blob: 8e91928c43707a8fdf2053cd519f128c93251147 [file] [log] [blame]
Anthony Barbierdbdab852017-06-23 15:42:00 +01001<!-- HTML header for doxygen 1.8.9.1-->
2<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3<html xmlns="http://www.w3.org/1999/xhtml">
4<head>
5<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
6<meta http-equiv="X-UA-Compatible" content="IE=9"/>
Anthony Barbier8140e1e2017-12-14 23:48:46 +00007<meta name="generator" content="Doxygen 1.8.11"/>
Anthony Barbierdbdab852017-06-23 15:42:00 +01008<meta name="robots" content="NOINDEX, NOFOLLOW" /> <!-- Prevent indexing by search engines -->
9<title>Compute Library: examples/neon_cnn.cpp File Reference</title>
10<link href="tabs.css" rel="stylesheet" type="text/css"/>
11<script type="text/javascript" src="jquery.js"></script>
12<script type="text/javascript" src="dynsections.js"></script>
13<link href="navtree.css" rel="stylesheet" type="text/css"/>
14<script type="text/javascript" src="resize.js"></script>
Anthony Barbier8140e1e2017-12-14 23:48:46 +000015<script type="text/javascript" src="navtreedata.js"></script>
Anthony Barbierdbdab852017-06-23 15:42:00 +010016<script type="text/javascript" src="navtree.js"></script>
17<script type="text/javascript">
18 $(document).ready(initResizable);
19 $(window).load(resizeHeight);
20</script>
21<link href="search/search.css" rel="stylesheet" type="text/css"/>
Anthony Barbier8140e1e2017-12-14 23:48:46 +000022<script type="text/javascript" src="search/searchdata.js"></script>
Anthony Barbierdbdab852017-06-23 15:42:00 +010023<script type="text/javascript" src="search/search.js"></script>
24<script type="text/javascript">
Anthony Barbier8140e1e2017-12-14 23:48:46 +000025 $(document).ready(function() { init_search(); });
Anthony Barbierdbdab852017-06-23 15:42:00 +010026</script>
27<script type="text/x-mathjax-config">
28 MathJax.Hub.Config({
29 extensions: ["tex2jax.js"],
30 jax: ["input/TeX","output/HTML-CSS"],
31});
Anthony Barbier8140e1e2017-12-14 23:48:46 +000032</script><script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js"></script>
Anthony Barbierdbdab852017-06-23 15:42:00 +010033<link href="doxygen.css" rel="stylesheet" type="text/css" />
34</head>
35<body>
36<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
37<div id="titlearea">
38<table cellspacing="0" cellpadding="0">
39 <tbody>
40 <tr style="height: 56px;">
41 <td style="padding-left: 0.5em;">
42 <div id="projectname">Compute Library
Anthony Barbier8140e1e2017-12-14 23:48:46 +000043 &#160;<span id="projectnumber">17.12</span>
Anthony Barbierdbdab852017-06-23 15:42:00 +010044 </div>
45 </td>
46 </tr>
47 </tbody>
48</table>
49</div>
50<!-- end header part -->
Anthony Barbier8140e1e2017-12-14 23:48:46 +000051<!-- Generated by Doxygen 1.8.11 -->
Anthony Barbierdbdab852017-06-23 15:42:00 +010052<script type="text/javascript">
53var searchBox = new SearchBox("searchBox", "search",false,'Search');
54</script>
55 <div id="navrow1" class="tabs">
56 <ul class="tablist">
57 <li><a href="index.xhtml"><span>Main&#160;Page</span></a></li>
58 <li><a href="pages.xhtml"><span>Related&#160;Pages</span></a></li>
59 <li><a href="namespaces.xhtml"><span>Namespaces</span></a></li>
60 <li><a href="annotated.xhtml"><span>Data&#160;Structures</span></a></li>
61 <li class="current"><a href="files.xhtml"><span>Files</span></a></li>
62 <li>
63 <div id="MSearchBox" class="MSearchBoxInactive">
64 <span class="left">
65 <img id="MSearchSelect" src="search/mag_sel.png"
66 onmouseover="return searchBox.OnSearchSelectShow()"
67 onmouseout="return searchBox.OnSearchSelectHide()"
68 alt=""/>
69 <input type="text" id="MSearchField" value="Search" accesskey="S"
70 onfocus="searchBox.OnSearchFieldFocus(true)"
71 onblur="searchBox.OnSearchFieldFocus(false)"
72 onkeyup="searchBox.OnSearchFieldChange(event)"/>
73 </span><span class="right">
74 <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
75 </span>
76 </div>
77 </li>
78 </ul>
79 </div>
80 <div id="navrow2" class="tabs2">
81 <ul class="tablist">
82 <li><a href="files.xhtml"><span>File&#160;List</span></a></li>
83 <li><a href="globals.xhtml"><span>Globals</span></a></li>
84 </ul>
85 </div>
86</div><!-- top -->
87<div id="side-nav" class="ui-resizable side-nav-resizable">
88 <div id="nav-tree">
89 <div id="nav-tree-contents">
90 <div id="nav-sync" class="sync"></div>
91 </div>
92 </div>
93 <div id="splitbar" style="-moz-user-select:none;"
94 class="ui-resizable-handle">
95 </div>
96</div>
97<script type="text/javascript">
98$(document).ready(function(){initNavTree('neon__cnn_8cpp.xhtml','');});
99</script>
100<div id="doc-content">
101<!-- window showing the filter options -->
102<div id="MSearchSelectWindow"
103 onmouseover="return searchBox.OnSearchSelectShow()"
104 onmouseout="return searchBox.OnSearchSelectHide()"
105 onkeydown="return searchBox.OnSearchSelectKey(event)">
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000106</div>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100107
108<!-- iframe showing the search results (closed by default) -->
109<div id="MSearchResultsWindow">
110<iframe src="javascript:void(0)" frameborder="0"
111 name="MSearchResults" id="MSearchResults">
112</iframe>
113</div>
114
115<div class="header">
116 <div class="summary">
117<a href="#func-members">Functions</a> </div>
118 <div class="headertitle">
119<div class="title">neon_cnn.cpp File Reference</div> </div>
120</div><!--header-->
121<div class="contents">
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000122<div class="textblock"><code>#include &quot;<a class="el" href="_n_e_functions_8h_source.xhtml">arm_compute/runtime/NEON/NEFunctions.h</a>&quot;</code><br />
123<code>#include &quot;<a class="el" href="arm__compute_2core_2_types_8h_source.xhtml">arm_compute/core/Types.h</a>&quot;</code><br />
124<code>#include &quot;<a class="el" href="_allocator_8h_source.xhtml">arm_compute/runtime/Allocator.h</a>&quot;</code><br />
125<code>#include &quot;<a class="el" href="_blob_lifetime_manager_8h_source.xhtml">arm_compute/runtime/BlobLifetimeManager.h</a>&quot;</code><br />
126<code>#include &quot;<a class="el" href="_memory_manager_on_demand_8h_source.xhtml">arm_compute/runtime/MemoryManagerOnDemand.h</a>&quot;</code><br />
127<code>#include &quot;<a class="el" href="_pool_manager_8h_source.xhtml">arm_compute/runtime/PoolManager.h</a>&quot;</code><br />
128<code>#include &quot;<a class="el" href="utils_2_utils_8h_source.xhtml">utils/Utils.h</a>&quot;</code><br />
Anthony Barbierdbdab852017-06-23 15:42:00 +0100129</div>
130<p><a href="neon__cnn_8cpp_source.xhtml">Go to the source code of this file.</a></p>
131<table class="memberdecls">
132<tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="func-members"></a>
133Functions</h2></td></tr>
134<tr class="memitem:a7616847a3120a787be556c0bb30f43b4"><td class="memItemLeft" align="right" valign="top">void&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="neon__cnn_8cpp.xhtml#a7616847a3120a787be556c0bb30f43b4">main_cnn</a> (int argc, const char **argv)</td></tr>
135<tr class="separator:a7616847a3120a787be556c0bb30f43b4"><td class="memSeparator" colspan="2">&#160;</td></tr>
136<tr class="memitem:a217dbf8b442f20279ea00b898af96f52"><td class="memItemLeft" align="right" valign="top">int&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="neon__cnn_8cpp.xhtml#a217dbf8b442f20279ea00b898af96f52">main</a> (int argc, const char **argv)</td></tr>
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000137<tr class="memdesc:a217dbf8b442f20279ea00b898af96f52"><td class="mdescLeft">&#160;</td><td class="mdescRight">Main program for cnn test. <a href="#a217dbf8b442f20279ea00b898af96f52">More...</a><br /></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100138<tr class="separator:a217dbf8b442f20279ea00b898af96f52"><td class="memSeparator" colspan="2">&#160;</td></tr>
139</table>
140<h2 class="groupheader">Function Documentation</h2>
141<a class="anchor" id="a217dbf8b442f20279ea00b898af96f52"></a>
142<div class="memitem">
