blob: 0fd52b9e19a1bbf826a3541996bb7067fcbe31b2 [file] [log] [blame]
Anthony Barbier06ea0482018-02-22 15:45:35 +00001/*
Jenkins514be652019-02-28 12:25:18 +00002 * Copyright (c) 2018-2019 ARM Limited.
Anthony Barbier06ea0482018-02-22 15:45:35 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Jenkinsb3a371b2018-05-23 11:36:53 +010024#include "arm_compute/graph.h"
Anthony Barbier06ea0482018-02-22 15:45:35 +000025#include "support/ToolchainSupport.h"
Jenkins52ba29e2018-08-29 15:32:11 +000026#include "utils/CommonGraphOptions.h"
Anthony Barbier06ea0482018-02-22 15:45:35 +000027#include "utils/GraphUtils.h"
28#include "utils/Utils.h"
29
Anthony Barbier06ea0482018-02-22 15:45:35 +000030using namespace arm_compute::utils;
Jenkinsb3a371b2018-05-23 11:36:53 +010031using namespace arm_compute::graph::frontend;
Anthony Barbier06ea0482018-02-22 15:45:35 +000032using namespace arm_compute::graph_utils;
Anthony Barbier06ea0482018-02-22 15:45:35 +000033
Jenkinsb9abeae2018-11-22 11:58:08 +000034/** Example demonstrating how to implement Squeezenet's v1.1 network using the Compute Library's graph API */
Anthony Barbier06ea0482018-02-22 15:45:35 +000035class GraphSqueezenet_v1_1Example : public Example
36{
37public:
Jenkins52ba29e2018-08-29 15:32:11 +000038 GraphSqueezenet_v1_1Example()
39 : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "SqueezeNetV1.1")
Anthony Barbier06ea0482018-02-22 15:45:35 +000040 {
Jenkins52ba29e2018-08-29 15:32:11 +000041 }
42 bool do_setup(int argc, char **argv) override
43 {
44 // Parse arguments
45 cmd_parser.parse(argc, argv);
Jenkins0e205f72019-11-28 16:53:35 +000046 cmd_parser.validate();
Jenkins52ba29e2018-08-29 15:32:11 +000047
48 // Consume common parameters
49 common_params = consume_common_graph_parameters(common_opts);
50
51 // Return when help menu is requested
52 if(common_params.help)
53 {
54 cmd_parser.print_help(argv[0]);
55 return false;
56 }
57
58 // Checks
59 ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
Jenkins52ba29e2018-08-29 15:32:11 +000060
61 // Print parameter values
62 std::cout << common_params << std::endl;
63
64 // Get trainable parameters data path
65 std::string data_path = common_params.data_path;
Anthony Barbier06ea0482018-02-22 15:45:35 +000066
67 // Create a preprocessor object
68 const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
69 std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
70
Jenkins52ba29e2018-08-29 15:32:11 +000071 // Create input descriptor
72 const TensorShape tensor_shape = permute_shape(TensorShape(227U, 227U, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
73 TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
Anthony Barbier06ea0482018-02-22 15:45:35 +000074
Jenkins52ba29e2018-08-29 15:32:11 +000075 // Set weights trained layout
76 const DataLayout weights_layout = DataLayout::NCHW;
Anthony Barbier06ea0482018-02-22 15:45:35 +000077
Jenkins52ba29e2018-08-29 15:32:11 +000078 graph << common_params.target
79 << common_params.fast_math_hint
80 << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
Anthony Barbier06ea0482018-02-22 15:45:35 +000081 << ConvolutionLayer(
82 3U, 3U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +000083 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/conv1_w.npy", weights_layout),
Anthony Barbier06ea0482018-02-22 15:45:35 +000084 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/conv1_b.npy"),
85 PadStrideInfo(2, 2, 0, 0))
Jenkins514be652019-02-28 12:25:18 +000086 .set_name("conv1")
87 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu_conv1")
88 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool1")
Anthony Barbier06ea0482018-02-22 15:45:35 +000089 << ConvolutionLayer(
90 1U, 1U, 16U,
Jenkins52ba29e2018-08-29 15:32:11 +000091 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire2_squeeze1x1_w.npy", weights_layout),
Anthony Barbier06ea0482018-02-22 15:45:35 +000092 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire2_squeeze1x1_b.npy"),
93 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +000094 .set_name("fire2/squeeze1x1")
95 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire2/relu_squeeze1x1");
96 graph << get_expand_fire_node(data_path, "fire2", weights_layout, 64U, 64U).set_name("fire2/concat");
Jenkinsb3a371b2018-05-23 11:36:53 +010097 graph << ConvolutionLayer(
Anthony Barbier06ea0482018-02-22 15:45:35 +000098 1U, 1U, 16U,
Jenkins52ba29e2018-08-29 15:32:11 +000099 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire3_squeeze1x1_w.npy", weights_layout),
