652019-02-28 12:25:18 +0000421 else
Jenkinsb9abeae2018-11-22 11:58:08 +0000422 {
Jenkins514be652019-02-28 12:25:18 +0000423 CLScheduler::get().enqueue(_im2col_kernel);
424 CLScheduler::get().enqueue(_v2mm_input_fill_border);
425 CLScheduler::get().enqueue(_v2mm_kernel);
426 CLScheduler::get().enqueue(_vector_to_tensor_kernel);
427 if(_is_quantized)
428 {
429 CLScheduler::get().enqueue(_output_stage_kernel);
430 }
431 if(_is_activationlayer_enabled)
432 {
433 _activationlayer_function.run();
434 }
Jenkinsb9abeae2018-11-22 11:58:08 +0000435 }
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000436}
Jenkins52ba29e2018-08-29 15:32:11 +0000437
438void CLDepthwiseConvolutionLayer::prepare()
439{
Jenkins514be652019-02-28 12:25:18 +0000440 if(_optimised_function != nullptr)
Jenkins52ba29e2018-08-29 15:32:11 +0000441 {
Jenkins514be652019-02-28 12:25:18 +0000442 _optimised_function->prepare();
443 }
444 else
445 {
446 if(!_is_prepared)
447 {
448 ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
Jenkins52ba29e2018-08-29 15:32:11 +0000449
Jenkins514be652019-02-28 12:25:18 +0000450 // Run weights reshaping and mark original weights tensor as unused
451 _weights_reshaped.allocator()->allocate();
452 CLScheduler::get().enqueue(_weights_reshape_kernel);
453 CLScheduler::get().enqueue(_v2mm_weights_fill_border);
454 _original_weights->mark_as_unused();
Jenkins52ba29e2018-08-29 15:32:11 +0000455
Jenkins514be652019-02-28 12:25:18 +0000456 CLScheduler::get().queue().finish();
457 _is_prepared = true;
458 }
Jenkins52ba29e2018-08-29 15:32:11 +0000459 }
460}
Jenkins514be652019-02-28 12:25:18 +0000461} // namespace arm_compute