143<div class="memproto">
144 <table class="memname">
145 <tr>
146 <td class="memname">int main </td>
147 <td>(</td>
148 <td class="paramtype">int&#160;</td>
149 <td class="paramname"><em>argc</em>, </td>
150 </tr>
151 <tr>
152 <td class="paramkey"></td>
153 <td></td>
154 <td class="paramtype">const char **&#160;</td>
155 <td class="paramname"><em>argv</em>&#160;</td>
156 </tr>
157 <tr>
158 <td></td>
159 <td>)</td>
160 <td></td><td></td>
161 </tr>
162 </table>
163</div><div class="memdoc">
164
165<p>Main program for cnn test. </p>
166<p>The example implements the following CNN architecture:</p>
167<p>Input -&gt; conv0:5x5 -&gt; act0:relu -&gt; pool:2x2 -&gt; conv1:3x3 -&gt; act1:relu -&gt; pool:2x2 -&gt; fc0 -&gt; act2:relu -&gt; softmax</p>
168<dl class="params"><dt>Parameters</dt><dd>
169 <table class="params">
170 <tr><td class="paramdir">[in]</td><td class="paramname">argc</td><td>Number of arguments </td></tr>
171 <tr><td class="paramdir">[in]</td><td class="paramname">argv</td><td>Arguments </td></tr>
172 </table>
173 </dd>
174</dl>
175
Kaizenbf8b01d2017-10-12 14:26:51 +0100176<p>Definition at line <a class="el" href="neon__cnn_8cpp_source.xhtml#l00294">294</a> of file <a class="el" href="neon__cnn_8cpp_source.xhtml">neon_cnn.cpp</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100177
Kaizenbf8b01d2017-10-12 14:26:51 +0100178<p>References <a class="el" href="neon__cnn_8cpp_source.xhtml#l00036">main_cnn()</a>, and <a class="el" href="utils_2_utils_8cpp_source.xhtml#l00069">arm_compute::utils::run_example()</a>.</p>
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000179<div class="fragment"><div class="line"><a name="l00295"></a><span class="lineno"> 295</span>&#160;{</div><div class="line"><a name="l00296"></a><span class="lineno"> 296</span>&#160; <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1utils.xhtml#a4c9395db2c8b8d0c336656a7b58fca3e">utils::run_example</a>(argc, argv, <a class="code" href="neon__cnn_8cpp.xhtml#a7616847a3120a787be556c0bb30f43b4">main_cnn</a>);</div><div class="line"><a name="l00297"></a><span class="lineno"> 297</span>&#160;}<div class="ttc" id="namespacearm__compute_1_1utils_xhtml_a4c9395db2c8b8d0c336656a7b58fca3e"><div class="ttname"><a href="namespacearm__compute_1_1utils.xhtml#a4c9395db2c8b8d0c336656a7b58fca3e">arm_compute::utils::run_example</a></div><div class="ttdeci">int run_example(int argc, const char **argv, example &amp;func)</div><div class="ttdoc">Run an example and handle the potential exceptions it throws. </div><div class="ttdef"><b>Definition:</b> <a href="utils_2_utils_8cpp_source.xhtml#l00069">Utils.cpp:69</a></div></div>
Kaizenbf8b01d2017-10-12 14:26:51 +0100180<div class="ttc" id="neon__cnn_8cpp_xhtml_a7616847a3120a787be556c0bb30f43b4"><div class="ttname"><a href="neon__cnn_8cpp.xhtml#a7616847a3120a787be556c0bb30f43b4">main_cnn</a></div><div class="ttdeci">void main_cnn(int argc, const char **argv)</div><div class="ttdef"><b>Definition:</b> <a href="neon__cnn_8cpp_source.xhtml#l00036">neon_cnn.cpp:36</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100181</div><!-- fragment -->
182</div>
183</div>
184<a class="anchor" id="a7616847a3120a787be556c0bb30f43b4"></a>
185<div class="memitem">
186<div class="memproto">
187 <table class="memname">
188 <tr>
189 <td class="memname">void main_cnn </td>
190 <td>(</td>
191 <td class="paramtype">int&#160;</td>
192 <td class="paramname"><em>argc</em>, </td>
193 </tr>
194 <tr>
195 <td class="paramkey"></td>
196 <td></td>
197 <td class="paramtype">const char **&#160;</td>
198 <td class="paramname"><em>argv</em>&#160;</td>
199 </tr>
200 <tr>
201 <td></td>
202 <td>)</td>
203 <td></td><td></td>
204 </tr>
205 </table>
206</div><div class="memdoc">
207
Kaizenbf8b01d2017-10-12 14:26:51 +0100208<p>Definition at line <a class="el" href="neon__cnn_8cpp_source.xhtml#l00036">36</a> of file <a class="el" href="neon__cnn_8cpp_source.xhtml">neon_cnn.cpp</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100209
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000210<p>References <a class="el" href="_memory_group_base_8h_source.xhtml#l00125">MemoryGroupBase&lt; TensorType &gt;::acquire()</a>, <a class="el" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">TensorAllocator::allocate()</a>, <a class="el" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">Tensor::allocator()</a>, <a class="el" href="core_2_error_8h_source.xhtml#l00147">ARM_COMPUTE_UNUSED</a>, <a class="el" href="namespacearm__compute.xhtml#a9172da722f0a434e5cc07c0a3c115d93afcefd647d6a866603c627b11347c707a">arm_compute::AVG</a>, <a class="el" href="classarm__compute_1_1_n_e_activation_layer.xhtml#adfb5ef37594fc9371c4a2b95e3d5e31b">NEActivationLayer::configure()</a>, <a class="el" href="classarm__compute_1_1_n_e_pooling_layer.xhtml#a6fa6e4b65796fd0bf43da9b4d617d568">NEPoolingLayer::configure()</a>, <a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml#a062268dfb7b8a63b7331d1cafcb7a081">NESoftmaxLayer::configure()</a>, <a class="el" href="classarm__compute_1_1_n_e_fully_connected_layer.xhtml#ae184041d029cd0dded821875db8a0929">NEFullyConnectedLayer::configure()</a>, <a class="el" href="classarm__compute_1_1_n_e_convolution_layer.xhtml#aee13eaa771696a8257ededf5bf921cbb">NEConvolutionLayer::configure()</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">arm_compute::F32</a>, <a class="el" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">TensorAllocator::init()</a>, <a class="el" href="_memory_group_base_8h_source.xhtml#l00097">MemoryGroupBase&lt; TensorType &gt;::manage()</a>, <a class="el" href="namespacearm__compute.xhtml#adf2ced65e536375a1c96425d9fced858a26a4b44a837bf97b972628509912b4a5">arm_compute::MAX</a>, <a class="el" href="_memory_group_base_8h_source.xhtml#l00136">MemoryGroupBase&lt; TensorType &gt;::release()</a>, <a class="el" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaad346bb4679d29be241279f15d7795c1c">ActivationLayerInfo::RELU</a>, <a class="el" href="classarm__compute_1_1_i_n_e_simple_function.xhtml#ab5fd6e96c07aaaed2747c7e16ed5951e">INESimpleFunction::run()</a>, <a class="el" href="classarm__compute_1_1_n_e_pooling_layer.xhtml#ad1717410afd0be936c6213a63c8005fb">NEPoolingLayer::run()</a>, <a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml#ad1717410afd0be936c6213a63c8005fb">NESoftmaxLayer::run()</a>, <a class="el" href="classarm__compute_1_1_n_e_fully_connected_layer.xhtml#ad1717410afd0be936c6213a63c8005fb">NEFullyConnectedLayer::run()</a>, <a class="el" href="classarm__compute_1_1_n_e_convolution_layer.xhtml#ad1717410afd0be936c6213a63c8005fb">NEConvolutionLayer::run()</a>, <a class="el" href="_tensor_shape_8h_source.xhtml#l00074">TensorShape::set()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00081">Dimensions&lt; T &gt;::x()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00086">Dimensions&lt; T &gt;::y()</a>, and <a class="el" href="_dimensions_8h_source.xhtml#l00091">Dimensions&lt; T &gt;::z()</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100211
Kaizenbf8b01d2017-10-12 14:26:51 +0100212<p>Referenced by <a class="el" href="neon__cnn_8cpp_source.xhtml#l00294">main()</a>.</p>
