blob: 2ca72c54cc7d9d3a08f57cb18550d8a23c14d903 [file] [log] [blame]
Anthony Barbier871448e2017-03-24 14:54:29 +00001/*
2 * Copyright (c) 2017 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/CL/functions/CLFullyConnectedLayer.h"
25
26#include "arm_compute/core/Validate.h"
27#include "arm_compute/runtime/CL/CLScheduler.h"
28
29using namespace arm_compute;
30
31CLFullyConnectedLayer::CLFullyConnectedLayer()
32 : _conv_function(), _gemm_function(), _transpose_kernel(), _acc_biases_kernel(), _run_func(), _weights_transpose(), _is_first_run(true), _run_acc_biases(false)
33{
34}
35
36void CLFullyConnectedLayer::configure(ICLTensor *input, ICLTensor *weights, const ICLTensor *biases, ICLTensor *output)
37{
38 ARM_COMPUTE_ERROR_ON((weights->info()->num_dimensions() != 2) && (weights->info()->num_dimensions() != 4));
39
40 // Make sure that in the fully connected layer connected to fully connected layer case, the first dimension of the weights and input are same.
41 ARM_COMPUTE_ERROR_ON((weights->info()->num_dimensions() == 2) && (input->info()->dimension(0) != weights->info()->dimension(0)));
42
43 if(weights->info()->num_dimensions() != 2)
44 {
45 _conv_function.configure(input, weights, biases, output, PadStrideInfo(1, 1, 0, 0, DimensionRoundingType::FLOOR));
46 _run_func = &CLFullyConnectedLayer::run_conv;
47 return;
48 }
49
50 TensorShape shape_trans(weights->info()->dimension(1), weights->info()->dimension(0));
51 _weights_transpose.allocator()->init(TensorInfo(shape_trans, 1, weights->info()->data_type()));
52
53 // Configure kernels
54 _transpose_kernel.configure(weights, &_weights_transpose);
55 _gemm_function.configure(input, &_weights_transpose, nullptr, output, 1.0f, 0.0f);
56 if(biases != nullptr)
57 {
58 _acc_biases_kernel.configure(output, biases);
59 _run_acc_biases = true;
60 }
61
62 _run_func = &CLFullyConnectedLayer::run_fc;
63
64 // Allocate intermediate buffers
65 _weights_transpose.allocator()->allocate();
66}
67
68void CLFullyConnectedLayer::run_conv()
69{
70 _conv_function.run();
71}
72
73void CLFullyConnectedLayer::run_fc()
74{
75 if(_is_first_run)
76 {
77 _is_first_run = false;
78 CLScheduler::get().enqueue(_transpose_kernel);
79 }
80
81 _gemm_function.run();
82
83 if(_run_acc_biases)
84 {
85 CLScheduler::get().enqueue(_acc_biases_kernel);
86 }
87}
88
89void CLFullyConnectedLayer::run()
90{
91 ARM_COMPUTE_ERROR_ON(_run_func == nullptr);
92 (this->*_run_func)();
93}