blob: c58af362ef5f0d6c7a802a204dc179f17e027736 [file] [log] [blame]
Anthony Barbier06ea0482018-02-22 15:45:35 +00001/*
2 * Copyright (c) 2017-2018 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/CL/functions/CLGEMMConvolutionLayer.h"
25
26#include "arm_compute/core/PixelValue.h"
27#include "arm_compute/core/Size2D.h"
28#include "arm_compute/core/Utils.h"
29#include "arm_compute/core/Validate.h"
30#include "arm_compute/core/utils/misc/ShapeCalculator.h"
31#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
32#include "arm_compute/runtime/CL/CLScheduler.h"
33
34#include <cmath>
35#include <memory>
36#include <tuple>
37
38using namespace arm_compute;
39using namespace arm_compute::misc::shape_calculator;
40
41CLConvolutionLayerReshapeWeights::CLConvolutionLayerReshapeWeights(std::shared_ptr<IMemoryManager> memory_manager)
42 : _memory_group(std::move(memory_manager)), _weights_reshape_kernel(), _weights_transposed_kernel(), _weights_reshaped()
43{
44}
45
46void CLConvolutionLayerReshapeWeights::configure(const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output)
47{
48 // Perform validation step
49 ARM_COMPUTE_ERROR_ON_NULLPTR(weights, output);
50 ARM_COMPUTE_ERROR_THROW_ON(CLConvolutionLayerReshapeWeights::validate(weights->info(),
51 (biases != nullptr) ? biases->info() : nullptr,
52 output->info()));
53
54 const bool append_biases = (biases != nullptr) && !is_data_type_quantized_asymmetric(weights->info()->data_type());
55 const ICLTensor *biases_to_use = (append_biases) ? biases : nullptr;
56
57 _weights_reshape_kernel.configure(weights, biases_to_use, output);
58
59 output->info()->set_quantization_info(weights->info()->quantization_info());
60}
61
62Status CLConvolutionLayerReshapeWeights::validate(const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output)
63{
64 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(weights);
65 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32);
66 ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
67
68 if(biases != nullptr)
69 {
70 ARM_COMPUTE_RETURN_ERROR_ON(is_data_type_quantized_asymmetric(weights->data_type()));
71 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
72 ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(3));
73 ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
74 }
75
76 if((output != nullptr) && (output->total_size() != 0))
77 {
78 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output);
79 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(weights, output);
80
81 CLWeightsReshapeKernel::validate(weights, biases, output);
82 }
83
84 return Status{};
85}
86
87void CLConvolutionLayerReshapeWeights::run()
88{
89 _memory_group.acquire();
90
91 CLScheduler::get().enqueue(_weights_reshape_kernel);
92
93 _memory_group.release();
94}
95
96CLGEMMConvolutionLayer::CLGEMMConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
97 : _memory_group(memory_manager), _reshape_weights(), _im2col_kernel(), _mm_gemm(memory_manager), _mm_gemmlowp(memory_manager), _gemmlowp_output_stage(), _col2im_kernel(), _im2col_output(),
98 _interleave_output(), _weights_reshaped(), _weights_transposed(), _gemm_output(), _tmp_output(), _is_quantized(false), _is_first_run(true)
99{
100}
101
102void CLGEMMConvolutionLayer::configure_mm(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output)
103{
104 ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights);
105 ARM_COMPUTE_ERROR_THROW_ON(validate_mm(input->info(), weights->info(), output->info()));
106
107 if(_is_quantized)
108 {
109 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
110 // Extract and negate input and weights offset
111 const QuantizationInfo input_quantization_info = input->info()->quantization_info();
112 const QuantizationInfo weights_quantization_info = weights->info()->quantization_info();
113
114 input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset));
115 weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
116
117 _mm_gemmlowp.configure(input, weights, output, GEMMInfo(false, false, true /* Reshape weights only for the first run*/));
118
119 // Revert back QuantizatioInfo as input and weights could be used in other convolution layers
120 input->info()->set_quantization_info(input_quantization_info);
121 weights->info()->set_quantization_info(weights_quantization_info);