Anthony Barbier06ea0482018-02-22 15:45:35 +0000100 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire3_squeeze1x1_b.npy"),
101 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000102 .set_name("fire3/squeeze1x1")
103 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire3/relu_squeeze1x1");
104 graph << get_expand_fire_node(data_path, "fire3", weights_layout, 64U, 64U).set_name("fire3/concat");
105 graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool3")
Anthony Barbier06ea0482018-02-22 15:45:35 +0000106 << ConvolutionLayer(
107 1U, 1U, 32U,
Jenkins52ba29e2018-08-29 15:32:11 +0000108 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire4_squeeze1x1_w.npy", weights_layout),
Anthony Barbier06ea0482018-02-22 15:45:35 +0000109 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire4_squeeze1x1_b.npy"),
110 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000111 .set_name("fire4/squeeze1x1")
112 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire4/relu_squeeze1x1");
113 graph << get_expand_fire_node(data_path, "fire4", weights_layout, 128U, 128U).set_name("fire4/concat");
Jenkinsb3a371b2018-05-23 11:36:53 +0100114 graph << ConvolutionLayer(
Anthony Barbier06ea0482018-02-22 15:45:35 +0000115 1U, 1U, 32U,
Jenkins52ba29e2018-08-29 15:32:11 +0000116 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire5_squeeze1x1_w.npy", weights_layout),
Anthony Barbier06ea0482018-02-22 15:45:35 +0000117 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire5_squeeze1x1_b.npy"),
118 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000119 .set_name("fire5/squeeze1x1")
120 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire5/relu_squeeze1x1");
121 graph << get_expand_fire_node(data_path, "fire5", weights_layout, 128U, 128U).set_name("fire5/concat");
122 graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL))).set_name("pool5")
Anthony Barbier06ea0482018-02-22 15:45:35 +0000123 << ConvolutionLayer(
124 1U, 1U, 48U,
Jenkins52ba29e2018-08-29 15:32:11 +0000125 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire6_squeeze1x1_w.npy", weights_layout),
Anthony Barbier06ea0482018-02-22 15:45:35 +0000126 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire6_squeeze1x1_b.npy"),
127 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000128 .set_name("fire6/squeeze1x1")
129 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire6/relu_squeeze1x1");
130 graph << get_expand_fire_node(data_path, "fire6", weights_layout, 192U, 192U).set_name("fire6/concat");
Jenkinsb3a371b2018-05-23 11:36:53 +0100131 graph << ConvolutionLayer(
Anthony Barbier06ea0482018-02-22 15:45:35 +0000132 1U, 1U, 48U,
Jenkins52ba29e2018-08-29 15:32:11 +0000133 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire7_squeeze1x1_w.npy", weights_layout),
Anthony Barbier06ea0482018-02-22 15:45:35 +0000134 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire7_squeeze1x1_b.npy"),
135 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000136 .set_name("fire7/squeeze1x1")
137 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire7/relu_squeeze1x1");
138 graph << get_expand_fire_node(data_path, "fire7", weights_layout, 192U, 192U).set_name("fire7/concat");
Jenkinsb3a371b2018-05-23 11:36:53 +0100139 graph << ConvolutionLayer(
Anthony Barbier06ea0482018-02-22 15:45:35 +0000140 1U, 1U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +0000141 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire8_squeeze1x1_w.npy", weights_layout),
Anthony Barbier06ea0482018-02-22 15:45:35 +0000142 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire8_squeeze1x1_b.npy"),
143 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000144 .set_name("fire8/squeeze1x1")
145 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire8/relu_squeeze1x1");
146 graph << get_expand_fire_node(data_path, "fire8", weights_layout, 256U, 256U).set_name("fire8/concat");
Jenkinsb3a371b2018-05-23 11:36:53 +0100147 graph << ConvolutionLayer(
Anthony Barbier06ea0482018-02-22 15:45:35 +0000148 1U, 1U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +0000149 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire9_squeeze1x1_w.npy", weights_layout),
Anthony Barbier06ea0482018-02-22 15:45:35 +0000150 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/fire9_squeeze1x1_b.npy"),
151 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000152 .set_name("fire9/squeeze1x1")
153 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("fire9/relu_squeeze1x1");
