blob: 740805412741327e3241e02321135e2825f51d13 [file] [log] [blame]
Anthony Barbier871448e2017-03-24 14:54:29 +00001/*
2 * Copyright (c) 2017 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/CL/functions/CLGEMM.h"
25
26#include "arm_compute/core/CL/ICLTensor.h"
27#include "arm_compute/core/CL/kernels/CLGEMMInterleave4x4Kernel.h"
28#include "arm_compute/core/CL/kernels/CLGEMMMatrixAdditionKernel.h"
29#include "arm_compute/core/CL/kernels/CLGEMMMatrixMultiplyKernel.h"
30#include "arm_compute/core/CL/kernels/CLGEMMTranspose1xWKernel.h"
31#include "arm_compute/core/Error.h"
32#include "arm_compute/core/Helpers.h"
33#include "arm_compute/core/TensorInfo.h"
34#include "arm_compute/core/Types.h"
35#include "arm_compute/core/Validate.h"
36#include "arm_compute/runtime/CL/CLScheduler.h"
37#include "arm_compute/runtime/ITensorAllocator.h"
38
39using namespace arm_compute;
40
41CLGEMM::CLGEMM()
42 : _interleave_kernel(), _transpose_kernel(), _mm_kernel(), _ma_kernel(), _tmp_a(), _tmp_b(), _run_vector_matrix_multiplication(false), _run_addition(false)
43{
44}
45
46void CLGEMM::configure(const ICLTensor *a, const ICLTensor *b, const ICLTensor *c, ICLTensor *output, float alpha, float beta)
47{
48 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::F32, DataType::F16);
49 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(b, 1, DataType::F32, DataType::F16);
50 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::F32, DataType::F16);
51
52 if(c != nullptr)
53 {
54 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(c, 1, DataType::F32, DataType::F16);
55 ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(a, c);
56 ARM_COMPUTE_ERROR_ON_MSG(a->info()->dimension(1) != c->info()->dimension(1), "The C matrix must have the same number of rows as the matrix A");
57 ARM_COMPUTE_ERROR_ON_MSG(b->info()->dimension(0) != c->info()->dimension(0), "The C matrix must have the same number of columns as the matrix C");
58 ARM_COMPUTE_ERROR_ON_MSG(c->info()->dimension(0) != output->info()->dimension(0), "The C matrix must have the same number of rows as the output matrix");
59 ARM_COMPUTE_ERROR_ON_MSG(c->info()->dimension(1) != output->info()->dimension(1), "The C matrix must have the same number of columns as the output matrix");
60 }
61
62 ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(a, b, output);
63 ARM_COMPUTE_ERROR_ON_MSG(a->info()->dimension(0) != b->info()->dimension(1), "The product AB is defined only if the number of columns in A is equal to the number of rows in B");
64
65 // Check if the first input tensor is a vector. If so, all the kernels for reshaping the tensors can be skipped
66 if(a->info()->dimension(1) != 1)
67 {
68 _run_vector_matrix_multiplication = false;
69
70 TensorShape shape_tmp_a = a->info()->tensor_shape();
71 TensorShape shape_tmp_b = b->info()->tensor_shape();
72
73 shape_tmp_a.set(0, a->info()->dimension(0) * 4);
74 shape_tmp_a.set(1, std::ceil(a->info()->dimension(1) / 4.0f));
75
76 if(DataType::F32 == a->info()->data_type())
77 {
78 shape_tmp_b.set(0, b->info()->dimension(1) * 4);
79 shape_tmp_b.set(1, std::ceil(b->info()->dimension(0) / 4.0f));
80 }
81 else if(DataType::F16 == a->info()->data_type())
82 {
83 shape_tmp_b.set(0, b->info()->dimension(1) * 8);
84 shape_tmp_b.set(1, std::ceil(b->info()->dimension(0) / 8.0f));
85 }
86 else
87 {
88 ARM_COMPUTE_ERROR("DataType not supported");
89 }
90
91 TensorInfo info_a(shape_tmp_a, 1, a->info()->data_type());
92 _tmp_a.allocator()->init(info_a);
93
94 TensorInfo info_b(shape_tmp_b, 1, b->info()->data_type());
95 _tmp_b.allocator()->init(info_b);
96
97 // Configure interleave kernel
98 _interleave_kernel.configure(a, &_tmp_a);
99
100 // Configure transpose kernel
101 _transpose_kernel.configure(b, &_tmp_b);
102
103 // Configure matrix multiply kernel
104 _mm_kernel.configure(&_tmp_a, &_tmp_b, output, alpha);
105
106 // Allocate intermediate tensors
107 _tmp_a.allocator()->allocate();
108 _tmp_b.allocator()->allocate();
109 }
110 else // The first input tensor is a vector
111 {
112 _run_vector_matrix_multiplication = true;
113
114 // Configure the matrix multiply kernel
115 _mm_kernel.configure(a, b, output, alpha);
116 }
117
118 // Configure matrix addition kernel
119 if(beta != 0 && c != nullptr)
120 {
121 _ma_kernel.configure(c, output, beta);
122 _run_addition = true;
123 }
124}
125
126void CLGEMM::run()
127{
128 if(!_run_vector_matrix_multiplication)
129 {
130 // Run interleave kernel
131 CLScheduler::get().enqueue(_interleave_kernel, false);
132
133 // Run transpose kernel
134 CLScheduler::get().enqueue(_transpose_kernel, false);
135 }
136
137 // Run matrix multiply kernel
138 CLScheduler::get().enqueue(_mm_kernel, !_run_addition);
139
140 // Run matrix addition kernel
141 if(_run_addition)
142 {
143 CLScheduler::get().enqueue(_ma_kernel);
144 }
145}