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000213<div class="fragment"><div class="line"><a name="l00037"></a><span class="lineno"> 37</span>&#160;{</div><div class="line"><a name="l00038"></a><span class="lineno"> 38</span>&#160; <a class="code" href="core_2_error_8h.xhtml#a4103adbb45806b2f2002d44b91d0d206">ARM_COMPUTE_UNUSED</a>(argc);</div><div class="line"><a name="l00039"></a><span class="lineno"> 39</span>&#160; <a class="code" href="core_2_error_8h.xhtml#a4103adbb45806b2f2002d44b91d0d206">ARM_COMPUTE_UNUSED</a>(argv);</div><div class="line"><a name="l00040"></a><span class="lineno"> 40</span>&#160;</div><div class="line"><a name="l00041"></a><span class="lineno"> 41</span>&#160; <span class="comment">// Create NEON allocator</span></div><div class="line"><a name="l00042"></a><span class="lineno"> 42</span>&#160; <a class="code" href="classarm__compute_1_1_allocator.xhtml">Allocator</a> allocator;</div><div class="line"><a name="l00043"></a><span class="lineno"> 43</span>&#160;</div><div class="line"><a name="l00044"></a><span class="lineno"> 44</span>&#160; <span class="comment">// Create memory manager components</span></div><div class="line"><a name="l00045"></a><span class="lineno"> 45</span>&#160; <span class="comment">// We need 2 memory managers: 1 for handling the tensors within the functions (mm_layers) and 1 for handling the input and output tensors of the functions (mm_transitions))</span></div><div class="line"><a name="l00046"></a><span class="lineno"> 46</span>&#160; <span class="keyword">auto</span> lifetime_mgr0 = std::make_shared&lt;BlobLifetimeManager&gt;(); <span class="comment">// Create lifetime manager</span></div><div class="line"><a name="l00047"></a><span class="lineno"> 47</span>&#160; <span class="keyword">auto</span> lifetime_mgr1 = std::make_shared&lt;BlobLifetimeManager&gt;(); <span class="comment">// Create lifetime manager</span></div><div class="line"><a name="l00048"></a><span class="lineno"> 48</span>&#160; <span class="keyword">auto</span> pool_mgr0 = std::make_shared&lt;PoolManager&gt;(); <span class="comment">// Create pool manager</span></div><div class="line"><a name="l00049"></a><span class="lineno"> 49</span>&#160; <span class="keyword">auto</span> pool_mgr1 = std::make_shared&lt;PoolManager&gt;(); <span class="comment">// Create pool manager</span></div><div class="line"><a name="l00050"></a><span class="lineno"> 50</span>&#160; <span class="keyword">auto</span> mm_layers = std::make_shared&lt;MemoryManagerOnDemand&gt;(lifetime_mgr0, pool_mgr0); <span class="comment">// Create the memory manager</span></div><div class="line"><a name="l00051"></a><span class="lineno"> 51</span>&#160; <span class="keyword">auto</span> mm_transitions = std::make_shared&lt;MemoryManagerOnDemand&gt;(lifetime_mgr1, pool_mgr1); <span class="comment">// Create the memory manager</span></div><div class="line"><a name="l00052"></a><span class="lineno"> 52</span>&#160;</div><div class="line"><a name="l00053"></a><span class="lineno"> 53</span>&#160; <span class="comment">// The src tensor should contain the input image</span></div><div class="line"><a name="l00054"></a><span class="lineno"> 54</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> src;</div><div class="line"><a name="l00055"></a><span class="lineno"> 55</span>&#160;</div><div class="line"><a name="l00056"></a><span class="lineno"> 56</span>&#160; <span class="comment">// The weights and biases tensors should be initialized with the values inferred with the training</span></div><div class="line"><a name="l00057"></a><span class="lineno"> 57</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> weights0;</div><div class="line"><a name="l00058"></a><span class="lineno"> 58</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> weights1;</div><div class="line"><a name="l00059"></a><span class="lineno"> 59</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> weights2;</div><div class="line"><a name="l00060"></a><span class="lineno"> 60</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> biases0;</div><div class="line"><a name="l00061"></a><span class="lineno"> 61</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> biases1;</div><div class="line"><a name="l00062"></a><span class="lineno"> 62</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> biases2;</div><div class="line"><a name="l00063"></a><span class="lineno"> 63</span>&#160;</div><div class="line"><a name="l00064"></a><span class="lineno"> 64</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> out_conv0;</div><div class="line"><a name="l00065"></a><span class="lineno"> 65</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> out_conv1;</div><div class="line"><a name="l00066"></a><span class="lineno"> 66</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> out_act0;</div><div class="line"><a name="l00067"></a><span class="lineno"> 67</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> out_act1;</div><div class="line"><a name="l00068"></a><span class="lineno"> 68</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> out_act2;</div><div class="line"><a name="l00069"></a><span class="lineno"> 69</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> out_pool0;</div><div class="line"><a name="l00070"></a><span class="lineno"> 70</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> out_pool1;</div><div class="line"><a name="l00071"></a><span class="lineno"> 71</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> out_fc0;</div><div class="line"><a name="l00072"></a><span class="lineno"> 72</span>&#160; <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> out_softmax;</div><div class="line"><a name="l00073"></a><span class="lineno"> 73</span>&#160;</div><div class="line"><a name="l00074"></a><span class="lineno"> 74</span>&#160; <span class="comment">// Create layers and set memory manager where allowed to manage internal memory requirements</span></div><div class="line"><a name="l00075"></a><span class="lineno"> 75</span>&#160; <a class="code" href="classarm__compute_1_1_n_e_convolution_layer.xhtml">NEConvolutionLayer</a> conv0(mm_layers);</div><div class="line"><a name="l00076"></a><span class="lineno"> 76</span>&#160; <a class="code" href="classarm__compute_1_1_n_e_convolution_layer.xhtml">NEConvolutionLayer</a> conv1(mm_layers);</div><div class="line"><a name="l00077"></a><span class="lineno"> 77</span>&#160; <a class="code" href="classarm__compute_1_1_n_e_pooling_layer.xhtml">NEPoolingLayer</a> pool0;</div><div class="line"><a name="l00078"></a><span class="lineno"> 78</span>&#160; <a class="code" href="classarm__compute_1_1_n_e_pooling_layer.xhtml">NEPoolingLayer</a> pool1;</div><div class="line"><a name="l00079"></a><span class="lineno"> 79</span>&#160; <a class="code" href="classarm__compute_1_1_n_e_fully_connected_layer.xhtml">NEFullyConnectedLayer</a> fc0(mm_layers);</div><div class="line"><a name="l00080"></a><span class="lineno"> 80</span>&#160; <a class="code" href="classarm__compute_1_1_n_e_activation_layer.xhtml">NEActivationLayer</a> act0;</div><div class="line"><a name="l00081"></a><span class="lineno"> 81</span>&#160; <a class="code" href="classarm__compute_1_1_n_e_activation_layer.xhtml">NEActivationLayer</a> act1;</div><div class="line"><a name="l00082"></a><span class="lineno"> 82</span>&#160; <a class="code" href="classarm__compute_1_1_n_e_activation_layer.xhtml">NEActivationLayer</a> act2;</div><div class="line"><a name="l00083"></a><span class="lineno"> 83</span>&#160; <a class="code" href="classarm__compute_1_1_n_e_softmax_layer.xhtml">NESoftmaxLayer</a> softmax(mm_layers);</div><div class="line"><a name="l00084"></a><span class="lineno"> 84</span>&#160;</div><div class="line"><a name="l00085"></a><span class="lineno"> 85</span>&#160; <span class="comment">/* [Initialize tensors] */</span></div><div class="line"><a name="l00086"></a><span class="lineno"> 86</span>&#160;</div><div class="line"><a name="l00087"></a><span class="lineno"> 87</span>&#160; <span class="comment">// Initialize src tensor</span></div><div class="line"><a name="l00088"></a><span class="lineno"> 88</span>&#160; constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> width_src_image = 32;</div><div class="line"><a name="l00089"></a><span class="lineno"> 89</span>&#160; constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> height_src_image = 32;</div><div class="line"><a name="l00090"></a><span class="lineno"> 90</span>&#160; constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> ifm_src_img = 1;</div><div class="line"><a name="l00091"></a><span class="lineno"> 91</span>&#160;</div><div class="line"><a name="l00092"></a><span class="lineno"> 92</span>&#160; <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> src_shape(width_src_image, height_src_image, ifm_src_img);</div><div class="line"><a