Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2017 ARM Limited. |
| 3 | * |
| 4 | * SPDX-License-Identifier: MIT |
| 5 | * |
| 6 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 7 | * of this software and associated documentation files (the "Software"), to |
| 8 | * deal in the Software without restriction, including without limitation the |
| 9 | * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or |
| 10 | * sell copies of the Software, and to permit persons to whom the Software is |
| 11 | * furnished to do so, subject to the following conditions: |
| 12 | * |
| 13 | * The above copyright notice and this permission notice shall be included in all |
| 14 | * copies or substantial portions of the Software. |
| 15 | * |
| 16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 19 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 22 | * SOFTWARE. |
| 23 | */ |
| 24 | #include "arm_compute/runtime/CL/functions/CLConvolutionLayer.h" |
| 25 | |
| 26 | #include "arm_compute/core/PixelValue.h" |
| 27 | #include "arm_compute/core/Utils.h" |
| 28 | #include "arm_compute/core/Validate.h" |
| 29 | #include "arm_compute/runtime/CL/CLScheduler.h" |
| 30 | |
| 31 | #include <cmath> |
| 32 | #include <tuple> |
| 33 | |
| 34 | using namespace arm_compute; |
| 35 | |
| 36 | CLConvolutionLayer::CLConvolutionLayer() |
| 37 | : _input_im2col_kernel(), _weights_reshape_kernel(), _input_interleave_kernel(), _weights_transposed_kernel(), _mm_kernel(), _output_col2im_kernel(), _input_im2col_reshaped(), |
| 38 | _input_interleaved_reshaped(), _weights_reshaped(), _weights_transposed(), _gemm_output(), _is_first_run(false), _has_bias(false), _is_fc(false) |
| 39 | { |
| 40 | } |
| 41 | |
| 42 | void CLConvolutionLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info) |
| 43 | { |
| 44 | ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32); |
| 45 | ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::F16, DataType::F32); |
| 46 | ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::F16, DataType::F32); |
| 47 | ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output); |
| 48 | ARM_COMPUTE_ERROR_ON(weights->info()->dimension(2) != input->info()->dimension(2)); |
| 49 | ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4); |
| 50 | |
| 51 | if(biases != nullptr) |
| 52 | { |
| 53 | ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::F16, DataType::F32); |
| 54 | ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases); |
| 55 | ARM_COMPUTE_ERROR_ON(biases->info()->dimension(0) != weights->info()->dimension(3)); |
| 56 | ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1); |
| 57 | } |
| 58 | |
| 59 | _has_bias = (biases != nullptr); |
| 60 | _is_first_run = true; |
| 61 | |
| 62 | // Get parameters for conv_info |
| 63 | unsigned int stride_x, stride_y, pad_x, pad_y = 0; |
| 64 | std::tie(stride_x, stride_y) = conv_info.stride(); |
| 65 | std::tie(pad_x, pad_y) = conv_info.pad(); |
| 66 | |
| 67 | bool is_same_dimension = true; |
| 68 | // Make sure the input and weights have same low three dimensions |
| 69 | for(int i = 0; i < 3; i++) |
| 70 | { |
| 71 | is_same_dimension = (is_same_dimension) && (input->info()->dimension(i) == weights->info()->dimension(i)); |
| 72 | } |
| 73 | |
| 74 | // Run the fully connected path if is_same_dimension is true and conv_stride_x/conv_stride_y are 1, and conv_pad_x/conv_pad_y are 0 and skip col2im |
| 75 | _is_fc = (is_same_dimension) && ((stride_x & stride_y) == 1) && ((pad_x | pad_y) == 0); |
| 76 | |
| 77 | // Get convolved dimensions |
| 78 | unsigned int conv_w = 0; |
| 79 | unsigned int conv_h = 0; |
| 80 | |
| 81 | std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), weights->info()->dimension(0), |
| 82 | stride_x, stride_y, pad_x, pad_y, conv_info.round()); |
| 83 | |
| 84 | // Create tensor to store the reshaped weights |
| 85 | const size_t mat_weights_cols = weights->info()->dimension(3); |