122 }
123 else
124 {
125 // Configure matrix multiply function
126 _mm_gemm.configure(input, weights, nullptr, output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/));
127 }
128}
129
130Status CLGEMMConvolutionLayer::validate_mm(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *output)
131{
132 const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
133
134 const GEMMInfo &gemm_info = GEMMInfo(false, false, true /* Reshape weights only for the first run */);
135 if(is_quantized)
136 {
137 // Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
138 // Extract and negate input and weights offset
139 const QuantizationInfo input_quantization_info = input->quantization_info();
140 const QuantizationInfo weights_quantization_info = weights->quantization_info();
141
142 std::unique_ptr<ITensorInfo> input_qa = input->clone();
143 std::unique_ptr<ITensorInfo> weights_qa = weights->clone();
144 input_qa->set_quantization_info(QuantizationInfo(input_quantization_info.scale, -input_quantization_info.offset));
145 weights_qa->set_quantization_info(QuantizationInfo(weights_quantization_info.scale, -weights_quantization_info.offset));
146
147 // Perform validation step on GEMMLowp
148 CLGEMMLowpMatrixMultiplyCore::validate(input_qa.get(), weights_qa.get(), output, gemm_info);
149 }
150 else
151 {
152 // Perform validation step on Matrix multiply function
153 CLGEMM::validate(input, weights, nullptr, output, 1.0f, 0.0f, gemm_info);
154 }
155 return Status{};
156}
157
158void CLGEMMConvolutionLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info)
159{
160 ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
161
162 ARM_COMPUTE_ERROR_THROW_ON(CLGEMMConvolutionLayer::validate(input->info(),
163 weights->info(),
164 biases != nullptr ? biases->info() : nullptr,
165 output->info(),
166 conv_info,
167 weights_info));
168
169 _is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
170
171 const DataType dt = input->info()->data_type();
172
173 // Set the GPU target for im2col and col2im
174 _im2col_kernel.set_target(CLScheduler::get().target());
175 _col2im_kernel.set_target(CLScheduler::get().target());
176
177 const bool append_bias = (biases != nullptr) && (!_is_quantized);
178
179 const unsigned bias_element = (append_bias) ? 1 : 0;
180 const ICLTensor *biases_to_use = (append_bias) ? biases : nullptr;
181
182 // Get parameters from conv_info
183 unsigned int stride_x = 0;
184 unsigned int stride_y = 0;
185 std::tie(stride_x, stride_y) = conv_info.stride();
186
187 // Get convolved dimensions
188 unsigned int conv_w = 0;
189 unsigned int conv_h = 0;
190
191 const unsigned int kernel_width = weights->info()->dimension(0);
192 const unsigned int kernel_height = weights->info()->dimension(1);
193 std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), kernel_width, kernel_height,
194 conv_info);
195
196 unsigned int mat_weights_cols = weights->info()->dimension(3);
197 unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + bias_element;
198
199 // _weights_reshaped will be auto configured in the kernel.
200 // Just append biases and do not transpose 1xW as it will be reshaped in CLGEMM
201 _reshape_weights.configure(weights, biases_to_use, &_weights_reshaped);
202
203 weights = &_weights_reshaped;
204
205 // Create tensor to store im2col reshaped inputs
206 const unsigned int mat_input_cols = mat_weights_rows;
207 const unsigned int mat_input_rows = conv_w * conv_h;
208 TensorShape shape_im2col = input->info()->tensor_shape();
209 shape_im2col.set(0, mat_input_cols);
210 shape_im2col.set(1, mat_input_rows);
211 shape_im2col.set(2, 1);
212 TensorInfo im2col_reshaped_info(shape_im2col, 1, dt, input->info()->fixed_point_position());
213 im2col_reshaped_info.set_quantization_info(input->info()->quantization_info());
214 _im2col_output.allocator()->init(im2col_reshaped_info);
215 _memory_group.manage(&_im2col_output);
216
217 // Create GEMM output tensor
218 TensorShape shape_gemm = _im2col_output.info()->tensor_shape();
219 shape_gemm.set(0, mat_weights_cols);
220 shape_gemm.set(1, mat_input_rows);
221 const DataType gemm_data_type = _is_quantized ? DataType::S32 : dt;
222 // GEMM output should be S32 for acquiring raw integer accumulator without quantized postprocessing for quantized asymmetric input.