name="l00093"></a><span class="lineno"> 93</span>&#160; src.allocator()-&gt;init(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(src_shape, 1, DataType::F32));</div><div class="line"><a name="l00094"></a><span class="lineno"> 94</span>&#160;</div><div class="line"><a name="l00095"></a><span class="lineno"> 95</span>&#160; <span class="comment">// Initialize tensors of conv0</span></div><div class="line"><a name="l00096"></a><span class="lineno"> 96</span>&#160; constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> kernel_x_conv0 = 5;</div><div class="line"><a name="l00097"></a><span class="lineno"> 97</span>&#160; constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> kernel_y_conv0 = 5;</div><div class="line"><a name="l00098"></a><span class="lineno"> 98</span>&#160; constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> ofm_conv0 = 8;</div><div class="line"><a name="l00099"></a><span class="lineno"> 99</span>&#160;</div><div class="line"><a name="l00100"></a><span class="lineno"> 100</span>&#160; <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> weights_shape_conv0(kernel_x_conv0, kernel_y_conv0, src_shape.z(), ofm_conv0);</div><div class="line"><a name="l00101"></a><span class="lineno"> 101</span>&#160; <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> biases_shape_conv0(weights_shape_conv0[3]);</div><div class="line"><a name="l00102"></a><span class="lineno"> 102</span>&#160; <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> out_shape_conv0(src_shape.x(), src_shape.y(), weights_shape_conv0[3]);</div><div class="line"><a name="l00103"></a><span class="lineno"> 103</span>&#160;</div><div class="line"><a name="l00104"></a><span class="lineno"> 104</span>&#160; weights0.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(weights_shape_conv0, 1, DataType::F32));</div><div class="line"><a name="l00105"></a><span class="lineno"> 105</span>&#160; biases0.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(biases_shape_conv0, 1, DataType::F32));</div><div class="line"><a name="l00106"></a><span class="lineno"> 106</span>&#160; out_conv0.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(out_shape_conv0, 1, DataType::F32));</div><div class="line"><a name="l00107"></a><span class="lineno"> 107</span>&#160;</div><div class="line"><a name="l00108"></a><span class="lineno"> 108</span>&#160; <span class="comment">// Initialize tensor of act0</span></div><div class="line"><a name="l00109"></a><span class="lineno"> 109</span>&#160; out_act0.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(out_shape_conv0, 1, DataType::F32));</div><div class="line"><a name="l00110"></a><span class="lineno"> 110</span>&#160;</div><div class="line"><a name="l00111"></a><span class="lineno"> 111</span>&#160; <span class="comment">// Initialize tensor of pool0</span></div><div class="line"><a name="l00112"></a><span class="lineno"> 112</span>&#160; <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> out_shape_pool0 = out_shape_conv0;</div><div class="line"><a name="l00113"></a><span class="lineno"> 113</span>&#160; out_shape_pool0.<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml#a0cb0e1f5da2e1cc2e0ea5690450f53e8">set</a>(0, out_shape_pool0.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#afb5cd37bb08f1029691590372e6330f0">x</a>() / 2);</div><div class="line"><a name="l00114"></a><span class="lineno"> 114</span>&#160; out_shape_pool0.<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml#a0cb0e1f5da2e1cc2e0ea5690450f53e8">set</a>(1, out_shape_pool0.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#a691c9cb93365c2e33f3429de43244098">y</a>() / 2);</div><div class="line"><a name="l00115"></a><span class="lineno"> 115</span>&#160; out_pool0.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(out_shape_pool0, 1, DataType::F32));</div><div class="line"><a name="l00116"></a><span class="lineno"> 116</span>&#160;</div><div class="line"><a name="l00117"></a><span class="lineno"> 117</span>&#160; <span class="comment">// Initialize tensors of conv1</span></div><div class="line"><a name="l00118"></a><span class="lineno"> 118</span>&#160; constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> kernel_x_conv1 = 3;</div><div class="line"><a name="l00119"></a><span class="lineno"> 119</span>&#160; constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> kernel_y_conv1 = 3;</div><div class="line"><a name="l00120"></a><span class="lineno"> 120</span>&#160; constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> ofm_conv1 = 16;</div><div class="line"><a name="l00121"></a><span class="lineno"> 121</span>&#160;</div><div class="line"><a name="l00122"></a><span class="lineno"> 122</span>&#160; <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> weights_shape_conv1(kernel_x_conv1, kernel_y_conv1, out_shape_pool0.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#a336121cb63ed79fa0a072eed03d694ac">z</a>(), ofm_conv1);</div><div class="line"><a name="l00123"></a><span class="lineno"> 123</span>&#160;</div><div class="line"><a name="l00124"></a><span class="lineno"> 124</span>&#160; <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> biases_shape_conv1(weights_shape_conv1[3]);</div><div class="line"><a name="l00125"></a><span class="lineno"> 125</span>&#160; <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> out_shape_conv1(out_shape_pool0.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#afb5cd37bb08f1029691590372e6330f0">x</a>(), out_shape_pool0.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#a691c9cb93365c2e33f3429de43244098">y</a>(), weights_shape_conv1[3]);</div><div class="line"><a name="l00126"></a><span class="lineno"> 126</span>&#160;</div><div class="line"><a name="l00127"></a><span class="lineno"> 127</span>&#160; weights1.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(weights_shape_conv1, 1, DataType::F32));</div><div class="line"><a name="l00128"></a><span class="lineno"> 128</span>&#160; biases1.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(biases_shape_conv1, 1, DataType::F32));</div><div class="line"><a name="l00129"></a><span class="lineno"> 129</span>&#160; out_conv1.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(out_shape_conv1, 1, DataType::F32));</div><div class="line"><a name="l00130"></a><span class="lineno"> 130</span>&#160;</div><div class="line"><a name="l00131"></a><span class="lineno"> 131</span>&#160; <span class="comment">// Initialize tensor of act1</span></div><div class="line"><a name="l00132"></a><span class="lineno"> 132</span>&#160; out_act1.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(out_shape_conv1, 1, DataType::F32));</div><div class="line"><a name="l00133"></a><span class="lineno"> 133</span>&#160;</div><div class="line"><a name="l00134"></a><span class="lineno"> 134</span>&#160; <span class="comment">// Initialize tensor of pool1</span></div><div class="line"><a name="l00135"></a><span class="lineno"> 135</span>&#160; <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> out_shape_pool1 = out_shape_conv1;</div><div class="line"><a name="l00136"></a><span class="lineno"> 136</span>&#160; out_shape_pool1.<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml#a0cb0e1f5da2e1cc2e0ea5690450f53e8">set</a>(0, out_shape_pool1.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#afb5cd37bb08f1029691590372e6330f0">x</a>() / 2);</div><div class="line"><a name="l00137"></a><span class="lineno"> 137</span>&#160; out_shape_pool1.<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml#a0cb0e1f5da2e1cc2e0ea5690450f53e8">set</a>(1, out_shape_pool1.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#a691c9cb93365c2e33f3429de43244098">y</a>() / 2);</div><div class="line"><a name="l00138"></a><span class="lineno"> 138</span>&#160; out_pool1.