blob: 6cdb9de03a31efd72501177b415cb08ac8fe4af9 [file] [log] [blame]
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001/*
Anthony Barbier06ea0482018-02-22 15:45:35 +00002 * Copyright (c) 2017-2018 ARM Limited.
Anthony Barbier8140e1e2017-12-14 23:48:46 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Jenkinsb3a371b2018-05-23 11:36:53 +010024#include "arm_compute/graph.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000025#include "support/ToolchainSupport.h"
Jenkins52ba29e2018-08-29 15:32:11 +000026#include "utils/CommonGraphOptions.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000027#include "utils/GraphUtils.h"
28#include "utils/Utils.h"
29
Anthony Barbierf45d5a92018-01-24 16:23:15 +000030using namespace arm_compute::utils;
Jenkinsb3a371b2018-05-23 11:36:53 +010031using namespace arm_compute::graph::frontend;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000032using namespace arm_compute::graph_utils;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000033
Anthony Barbier8140e1e2017-12-14 23:48:46 +000034/** Example demonstrating how to implement Squeezenet's network using the Compute Library's graph API
35 *
36 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +000037 * @param[in] argv Arguments
Anthony Barbier8140e1e2017-12-14 23:48:46 +000038 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +000039class GraphSqueezenetExample : public Example
Anthony Barbier8140e1e2017-12-14 23:48:46 +000040{
Anthony Barbierf45d5a92018-01-24 16:23:15 +000041public:
Jenkins52ba29e2018-08-29 15:32:11 +000042 GraphSqueezenetExample()
43 : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "SqueezeNetV1")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000044 {
Jenkins52ba29e2018-08-29 15:32:11 +000045 }
46 bool do_setup(int argc, char **argv) override
47 {
48 // Parse arguments
49 cmd_parser.parse(argc, argv);
50
51 // Consume common parameters
52 common_params = consume_common_graph_parameters(common_opts);
53
54 // Return when help menu is requested
55 if(common_params.help)
56 {
57 cmd_parser.print_help(argv[0]);
58 return false;
59 }
60
61 // Checks
62 ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
63 ARM_COMPUTE_EXIT_ON_MSG(common_params.data_type == DataType::F16 && common_params.target == Target::NEON, "F16 NEON not supported for this graph");
64
65 // Print parameter values
66 std::cout << common_params << std::endl;
67
68 // Get trainable parameters data path
69 std::string data_path = common_params.data_path;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000070
Anthony Barbier06ea0482018-02-22 15:45:35 +000071 // Create a preprocessor object
72 const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
73 std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
Anthony Barbier8140e1e2017-12-14 23:48:46 +000074
Jenkins52ba29e2018-08-29 15:32:11 +000075 // Create input descriptor
76 const TensorShape tensor_shape = permute_shape(TensorShape(224U, 224U, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
77 TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
Anthony Barbier8140e1e2017-12-14 23:48:46 +000078
Jenkins52ba29e2018-08-29 15:32:11 +000079 // Set weights trained layout
80 const DataLayout weights_layout = DataLayout::NCHW;
Anthony Barbierf45d5a92018-01-24 16:23:15 +000081
Jenkins52ba29e2018-08-29 15:32:11 +000082 graph << common_params.target
83 << common_params.fast_math_hint
84 << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +000085 << ConvolutionLayer(
86 7U, 7U, 96U,
Jenkins52ba29e2018-08-29 15:32:11 +000087 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000088 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv1_b.npy"),
89 PadStrideInfo(2, 2, 0, 0))
Anthony Barbierf45d5a92018-01-24 16:23:15 +000090 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
91 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)))
92 << ConvolutionLayer(
93 1U, 1U, 16U,
Jenkins52ba29e2018-08-29 15:32:11 +000094 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire2_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000095 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire2_squeeze1x1_b.npy"),
96 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +010097 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +000098 graph << get_expand_fire_node(data_path, "fire2", weights_layout, 64U, 64U);
Jenkinsb3a371b2018-05-23 11:36:53 +010099 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000100 1U, 1U, 16U,
Jenkins52ba29e2018-08-29 15:32:11 +0000101 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire3_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000102 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire3_squeeze1x1_b.npy"),
103 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +0100104 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +0000105 graph << get_expand_fire_node(data_path, "fire3", weights_layout, 64U, 64U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100106 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000107 1U, 1U, 32U,
Jenkins52ba29e2018-08-29 15:32:11 +0000108 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire4_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000109 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire4_squeeze1x1_b.npy"),
110 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +0100111 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +0000112 graph << get_expand_fire_node(data_path, "fire4", weights_layout, 128U, 128U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100113 graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000114 << ConvolutionLayer(
115 1U, 1U, 32U,
Jenkins52ba29e2018-08-29 15:32:11 +0000116 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire5_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000117 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire5_squeeze1x1_b.npy"),
118 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +0100119 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +0000120 graph << get_expand_fire_node(data_path, "fire5", weights_layout, 128U, 128U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100121 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000122 1U, 1U, 48U,