223 TensorInfo info_gemm(shape_gemm, 1, gemm_data_type, input->info()->fixed_point_position());
224 info_gemm.set_quantization_info(output->info()->quantization_info());
225 _gemm_output.allocator()->init(info_gemm);
226 _memory_group.manage(&_gemm_output);
227
228 // Configure im2col
229 _im2col_kernel.configure(input, &_im2col_output, Size2D(kernel_width, kernel_height), conv_info, append_bias);
230
231 // Configure GEMM
232 configure_mm(&_im2col_output, weights, &_gemm_output);
233
234 _im2col_output.allocator()->allocate();
235
236 // Configure output stage for quantized case
237 if(_is_quantized)
238 {
239 const QuantizationInfo output_quant_info = (output->info()->total_size() == 0) ? input->info()->quantization_info() : output->info()->quantization_info();
240
241 float multiplier = input->info()->quantization_info().scale * weights->info()->quantization_info().scale / output_quant_info.scale;
242 int output_multiplier, output_shift;
243 quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
244 _memory_group.manage(&_tmp_output);
245 _gemmlowp_output_stage.configure(&_gemm_output, biases, &_tmp_output, output_multiplier, output_shift, output_quant_info.offset);
246 }
247
248 // Configure Col2Im
249 _col2im_kernel.configure(_is_quantized ? &_tmp_output : &_gemm_output, output, std::make_pair(conv_w, conv_h));
250 if(_is_quantized)
251 {
252 _tmp_output.allocator()->allocate();
253 }
254 _gemm_output.allocator()->allocate();
255
256 ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(0) != conv_w) || (output->info()->dimension(1) != conv_h), "Output shape does not match the expected one");
257
258 // Allocate intermediate tensor
259 _weights_reshaped.allocator()->allocate();
260
261 ARM_COMPUTE_UNUSED(weights_info);
262}
263
264Status CLGEMMConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
265 const WeightsInfo &weights_info)
266{
267 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
268 ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights_info.are_reshaped(), "Weights already reshaped are not supported!");
269 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QASYMM8, DataType::QS16, DataType::F16, DataType::F32);
270 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
271 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, weights);
272 ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(2) != input->dimension(2));
273 ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 4);
274
275 const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
276 const bool append_bias = (biases != nullptr) && (!is_quantized);
277 const unsigned bias_element = (append_bias) ? 1 : 0;
278 const DataType dt = input->data_type();
279
280 // Get convolved dimensions
281 unsigned int conv_w = 0;
282 unsigned int conv_h = 0;
283
284 const unsigned int kernel_width = weights->dimension(0);
285 const unsigned int kernel_height = weights->dimension(1);
286
287 std::tie(conv_w, conv_h) = scaled_dimensions(input->dimension(0), input->dimension(1), kernel_width, kernel_height, conv_info);
288
289 unsigned int mat_weights_cols = weights->dimension(3);
290 unsigned int mat_weights_rows = weights->dimension(0) * weights->dimension(1) * weights->dimension(2) + bias_element;
291
292 CLConvolutionLayerReshapeWeights::validate(weights, biases, nullptr);
293
294 // Create tensor info for im2col reshaped inputs
295 const unsigned int mat_input_cols = mat_weights_rows;
296 const unsigned int mat_input_rows = conv_w * conv_h;
297 TensorShape shape_im2col = input->tensor_shape();
298 shape_im2col.set(0, mat_input_cols);
299 shape_im2col.set(1, mat_input_rows);
300 shape_im2col.set(2, 1);
301 TensorInfo im2col_reshaped_info(shape_im2col, 1, dt, input->fixed_point_position());
302 im2col_reshaped_info.set_quantization_info(input->quantization_info());
303 CLIm2ColKernel::validate(input, &im2col_reshaped_info, Size2D(kernel_width, kernel_height), conv_info, append_bias);
304
305 // Create GEMM output tensor
306 TensorShape shape_gemm = im2col_reshaped_info.tensor_shape();
307 shape_gemm.set(0, mat_weights_cols);
308 shape_gemm.set(1, mat_input_rows);
309 const DataType gemm_data_type = is_quantized ? DataType::S32 : dt;
310 // GEMM output should be S32 for acquiring raw integer accumulator without quantized postprocessing for quantized asymmetric input.
311 TensorInfo info_gemm(shape_gemm, 1, gemm_data_type, input->fixed_point_position());
312 info_gemm.set_quantization_info(output->quantization_info());
313
314 validate_mm(&im2col_reshaped_info, weights, &info_gemm);
315
316 TensorInfo tmp_info(input->tensor_shape(), 1, DataType::QASYMM8, input->fixed_point_position());
317 if(is_quantized)
318 {
319 float multiplier = input->quantization_info().scale * weights->quantization_info().scale / output->quantization_info().scale;
320 int output_multiplier, output_shift;
321 quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
322 // Validate output stage for quantized case
323 CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::validate(&info_gemm, biases, &tmp_info, output->quantization_info().offset);
324 }
325
326 // Validate Col2Im
327 CLCol2ImKernel::validate(is_quantized ? &tmp_info : &info_gemm, output, std::make_pair(conv_w, conv_h));
328
329 if(biases != nullptr)
330 {
331 if(is_quantized)
332 {
333 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::S32);
334 }
335 else
336 {
337 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
338 }
339 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_FIXED_POINT(input, biases);
340 ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(3));
341 ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
342 }
343
344 return Status{};
345}
346
347void CLGEMMConvolutionLayer::run()
348{
349 // Run weights reshaping (Runs once for every configure)
350 if(_is_first_run)
351 {
352 _reshape_weights.run();
353
354 _is_first_run = false;
355 }
356
357 _memory_group.acquire();
358
359 // Run im2col
360 CLScheduler::get().enqueue(_im2col_kernel);
361
362 // Runs CLGEMM or CLGEMMLowpMatrixMultiplyCore functions
363 if(_is_quantized)
364 {
365 // Run gemmlowp
366 _mm_gemmlowp.run();
367
368 // Run output stage
369 _gemmlowp_output_stage.run();
370 }
371 else
372 {
373 // Run gemm
374 _mm_gemm.run();
375 }
376
377 // Reshape output matrix
378 CLScheduler::get().enqueue(_col2im_kernel, false);
379
380 _memory_group.release();
381}