154 graph << get_expand_fire_node(data_path, "fire9", weights_layout, 256U, 256U).set_name("fire9/concat");
Jenkinsb3a371b2018-05-23 11:36:53 +0100155 graph << ConvolutionLayer(
Anthony Barbier06ea0482018-02-22 15:45:35 +0000156 1U, 1U, 1000U,
Jenkins52ba29e2018-08-29 15:32:11 +0000157 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/conv10_w.npy", weights_layout),
Anthony Barbier06ea0482018-02-22 15:45:35 +0000158 get_weights_accessor(data_path, "/cnn_data/squeezenet_v1_1_model/conv10_b.npy"),
159 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000160 .set_name("conv10")
161 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu_conv10")
162 << PoolingLayer(PoolingLayerInfo(PoolingType::AVG)).set_name("pool10")
163 << FlattenLayer().set_name("flatten")
164 << SoftmaxLayer().set_name("prob")
Jenkins52ba29e2018-08-29 15:32:11 +0000165 << OutputLayer(get_output_accessor(common_params, 5));
Anthony Barbier06ea0482018-02-22 15:45:35 +0000166
Jenkinsb3a371b2018-05-23 11:36:53 +0100167 // Finalize graph
168 GraphConfig config;
Jenkins52ba29e2018-08-29 15:32:11 +0000169 config.num_threads = common_params.threads;
170 config.use_tuner = common_params.enable_tuner;
Jenkins4ba87db2019-05-23 17:11:51 +0100171 config.tuner_mode = common_params.tuner_mode;
Jenkins52ba29e2018-08-29 15:32:11 +0000172 config.tuner_file = common_params.tuner_file;
173
174 graph.finalize(common_params.target, config);
175
176 return true;
Anthony Barbier06ea0482018-02-22 15:45:35 +0000177 }
178 void do_run() override
179 {
180 // Run graph
181 graph.run();
182 }
183
184private:
Jenkins52ba29e2018-08-29 15:32:11 +0000185 CommandLineParser cmd_parser;
186 CommonGraphOptions common_opts;
187 CommonGraphParams common_params;
188 Stream graph;
Anthony Barbier06ea0482018-02-22 15:45:35 +0000189
Jenkinsb9abeae2018-11-22 11:58:08 +0000190 ConcatLayer get_expand_fire_node(const std::string &data_path, std::string &&param_path, DataLayout weights_layout,
Jenkins52ba29e2018-08-29 15:32:11 +0000191 unsigned int expand1_filt, unsigned int expand3_filt)
Anthony Barbier06ea0482018-02-22 15:45:35 +0000192 {
193 std::string total_path = "/cnn_data/squeezenet_v1_1_model/" + param_path + "_";
Jenkinsb3a371b2018-05-23 11:36:53 +0100194 SubStream i_a(graph);
Anthony Barbier06ea0482018-02-22 15:45:35 +0000195 i_a << ConvolutionLayer(
196 1U, 1U, expand1_filt,
Jenkins52ba29e2018-08-29 15:32:11 +0000197 get_weights_accessor(data_path, total_path + "expand1x1_w.npy", weights_layout),
Anthony Barbier06ea0482018-02-22 15:45:35 +0000198 get_weights_accessor(data_path, total_path + "expand1x1_b.npy"),
199 PadStrideInfo(1, 1, 0, 0))
Jenkins514be652019-02-28 12:25:18 +0000200 .set_name(param_path + "/expand1x1")
201 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_expand1x1");
Anthony Barbier06ea0482018-02-22 15:45:35 +0000202
Jenkinsb3a371b2018-05-23 11:36:53 +0100203 SubStream i_b(graph);
Anthony Barbier06ea0482018-02-22 15:45:35 +0000204 i_b << ConvolutionLayer(
205 3U, 3U, expand3_filt,
Jenkins52ba29e2018-08-29 15:32:11 +0000206 get_weights_accessor(data_path, total_path + "expand3x3_w.npy", weights_layout),
Anthony Barbier06ea0482018-02-22 15:45:35 +0000207 get_weights_accessor(data_path, total_path + "expand3x3_b.npy"),
208 PadStrideInfo(1, 1, 1, 1))
Jenkins514be652019-02-28 12:25:18 +0000209 .set_name(param_path + "/expand3x3")
210 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(param_path + "/relu_expand3x3");
Anthony Barbier06ea0482018-02-22 15:45:35 +0000211
Jenkinsb9abeae2018-11-22 11:58:08 +0000212 return ConcatLayer(std::move(i_a), std::move(i_b));
Anthony Barbier06ea0482018-02-22 15:45:35 +0000213 }
214};
215
216/** Main program for Squeezenet v1.1
217 *
Jenkinsb9abeae2018-11-22 11:58:08 +0000218 * Model is based on:
219 * https://arxiv.org/abs/1602.07360
220 * "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size"
221 * Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, Kurt Keutzer
222 *
Jenkins514be652019-02-28 12:25:18 +0000223 * Provenance: https://github.com/DeepScale/SqueezeNet/blob/master/SqueezeNet_v1.1/squeezenet_v1.1.caffemodel
224 *
Jenkins52ba29e2018-08-29 15:32:11 +0000225 * @note To list all the possible arguments execute the binary appended with the --help option
226 *
Anthony Barbier06ea0482018-02-22 15:45:35 +0000227 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +0000228 * @param[in] argv Arguments
Anthony Barbier06ea0482018-02-22 15:45:35 +0000229 */
230int main(int argc, char **argv)
231{
232 return arm_compute::utils::run_example<GraphSqueezenet_v1_1Example>(argc, argv);
233}