Jenkins52ba29e2018-08-29 15:32:11 +0000123 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire6_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000124 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire6_squeeze1x1_b.npy"),
125 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +0100126 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +0000127 graph << get_expand_fire_node(data_path, "fire6", weights_layout, 192U, 192U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100128 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000129 1U, 1U, 48U,
Jenkins52ba29e2018-08-29 15:32:11 +0000130 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire7_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000131 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire7_squeeze1x1_b.npy"),
132 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +0100133 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +0000134 graph << get_expand_fire_node(data_path, "fire7", weights_layout, 192U, 192U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100135 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000136 1U, 1U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +0000137 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire8_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000138 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire8_squeeze1x1_b.npy"),
139 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +0100140 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +0000141 graph << get_expand_fire_node(data_path, "fire8", weights_layout, 256U, 256U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100142 graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000143 << ConvolutionLayer(
144 1U, 1U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +0000145 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire9_squeeze1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000146 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/fire9_squeeze1x1_b.npy"),
147 PadStrideInfo(1, 1, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +0100148 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Jenkins52ba29e2018-08-29 15:32:11 +0000149 graph << get_expand_fire_node(data_path, "fire9", weights_layout, 256U, 256U);
Jenkinsb3a371b2018-05-23 11:36:53 +0100150 graph << ConvolutionLayer(
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000151 1U, 1U, 1000U,
Jenkins52ba29e2018-08-29 15:32:11 +0000152 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv10_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000153 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1.0_model/conv10_b.npy"),
154 PadStrideInfo(1, 1, 0, 0))
155 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
156 << PoolingLayer(PoolingLayerInfo(PoolingType::AVG))
157 << FlattenLayer()
158 << SoftmaxLayer()
Jenkins52ba29e2018-08-29 15:32:11 +0000159 << OutputLayer(get_output_accessor(common_params, 5));
Anthony Barbier06ea0482018-02-22 15:45:35 +0000160
Jenkinsb3a371b2018-05-23 11:36:53 +0100161 // Finalize graph
162 GraphConfig config;
Jenkins52ba29e2018-08-29 15:32:11 +0000163 config.num_threads = common_params.threads;
164 config.use_tuner = common_params.enable_tuner;
165 config.tuner_file = common_params.tuner_file;
166
167 graph.finalize(common_params.target, config);
168
169 return true;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000170 }
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000171 void do_run() override
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000172 {
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000173 // Run graph
174 graph.run();
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000175 }
176
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000177private:
Jenkins52ba29e2018-08-29 15:32:11 +0000178 CommandLineParser cmd_parser;
179 CommonGraphOptions common_opts;
180 CommonGraphParams common_params;
181 Stream graph;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000182
Jenkins52ba29e2018-08-29 15:32:11 +0000183 BranchLayer get_expand_fire_node(const std::string &data_path, std::string &&param_path, DataLayout weights_layout,
184 unsigned int expand1_filt, unsigned int expand3_filt)
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000185 {
186 std::string total_path = "/cnn_data/squeezenet_v1.0_model/" + param_path + "_";
Jenkinsb3a371b2018-05-23 11:36:53 +0100187 SubStream i_a(graph);
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000188 i_a << ConvolutionLayer(
189 1U, 1U, expand1_filt,
Jenkins52ba29e2018-08-29 15:32:11 +0000190 get_weights_accessor(data_path, total_path + "expand1x1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000191 get_weights_accessor(data_path, total_path + "expand1x1_b.npy"),
192 PadStrideInfo(1, 1, 0, 0))
193 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000194
Jenkinsb3a371b2018-05-23 11:36:53 +0100195 SubStream i_b(graph);
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000196 i_b << ConvolutionLayer(
197 3U, 3U, expand3_filt,
Jenkins52ba29e2018-08-29 15:32:11 +0000198 get_weights_accessor(data_path, total_path + "expand3x3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000199 get_weights_accessor(data_path, total_path + "expand3x3_b.npy"),
200 PadStrideInfo(1, 1, 1, 1))
201 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
202
203 return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b));
204 }
205};
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000206
207/** Main program for Squeezenet v1.0
208 *
Jenkins52ba29e2018-08-29 15:32:11 +0000209 * @note To list all the possible arguments execute the binary appended with the --help option
210 *
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000211 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +0000212 * @param[in] argv Arguments
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000213 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000214int main(int argc, char **argv)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000215{
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000216 return arm_compute::utils::run_example<GraphSqueezenetExample>(argc, argv);
217}