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(out_shape_pool1, 1, DataType::F32));</div><div class="line"><a name="l00139"></a><span class="lineno"> 139</span>&#160;</div><div class="line"><a name="l00140"></a><span class="lineno"> 140</span>&#160; <span class="comment">// Initialize tensor of fc0</span></div><div class="line"><a name="l00141"></a><span class="lineno"> 141</span>&#160; constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> num_labels = 128;</div><div class="line"><a name="l00142"></a><span class="lineno"> 142</span>&#160;</div><div class="line"><a name="l00143"></a><span class="lineno"> 143</span>&#160; <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> weights_shape_fc0(out_shape_pool1.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#afb5cd37bb08f1029691590372e6330f0">x</a>() * out_shape_pool1.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#a691c9cb93365c2e33f3429de43244098">y</a>() * out_shape_pool1.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#a336121cb63ed79fa0a072eed03d694ac">z</a>(), num_labels);</div><div class="line"><a name="l00144"></a><span class="lineno"> 144</span>&#160; <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> biases_shape_fc0(num_labels);</div><div class="line"><a name="l00145"></a><span class="lineno"> 145</span>&#160; <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> out_shape_fc0(num_labels);</div><div class="line"><a name="l00146"></a><span class="lineno"> 146</span>&#160;</div><div class="line"><a name="l00147"></a><span class="lineno"> 147</span>&#160; weights2.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(weights_shape_fc0, 1, DataType::F32));</div><div class="line"><a name="l00148"></a><span class="lineno"> 148</span>&#160; biases2.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(biases_shape_fc0, 1, DataType::F32));</div><div class="line"><a name="l00149"></a><span class="lineno"> 149</span>&#160; out_fc0.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(out_shape_fc0, 1, DataType::F32));</div><div class="line"><a name="l00150"></a><span class="lineno"> 150</span>&#160;</div><div class="line"><a name="l00151"></a><span class="lineno"> 151</span>&#160; <span class="comment">// Initialize tensor of act2</span></div><div class="line"><a name="l00152"></a><span class="lineno"> 152</span>&#160; out_act2.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(out_shape_fc0, 1, DataType::F32));</div><div class="line"><a name="l00153"></a><span class="lineno"> 153</span>&#160;</div><div class="line"><a name="l00154"></a><span class="lineno"> 154</span>&#160; <span class="comment">// Initialize tensor of softmax</span></div><div class="line"><a name="l00155"></a><span class="lineno"> 155</span>&#160; <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> out_shape_softmax(out_shape_fc0.x());</div><div class="line"><a name="l00156"></a><span class="lineno"> 156</span>&#160; out_softmax.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(out_shape_softmax, 1, DataType::F32));</div><div class="line"><a name="l00157"></a><span class="lineno"> 157</span>&#160;</div><div class="line"><a name="l00158"></a><span class="lineno"> 158</span>&#160; <span class="comment">/* -----------------------End: [Initialize tensors] */</span></div><div class="line"><a name="l00159"></a><span class="lineno"> 159</span>&#160;</div><div class="line"><a name="l00160"></a><span class="lineno"> 160</span>&#160; <span class="comment">/* [Configure functions] */</span></div><div class="line"><a name="l00161"></a><span class="lineno"> 161</span>&#160;</div><div class="line"><a name="l00162"></a><span class="lineno"> 162</span>&#160; <span class="comment">// in:32x32x1: 5x5 convolution, 8 output features maps (OFM)</span></div><div class="line"><a name="l00163"></a><span class="lineno"> 163</span>&#160; conv0.configure(&amp;src, &amp;weights0, &amp;biases0, &amp;out_conv0, <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1 <span class="comment">/* stride_x */</span>, 1 <span class="comment">/* stride_y */</span>, 2 <span class="comment">/* pad_x */</span>, 2 <span class="comment">/* pad_y */</span>));</div><div class="line"><a name="l00164"></a><span class="lineno"> 164</span>&#160;</div><div class="line"><a name="l00165"></a><span class="lineno"> 165</span>&#160; <span class="comment">// in:32x32x8, out:32x32x8, Activation function: relu</span></div><div class="line"><a name="l00166"></a><span class="lineno"> 166</span>&#160; act0.<a class="code" href="classarm__compute_1_1_n_e_activation_layer.xhtml#adfb5ef37594fc9371c4a2b95e3d5e31b">configure</a>(&amp;out_conv0, &amp;out_act0, <a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU));</div><div class="line"><a name="l00167"></a><span class="lineno"> 167</span>&#160;</div><div class="line"><a name="l00168"></a><span class="lineno"> 168</span>&#160; <span class="comment">// in:32x32x8, out:16x16x8 (2x2 pooling), Pool type function: Max</span></div><div class="line"><a name="l00169"></a><span class="lineno"> 169</span>&#160; pool0.<a class="code" href="classarm__compute_1_1_n_e_pooling_layer.xhtml#a6fa6e4b65796fd0bf43da9b4d617d568">configure</a>(&amp;out_act0, &amp;out_pool0, <a class="code" href="classarm__compute_1_1_pooling_layer_info.xhtml">PoolingLayerInfo</a>(PoolingType::MAX, 2, <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(2 <span class="comment">/* stride_x */</span>, 2 <span class="comment">/* stride_y */</span>)));</div><div class="line"><a name="l00170"></a><span class="lineno"> 170</span>&#160;</div><div class="line"><a name="l00171"></a><span class="lineno"> 171</span>&#160; <span class="comment">// in:16x16x8: 3x3 convolution, 16 output features maps (OFM)</span></div><div class="line"><a name="l00172"></a><span class="lineno"> 172</span>&#160; conv1.configure(&amp;out_pool0, &amp;weights1, &amp;biases1, &amp;out_conv1, <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1 <span class="comment">/* stride_x */</span>, 1 <span class="comment">/* stride_y */</span>, 1 <span class="comment">/* pad_x */</span>, 1 <span class="comment">/* pad_y */</span>));</div><div class="line"><a name="l00173"></a><span class="lineno"> 173</span>&#160;</div><div class="line"><a name="l00174"></a><span class="lineno"> 174</span>&#160; <span class="comment">// in:16x16x16, out:16x16x16, Activation function: relu</span></div><div class="line"><a name="l00175"></a><span class="lineno"> 175</span>&#160; act1.<a class="code" href="classarm__compute_1_1_n_e_activation_layer.xhtml#adfb5ef37594fc9371c4a2b95e3d5e31b">configure</a>(&amp;out_conv1, &amp;out_act1, <a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU));</div><div class="line"><a name="l00176"></a><span class="lineno"> 176</span>&#160;</div><div class="line"><a name="l00177"></a><span class="lineno"> 177</span>&#160; <span class="comment">// in:16x16x16, out:8x8x16 (2x2 pooling), Pool type function: Average</span></div><div class="line"><a name="l00178"></a><span class="lineno"> 178</span>&#160; pool1.<a class="code" href="classarm__compute_1_1_n_e_pooling_layer.xhtml#a6fa6e4b65796fd0bf43da9b4d617d568">configure</a>(&amp;out_act1, &amp;out_pool1, <a class="code" href="classarm__compute_1_1_pooling_layer_info.xhtml">PoolingLayerInfo</a>(PoolingType::AVG, 2, <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(2 <span class="comment">/* stride_x */</span>, 2 <span class="comment">/* stride_y */</span>)));</div><div class="line"><a name="l00179"></a><span class="lineno"> 179</span>&#160;</div><div class="line"><a name="l00180"></a><span class="lineno"> 180</span>&#160; <span class="comment">// in:8x8x16, out:128</span></div><div class="line"><a name="l00181"></a><span class="lineno"> 181</span>&#160; fc0.configure(&amp;out_pool1, &amp;weights2, &amp;biases2, &amp;out_fc0);</div><div class="line"><a name="l00182"></a><span class="lineno"> 182</span>&#160;</div><div class="line"><a name="l00183"></a><span class="lineno"> 183</span>&#160; <span class="comment">// in:128, out:128, Activation function: relu</span></div><div class="line"><a name="l00184"></a><span class="lineno"> 184</span>&#160; act2.