| 86 | const size_t mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + ((_has_bias) ? 1 : 0); |
| 87 | const TensorShape shape_wr(mat_weights_cols, mat_weights_rows); |
| 88 | _weights_reshaped.allocator()->init(TensorInfo(shape_wr, 1, weights->info()->data_type())); |
| 89 | |
| 90 | // Create tensor to store transposed weights |
| 91 | TensorShape shape_wt(mat_weights_rows * 4, static_cast<size_t>(std::ceil(mat_weights_cols / 4.f))); |
| 92 | TensorInfo info_wt(shape_wt, 1, weights->info()->data_type()); |
| 93 | _weights_transposed.allocator()->init(info_wt); |
| 94 | |
| 95 | // Create tensor to store im2col reshaped inputs |
| 96 | const size_t mat_input_cols = mat_weights_rows; |
| 97 | const size_t mat_input_rows = _is_fc ? (input->info()->dimension(3)) : (conv_w * conv_h); |
| 98 | TensorShape shape_im2col = input->info()->tensor_shape(); |
| 99 | shape_im2col.set(0, mat_input_cols); |
| 100 | shape_im2col.set(1, mat_input_rows); |
| 101 | shape_im2col.set(2, 1); |
| 102 | if(_is_fc) |
| 103 | { |
| 104 | shape_im2col.set(3, 1); |
| 105 | } |
| 106 | _input_im2col_reshaped.allocator()->init(TensorInfo(shape_im2col, 1, input->info()->data_type())); |
| 107 | |
| 108 | // Create tensor to prepare input tensor for GEMM |
| 109 | TensorShape shape_interleaved = shape_im2col; |
| 110 | shape_interleaved.set(0, shape_interleaved.x() * 4); |
| 111 | shape_interleaved.set(1, std::ceil(static_cast<float>(shape_interleaved.y()) / 4)); |
| 112 | _input_interleaved_reshaped.allocator()->init(TensorInfo(shape_interleaved, 1, input->info()->data_type())); |
| 113 | |
| 114 | // Create GEMM output tensor |
| 115 | TensorShape shape_gemm = _input_im2col_reshaped.info()->tensor_shape(); |
| 116 | shape_gemm.set(0, mat_weights_cols); |
| 117 | shape_gemm.set(1, mat_input_rows); |
| 118 | _gemm_output.allocator()->init(TensorInfo(shape_gemm, 1, input->info()->data_type())); |
| 119 | |
| 120 | // Configure kernels |
| 121 | _input_im2col_kernel.configure(input, &_input_im2col_reshaped, std::make_pair(conv_w, conv_h), conv_info, _has_bias); |
| 122 | _input_interleave_kernel.configure(&_input_im2col_reshaped, &_input_interleaved_reshaped); |
| 123 | _weights_reshape_kernel.configure(weights, biases, &_weights_reshaped); |
| 124 | _weights_transposed_kernel.configure(&_weights_reshaped, &_weights_transposed); |
| 125 | if(_is_fc) |
| 126 | { |
| 127 | _mm_kernel.configure(&_input_interleaved_reshaped, &_weights_transposed, output, 1.0f); |
| 128 | } |
| 129 | else |
| 130 | { |
| 131 | _mm_kernel.configure(&_input_interleaved_reshaped, &_weights_transposed, &_gemm_output, 1.0f); |
| 132 | _output_col2im_kernel.configure(&_gemm_output, output, std::make_pair(conv_w, conv_h)); |
| 133 | } |
| 134 | |
| 135 | // Allocate intermediate tensors |
| 136 | _weights_reshaped.allocator()->allocate(); |
| 137 | _weights_transposed.allocator()->allocate(); |
| 138 | _input_im2col_reshaped.allocator()->allocate(); |
| 139 | _input_interleaved_reshaped.allocator()->allocate(); |
| 140 | _gemm_output.allocator()->allocate(); |
| 141 | } |
| 142 | |
| 143 | void CLConvolutionLayer::run() |
| 144 | { |
| 145 | // Run weights reshaping (Runs once for every configure) |
| 146 | if(_is_first_run) |
| 147 | { |
| 148 | _is_first_run = false; |
| 149 | CLScheduler::get().enqueue(_weights_reshape_kernel); |
| 150 | CLScheduler::get().enqueue(_weights_transposed_kernel); |
| 151 | } |
| 152 | |
| 153 | // Run input reshaping |
| 154 | CLScheduler::get().enqueue(_input_im2col_kernel); |
| 155 | CLScheduler::get().enqueue(_input_interleave_kernel); |
| 156 | |
| 157 | // Runs matrix multiply on reshaped matrices |
| 158 | CLScheduler::get().enqueue(_mm_kernel); |
| 159 | |
| 160 | // Reshape output matrix |
| 161 | |
| 162 | if(!_is_fc) |
| 163 | { |
| 164 | CLScheduler::get().enqueue(_output_col2im_kernel, false); |
| 165 | } |
| 166 | } |