<a class="code" href="classarm__compute_1_1_n_e_activation_layer.xhtml#adfb5ef37594fc9371c4a2b95e3d5e31b">configure</a>(&amp;out_fc0, &amp;out_act2, <a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU));</div><div class="line"><a name="l00185"></a><span class="lineno"> 185</span>&#160;</div><div class="line"><a name="l00186"></a><span class="lineno"> 186</span>&#160; <span class="comment">// in:128, out:128</span></div><div class="line"><a name="l00187"></a><span class="lineno"> 187</span>&#160; softmax.configure(&amp;out_act2, &amp;out_softmax);</div><div class="line"><a name="l00188"></a><span class="lineno"> 188</span>&#160;</div><div class="line"><a name="l00189"></a><span class="lineno"> 189</span>&#160; <span class="comment">/* -----------------------End: [Configure functions] */</span></div><div class="line"><a name="l00190"></a><span class="lineno"> 190</span>&#160;</div><div class="line"><a name="l00191"></a><span class="lineno"> 191</span>&#160; <span class="comment">/*[ Add tensors to memory manager ]*/</span></div><div class="line"><a name="l00192"></a><span class="lineno"> 192</span>&#160;</div><div class="line"><a name="l00193"></a><span class="lineno"> 193</span>&#160; <span class="comment">// We need 2 memory groups for handling the input and output</span></div><div class="line"><a name="l00194"></a><span class="lineno"> 194</span>&#160; <span class="comment">// We call explicitly allocate after manage() in order to avoid overlapping lifetimes</span></div><div class="line"><a name="l00195"></a><span class="lineno"> 195</span>&#160; <a class="code" href="classarm__compute_1_1_memory_group_base.xhtml">MemoryGroup</a> memory_group0(mm_transitions);</div><div class="line"><a name="l00196"></a><span class="lineno"> 196</span>&#160; <a class="code" href="classarm__compute_1_1_memory_group_base.xhtml">MemoryGroup</a> memory_group1(mm_transitions);</div><div class="line"><a name="l00197"></a><span class="lineno"> 197</span>&#160;</div><div class="line"><a name="l00198"></a><span class="lineno"> 198</span>&#160; memory_group0.manage(&amp;out_conv0);</div><div class="line"><a name="l00199"></a><span class="lineno"> 199</span>&#160; out_conv0.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00200"></a><span class="lineno"> 200</span>&#160; memory_group1.manage(&amp;out_act0);</div><div class="line"><a name="l00201"></a><span class="lineno"> 201</span>&#160; out_act0.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00202"></a><span class="lineno"> 202</span>&#160; memory_group0.manage(&amp;out_pool0);</div><div class="line"><a name="l00203"></a><span class="lineno"> 203</span>&#160; out_pool0.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00204"></a><span class="lineno"> 204</span>&#160; memory_group1.manage(&amp;out_conv1);</div><div class="line"><a name="l00205"></a><span class="lineno"> 205</span>&#160; out_conv1.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00206"></a><span class="lineno"> 206</span>&#160; memory_group0.manage(&amp;out_act1);</div><div class="line"><a name="l00207"></a><span class="lineno"> 207</span>&#160; out_act1.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00208"></a><span class="lineno"> 208</span>&#160; memory_group1.manage(&amp;out_pool1);</div><div class="line"><a name="l00209"></a><span class="lineno"> 209</span>&#160; out_pool1.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00210"></a><span class="lineno"> 210</span>&#160; memory_group0.manage(&amp;out_fc0);</div><div class="line"><a name="l00211"></a><span class="lineno"> 211</span>&#160; out_fc0.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00212"></a><span class="lineno"> 212</span>&#160; memory_group1.manage(&amp;out_act2);</div><div class="line"><a name="l00213"></a><span class="lineno"> 213</span>&#160; out_act2.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00214"></a><span class="lineno"> 214</span>&#160; memory_group0.manage(&amp;out_softmax);</div><div class="line"><a name="l00215"></a><span class="lineno"> 215</span>&#160; out_softmax.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00216"></a><span class="lineno"> 216</span>&#160;</div><div class="line"><a name="l00217"></a><span class="lineno"> 217</span>&#160; <span class="comment">/* -----------------------End: [ Add tensors to memory manager ] */</span></div><div class="line"><a name="l00218"></a><span class="lineno"> 218</span>&#160;</div><div class="line"><a name="l00219"></a><span class="lineno"> 219</span>&#160; <span class="comment">/* [Allocate tensors] */</span></div><div class="line"><a name="l00220"></a><span class="lineno"> 220</span>&#160;</div><div class="line"><a name="l00221"></a><span class="lineno"> 221</span>&#160; <span class="comment">// Now that the padding requirements are known we can allocate all tensors</span></div><div class="line"><a name="l00222"></a><span class="lineno"> 222</span>&#160; src.allocator()-&gt;allocate();</div><div class="line"><a name="l00223"></a><span class="lineno"> 223</span>&#160; weights0.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00224"></a><span class="lineno"> 224</span>&#160; weights1.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00225"></a><span class="lineno"> 225</span>&#160; weights2.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00226"></a><span class="lineno"> 226</span>&#160; biases0.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00227"></a><span class="lineno"> 227</span>&#160; biases1.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00228"></a><span class="lineno"> 228</span>&#160; biases2.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00229"></a><span class="lineno"> 229</span>&#160;</div><div class="line"><a name="l00230"></a><span class="lineno"> 230</span>&#160; <span class="comment">/* -----------------------End: [Allocate tensors] */</span></div><div class="line"><a name="l00231"></a><span class="lineno"> 231</span>&#160;</div><div class="line"><a name="l00232"></a><span class="lineno"> 232</span>&#160; <span class="comment">// Finalize layers memory manager</span></div><div class="line"><a name="l00233"></a><span class="lineno"> 233</span>&#160;</div><div class="line"><a name="l00234"></a><span class="lineno"> 234</span>&#160; <span class="comment">// Set allocator that the memory manager will use</span></div><div class="line"><a name="l00235"></a><span class="lineno"> 235</span>&#160; mm_layers-&gt;set_allocator(&amp;allocator);</div><div class="line"><a name="l00236"></a><span class="lineno"> 236</span>&#160;</div><div class="line"><a name="l00237"></a><span class="lineno"> 237</span>&#160; <span class="comment">// Number of pools that the manager will create. This specifies how many layers you want to run in parallel</span></div><div class="line"><a name="l00238"></a><span class="lineno"> 238</span>&#160; mm_layers-&gt;set_num_pools(1);</div><div class="line"><a name="l00239"></a><span class="lineno"> 239</span>&#160;</div><div class="line"><a name="l00240"></a><span class="lineno"> 240</span>&#160; <span class="comment">// Finalize the manager. (Validity checks, memory allocations etc)</span></div><div class="line"><a name="l00241"></a><span class="lineno"> 241</span>&#160; mm_layers-&gt;finalize();</div><div class="line"><a name="l00242"></a><span class="lineno"> 242</span>&#160;</div><div class="line"><a name="l00243"></a><span class="lineno"> 243</span>&#160; <span class="comment">// Finalize transitions memory manager</span></div><div class="line"><a name="l00244"></a><span class="lineno"> 244</span>&#160;</div><div class="line"><a name="l00245"></a><span class="lineno"> 245</span>&#160; <span class="comment">// Set allocator that the memory manager will use</span></div><div class="line"><a name="l00246"></a><span class="lineno"> 246</span>&#160; mm_transitions-&gt;set_allocator(&amp;allocator);</div><div class="line"><a name="l00247"></a><span class="lineno"> 247</span>&#160;</div><div class="line"><a name="l00248"></a><span class="lineno"> 248</span>&#160; <span class="comment">// Number of pools that the manager will create. This specifies how many models we can run in parallel.</span></div><div class="line"><a name="l00249"></a><span class="lineno"> 249</span>&#160; <span class="comment">// Setting to 2 as we need one for the input and one for the output at any given time</span></div><div class="line"><a name="l00250"></a><span class="lineno"> 250</span>&#160; mm_transitions-&gt;set_num_pools(2);</div><div class="line"><a name="l00251"></a><span class="lineno"> 251</span>&#160;</div><div class="line"><a name="l00252"></a><span class="lineno"> 252</span>&#160; <span class="comment">// Finalize the manager. (Validity checks, memory allocations etc)</span></div><div class="line"><a name="l00253"></a><span class="lineno"> 253</span>&#160; mm_transitions-&gt;finalize();</div><div class="line"><a name="l00254"></a><span class="lineno"> 254</span>&#160;</div><div class="line"><a name="l00255"></a><span class="lineno"> 255</span>&#160; <span class="comment">/* [Initialize weights and biases tensors] */</span></div><div class="line"><a name="l00256"></a><span class="lineno"> 256</span>&#160;</div><div class="line"><a name="l00257"></a><span class="lineno"> 257</span>&#160; <span class="comment">// Once the tensors have been allocated, the src, weights and biases tensors can be initialized</span></div><div class="line"><a name="l00258"></a><span class="lineno"> 258</span>&#160; <span class="comment">// ...</span></div><div class="line"><a name="l00259"></a><span class="lineno"> 259</span>&#160;</div><div class="line"><a name="l00260"></a><span class="lineno"> 260</span>&#160; <span class="comment">/* -----------------------[Initialize weights and biases tensors] */</span></div><div class="line"><a name="l00261"></a><span class="lineno"> 261</span>&#160;</div><div class="line"><a name="l00262"></a><span class="lineno"> 262</span>&#160; <span class="comment">/* [Execute the functions] */</span></div><div class="line"><a name="l00263"></a><span class="lineno"> 263</span>&#160;</div><div class="line"><a name="l00264"></a><span class="lineno"> 264</span>&#160; <span class="comment">// Acquire memory for the memory groups</span></div><div class="line"><a name="l00265"></a><span class="lineno"> 265</span>&#160; memory_group0.acquire();</div><div class="line"><a name="l00266"></a><span class="lineno"> 266</span>&#160; memory_group1.acquire();</div><div class="line"><a name="l00267"></a><span class="lineno"> 267</span>&#160;</div><div class="line"><a name="l00268"></a><span class="lineno"> 268</span>&#160; conv0.run();</div><div class="line"><a name="l00269"></a><span class="lineno"> 269</span>&#160; act0.<a class="code" href="classarm__compute_1_1_i_n_e_simple_function.xhtml#ab5fd6e96c07aaaed2747c7e16ed5951e">run</a>();</div><div class="line"><a name="l00270"></a><span class="lineno"> 270</span>&#160; pool0.<a class="code" href="classarm__compute_1_1_n_e_pooling_layer.xhtml#ad1717410afd0be936c6213a63c8005fb">run</a>();</div><div class="line"><a name="l00271"></a><span class="lineno"> 271</span>&#160; conv1.run();</div><div class="line"><a name="l00272"></a><span class="lineno"> 272</span>&#160; act1.<a class="code" href="classarm__compute_1_1_i_n_e_simple_function.xhtml#ab5fd6e96c07aaaed2747c7e16ed5951e">run</a>();</div><div class="line"><a name="l00273"></a><span class="lineno"> 273</span>&#160; pool1.<a class="code" href="classarm__compute_1_1_n_e_pooling_layer.xhtml#ad1717410afd0be936c6213a63c8005fb">run</a>();</div><div class="line"><a name="l00274"></a><span class="lineno"> 274</span>&#160; fc0.run();</div><div class="line"><a name="l00275"></a><span class="lineno"> 275</span>&#160; act2.<a class="code" href="classarm__compute_1_1_i_n_e_simple_function.xhtml#ab5fd6e96c07aaaed2747c7e16ed5951e">run</a>();</div><div class="line"><a name="l00276"></a><span class="lineno"> 276</span>&#160; softmax.run();</div><div class="line"><a name="l00277"></a><span class="lineno"> 277</span>&#160;</div><div class="line"><a name="l00278"></a><span class="lineno"> 278</span>&#160; <span class="comment">// Release memory</span></div><div class="line"><a name="l00279"></a><span class="lineno"> 279</span>&#160; memory_group0.release();</div><div class="line"><a name="l00280"></a><span class="lineno"> 280</span>&#160; memory_group1.release();</div><div class="line"><a name="l00281"></a><span class="lineno"> 281</span>&#160;</div><div class="line"><a name="l00282"></a><span class="lineno"> 282</span>&#160; <span class="comment">/* -----------------------End: [Execute the functions] */</span></div><div class="line"><a name="l00283"></a><span class="lineno"> 283</span>&#160;}</div><div class="ttc" id="classarm__compute_1_1_dimensions_xhtml_a336121cb63ed79fa0a072eed03d694ac"><div class="ttname"><a href="classarm__compute_1_1_dimensions.xhtml#a336121cb63ed79fa0a072eed03d694ac">arm_compute::Dimensions::z</a></div><div class="ttdeci">T z() const </div><div class="ttdoc">Alias to access the size of the third dimension. </div><div class="ttdef"><b>Definition:</b> <a href="_dimensions_8h_source.xhtml#l00091">Dimensions.h:91</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100214<div class="ttc" id="classarm__compute_1_1_tensor_shape_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor_shape.xhtml">arm_compute::TensorShape</a></div><div class="ttdoc">Shape of a tensor. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_shape_8h_source.xhtml#l00038">TensorShape.h:38</a></div></div>
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000215<div class="ttc" id="classarm__compute_1_1_activation_layer_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_activation_layer_info.xhtml">arm_compute::ActivationLayerInfo</a></div><div class="ttdoc">Activation Layer Information class. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00650">Types.h:650</a></div></div>
216<div class="ttc" id="core_2_error_8h_xhtml_a4103adbb45806b2f2002d44b91d0d206"><div class="ttname"><a href="core_2_error_8h.xhtml#a4103adbb45806b2f2002d44b91d0d206">ARM_COMPUTE_UNUSED</a></div><div class="ttdeci">#define ARM_COMPUTE_UNUSED(var)</div><div class="ttdoc">To avoid unused variables warnings. </div><div class="ttdef"><b>Definition:</b> <a href="core_2_error_8h_source.xhtml#l00147">Error.h:147</a></div></div>
Kaizen8938bd32017-09-28 14:38:23 +0100217<div class="ttc" id="classarm__compute_1_1_n_e_softmax_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1_n_e_softmax_layer.xhtml">arm_compute::NESoftmaxLayer</a></div><div class="ttdoc">Basic function to compute a SoftmaxLayer. </div><div class="ttdef"><b>Definition:</b> <a href="_n_e_softmax_layer_8h_source.xhtml#l00047">NESoftmaxLayer.h:47</a></div></div>
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000218<div class="ttc" id="classarm__compute_1_1_tensor_xhtml_a531ec877bfc923dea3ab6f1be5e6e1ac"><div class="ttname"><a href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">arm_compute::Tensor::allocator</a></div><div class="ttdeci">TensorAllocator * allocator()</div><div class="ttdoc">Return a pointer to the tensor&amp;#39;s allocator. </div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100219<div class="ttc" id="classarm__compute_1_1_dimensions_xhtml_afb5cd37bb08f1029691590372e6330f0"><div class="ttname"><a href="classarm__compute_1_1_dimensions.xhtml#afb5cd37bb08f1029691590372e6330f0">arm_compute::Dimensions::x</a></div><div class="ttdeci">T x() const </div><div class="ttdoc">Alias to access the size of the first dimension. </div><div class="ttdef"><b>Definition:</b> <a href="_dimensions_8h_source.xhtml#l00081">Dimensions.h:81</a></div></div>
Kaizenbf8b01d2017-10-12 14:26:51 +0100220<div class="ttc" id="classarm__compute_1_1_n_e_pooling_layer_xhtml_ad1717410afd0be936c6213a63c8005fb"><div class="ttname"><a href="classarm__compute_1_1_n_e_pooling_layer.xhtml#ad1717410afd0be936c6213a63c8005fb">arm_compute::NEPoolingLayer::run</a></div><div class="ttdeci">void run() override</div><div class="ttdoc">Run the kernels contained in the function. </div></div>
Kaizen8938bd32017-09-28 14:38:23 +0100221<div class="ttc" id="classarm__compute_1_1_n_e_convolution_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1_n_e_convolution_layer.xhtml">arm_compute::NEConvolutionLayer</a></div><div class="ttdoc">Basic function to simulate a convolution layer. </div><div class="ttdef"><b>Definition:</b> <a href="_n_e_convolution_layer_8h_source.xhtml#l00084">NEConvolutionLayer.h:84</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100222<div class="ttc" id="classarm__compute_1_1_tensor_allocator_xhtml_a6e509c2a177b0b29e9e2369535094dee"><div class="ttname"><a href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">arm_compute::TensorAllocator::allocate</a></div><div class="ttdeci">void allocate() override</div><div class="ttdoc">Allocate size specified by TensorInfo of CPU memory. </div></div>
Kaizen8938bd32017-09-28 14:38:23 +0100223<div class="ttc" id="classarm__compute_1_1_tensor_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor.xhtml">arm_compute::Tensor</a></div><div class="ttdoc">Basic implementation of the tensor interface. </div><div class="ttdef"><b>Definition:</b> <a href="runtime_2_tensor_8h_source.xhtml#l00037">Tensor.h:37</a></div></div>
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000224<div class="ttc" id="classarm__compute_1_1_pad_stride_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_pad_stride_info.xhtml">arm_compute::PadStrideInfo</a></div><div class="ttdoc">Padding and stride information class. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00460">Types.h:460</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100225<div class="ttc" id="classarm__compute_1_1_tensor_shape_xhtml_a0cb0e1f5da2e1cc2e0ea5690450f53e8"><div class="ttname"><a href="classarm__compute_1_1_tensor_shape.xhtml#a0cb0e1f5da2e1cc2e0ea5690450f53e8">arm_compute::TensorShape::set</a></div><div class="ttdeci">void set(size_t dimension, size_t value)</div><div class="ttdoc">Accessor to set the value of one of the dimensions. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_shape_8h_source.xhtml#l00074">TensorShape.h:74</a></div></div>
226<div class="ttc" id="classarm__compute_1_1_n_e_activation_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1_n_e_activation_layer.xhtml">arm_compute::NEActivationLayer</a></div><div class="ttdoc">Basic function to run NEActivationLayerKernel. </div><div class="ttdef"><b>Definition:</b> <a href="_n_e_activation_layer_8h_source.xhtml#l00039">NEActivationLayer.h:39</a></div></div>
Kaizen8938bd32017-09-28 14:38:23 +0100227<div class="ttc" id="classarm__compute_1_1_n_e_fully_connected_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1_n_e_fully_connected_layer.xhtml">arm_compute::NEFullyConnectedLayer</a></div><div class="ttdoc">Basic function to compute a Fully Connected layer on NEON. </div><div class="ttdef"><b>Definition:</b> <a href="_n_e_fully_connected_layer_8h_source.xhtml#l00082">NEFullyConnectedLayer.h:82</a></div></div>
Kaizenbf8b01d2017-10-12 14:26:51 +0100228<div class="ttc" id="classarm__compute_1_1_memory_group_base_xhtml"><div class="ttname"><a href="classarm__compute_1_1_memory_group_base.xhtml">arm_compute::MemoryGroupBase&lt; Tensor &gt;</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100229<div class="ttc" id="classarm__compute_1_1_dimensions_xhtml_a691c9cb93365c2e33f3429de43244098"><div class="ttname"><a href="classarm__compute_1_1_dimensions.xhtml#a691c9cb93365c2e33f3429de43244098">arm_compute::Dimensions::y</a></div><div class="ttdeci">T y() const </div><div class="ttdoc">Alias to access the size of the second dimension. </div><div class="ttdef"><b>Definition:</b> <a href="_dimensions_8h_source.xhtml#l00086">Dimensions.h:86</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100230<div class="ttc" id="classarm__compute_1_1_n_e_pooling_layer_xhtml_a6fa6e4b65796fd0bf43da9b4d617d568"><div class="ttname"><a href="classarm__compute_1_1_n_e_pooling_layer.xhtml#a6fa6e4b65796fd0bf43da9b4d617d568">arm_compute::NEPoolingLayer::configure</a></div><div class="ttdeci">void configure(ITensor *input, ITensor *output, const PoolingLayerInfo &amp;pool_info)</div><div class="ttdoc">Set the input and output tensors. </div></div>
231<div class="ttc" id="classarm__compute_1_1_i_n_e_simple_function_xhtml_ab5fd6e96c07aaaed2747c7e16ed5951e"><div class="ttname"><a href="classarm__compute_1_1_i_n_e_simple_function.xhtml#ab5fd6e96c07aaaed2747c7e16ed5951e">arm_compute::INESimpleFunction::run</a></div><div class="ttdeci">void run() overridefinal</div><div class="ttdoc">Run the kernels contained in the function. </div></div>
Kaizen8938bd32017-09-28 14:38:23 +0100232<div class="ttc" id="classarm__compute_1_1_n_e_activation_layer_xhtml_adfb5ef37594fc9371c4a2b95e3d5e31b"><div class="ttname"><a href="classarm__compute_1_1_n_e_activation_layer.xhtml#adfb5ef37594fc9371c4a2b95e3d5e31b">arm_compute::NEActivationLayer::configure</a></div><div class="ttdeci">void configure(ITensor *input, ITensor *output, ActivationLayerInfo activation_info)</div><div class="ttdoc">Set the input and output tensor. </div></div>
Kaizenbf8b01d2017-10-12 14:26:51 +0100233<div class="ttc" id="classarm__compute_1_1_n_e_pooling_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1_n_e_pooling_layer.xhtml">arm_compute::NEPoolingLayer</a></div><div class="ttdoc">Basic function to simulate a pooling layer with the specified pooling operation. </div><div class="ttdef"><b>Definition:</b> <a href="_n_e_pooling_layer_8h_source.xhtml#l00042">NEPoolingLayer.h:42</a></div></div>
234<div class="ttc" id="classarm__compute_1_1_allocator_xhtml"><div class="ttname"><a href="classarm__compute_1_1_allocator.xhtml">arm_compute::Allocator</a></div><div class="ttdoc">Default malloc allocator implementation. </div><div class="ttdef"><b>Definition:</b> <a href="_allocator_8h_source.xhtml#l00034">Allocator.h:34</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100235<div class="ttc" id="classarm__compute_1_1_tensor_allocator_xhtml_a3014ce2f4215e8a44331aa5daf3ba0d4"><div class="ttname"><a href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">arm_compute::TensorAllocator::init</a></div><div class="ttdeci">void init(const TensorAllocator &amp;allocator, const Coordinates &amp;coords, TensorInfo sub_info)</div><div class="ttdoc">Shares the same backing memory with another tensor allocator, while the tensor info might be differen...</div></div>
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000236<div class="ttc" id="classarm__compute_1_1_tensor_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor_info.xhtml">arm_compute::TensorInfo</a></div><div class="ttdoc">Store the tensor&amp;#39;s metadata. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_info_8h_source.xhtml#l00044">TensorInfo.h:44</a></div></div>
237<div class="ttc" id="classarm__compute_1_1_pooling_layer_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_pooling_layer_info.xhtml">arm_compute::PoolingLayerInfo</a></div><div class="ttdoc">Pooling Layer Information class. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00553">Types.h:553</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100238</div><!-- fragment -->
239</div>
240</div>
241</div><!-- contents -->
242</div><!-- doc-content -->
243<!-- start footer part -->
244<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
245 <ul>
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000246 <li class="navelem"><a class="el" href="dir_d28a4824dc47e487b107a5db32ef43c4.xhtml">examples</a></li><li class="navelem"><a class="el" href="neon__cnn_8cpp.xhtml">neon_cnn.cpp</a></li>
247 <li class="footer">Generated on Thu Dec 14 2017 23:48:33 for Compute Library by
Anthony Barbierdbdab852017-06-23 15:42:00 +0100248 <a href="http://www.doxygen.org/index.html">
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000249 <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.11 </li>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100250 </ul>
251</div>
252</body>
253</html>