Anthony Barbier | 871448e | 2017-03-24 14:54:29 +0000 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2016, 2017 ARM Limited. |
| 3 | * |
| 4 | * SPDX-License-Identifier: MIT |
| 5 | * |
| 6 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 7 | * of this software and associated documentation files (the "Software"), to |
| 8 | * deal in the Software without restriction, including without limitation the |
| 9 | * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or |
| 10 | * sell copies of the Software, and to permit persons to whom the Software is |
| 11 | * furnished to do so, subject to the following conditions: |
| 12 | * |
| 13 | * The above copyright notice and this permission notice shall be included in all |
| 14 | * copies or substantial portions of the Software. |
| 15 | * |
| 16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 19 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 22 | * SOFTWARE. |
| 23 | */ |
| 24 | #include "arm_compute/runtime/NEON/functions/NEConvolution.h" |
| 25 | |
| 26 | #include "arm_compute/core/Error.h" |
| 27 | #include "arm_compute/core/Helpers.h" |
| 28 | #include "arm_compute/core/ITensor.h" |
| 29 | #include "arm_compute/core/NEON/kernels/NEConvolutionKernel.h" |
| 30 | #include "arm_compute/core/PixelValue.h" |
| 31 | #include "arm_compute/core/TensorInfo.h" |
| 32 | #include "arm_compute/core/Utils.h" |
| 33 | #include "arm_compute/core/Validate.h" |
| 34 | #include "arm_compute/runtime/NEON/NEScheduler.h" |
| 35 | #include "arm_compute/runtime/TensorAllocator.h" |
| 36 | |
| 37 | #include <array> |
| 38 | #include <utility> |
| 39 | |
| 40 | using namespace arm_compute; |
| 41 | |
| 42 | void NEConvolution3x3::configure(ITensor *input, ITensor *output, const int16_t *conv, uint32_t scale, BorderMode border_mode, uint8_t constant_border_value) |
| 43 | { |
| 44 | auto k = arm_compute::cpp14::make_unique<NEConvolution3x3Kernel>(); |
| 45 | k->configure(input, output, conv, scale, border_mode == BorderMode::UNDEFINED); |
| 46 | _kernel = std::move(k); |
| 47 | _border_handler.configure(input, _kernel->border_size(), border_mode, PixelValue(constant_border_value)); |
| 48 | } |
| 49 | |
| 50 | NEConvolution5x5::NEConvolution5x5() |
| 51 | : _tmp(), _is_separable(false), _kernel_hor(), _kernel_vert(), _kernel(), _border_handler() |
| 52 | { |
| 53 | } |
| 54 | |
| 55 | void NEConvolution5x5::configure(ITensor *input, ITensor *output, const int16_t *conv, uint32_t scale, BorderMode border_mode, uint8_t constant_border_value) |
| 56 | { |
| 57 | ARM_COMPUTE_ERROR_ON(conv == nullptr); |
| 58 | ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8); |
| 59 | ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::S16); |
| 60 | |
| 61 | std::array<int16_t, 5> conv_col{ { 0 } }; |
| 62 | std::array<int16_t, 5> conv_row{ { 0 } }; |
| 63 | |
| 64 | _is_separable = separate_matrix(conv, conv_col.data(), conv_row.data(), 5); |
| 65 | |
| 66 | if(_is_separable) |
| 67 | { |
| 68 | DataType intermediate_type = DataType::UNKNOWN; |
| 69 | std::tie(std::ignore, intermediate_type) = data_type_for_convolution(conv_col.data(), conv_row.data(), 5); |
| 70 | |
| 71 | _tmp.allocator()->init(TensorInfo(input->info()->tensor_shape(), 1, intermediate_type)); |
| 72 | |
| 73 | if(scale == 0) |
| 74 | { |
| 75 | scale = calculate_matrix_scale(conv, 5); |
| 76 | } |
| 77 | |
| 78 | _kernel_hor.configure(input, &_tmp, conv_row.data(), border_mode == BorderMode::UNDEFINED); |
| 79 | _kernel_vert.configure(&_tmp, output, conv_col.data(), scale, border_mode == BorderMode::UNDEFINED); |
| 80 | |
| 81 | _tmp.allocator()->allocate(); |
| 82 | |
| 83 | _border_handler.configure(input, _kernel_hor.border_size(), border_mode, PixelValue(constant_border_value)); |
| 84 | } |
| 85 | else |
| 86 | { |
| 87 | _kernel.configure(input, output, conv, scale, border_mode == BorderMode::UNDEFINED); |
| 88 | _border_handler.configure(input, _kernel.border_size(), border_mode, PixelValue(constant_border_value)); |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | void NEConvolution5x5::run() |
| 93 | { |
| 94 | _border_handler.run(_border_handler.window()); |
| 95 | |
| 96 | if(_is_separable) |
| 97 | { |
| 98 | NEScheduler::get().multithread(&_kernel_hor); |
| 99 | NEScheduler::get().multithread(&_kernel_vert); |
| 100 | } |
| 101 | else |
| 102 | { |
| 103 | NEScheduler::get().multithread(&_kernel); |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | NEConvolution7x7::NEConvolution7x7() |
| 108 | : _tmp(), _is_separable(false), _kernel_hor(), _kernel_vert(), _kernel(), _border_handler() |
| 109 | { |
| 110 | } |
| 111 | |
| 112 | void NEConvolution7x7::configure(ITensor *input, ITensor *output, const int16_t *conv, uint32_t scale, BorderMode border_mode, uint8_t constant_border_value) |
| 113 | { |
| 114 | ARM_COMPUTE_ERROR_ON(conv == nullptr); |
| 115 | ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8); |
| 116 | ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::S16); |
| 117 | |
| 118 | std::array<int16_t, 7> conv_col{ { 0 } }; |
| 119 | std::array<int16_t, 7> conv_row{ { 0 } }; |
| 120 | |
| 121 | _is_separable = separate_matrix(conv, conv_col.data(), conv_row.data(), 7); |
| 122 | |
| 123 | if(_is_separable) |
| 124 | { |
| 125 | DataType intermediate_type = DataType::UNKNOWN; |
| 126 | std::tie(std::ignore, intermediate_type) = data_type_for_convolution(conv_col.data(), conv_row.data(), 7); |
| 127 | |
| 128 | _tmp.allocator()->init(TensorInfo(input->info()->tensor_shape(), 1, intermediate_type)); |
| 129 | |
| 130 | if(scale == 0) |
| 131 | { |
| 132 | scale = calculate_matrix_scale(conv, 7); |
| 133 | } |
| 134 | |
| 135 | _kernel_hor.configure(input, &_tmp, conv_row.data(), border_mode == BorderMode::UNDEFINED); |
| 136 | _kernel_vert.configure(&_tmp, output, conv_col.data(), scale, border_mode == BorderMode::UNDEFINED); |
| 137 | |
| 138 | _tmp.allocator()->allocate(); |
| 139 | |
| 140 | _border_handler.configure(input, _kernel_hor.border_size(), border_mode, PixelValue(constant_border_value)); |
| 141 | } |
| 142 | else |
| 143 | { |
| 144 | _kernel.configure(input, output, conv, scale, border_mode == BorderMode::UNDEFINED); |
| 145 | _border_handler.configure(input, _kernel.border_size(), border_mode, PixelValue(constant_border_value)); |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | void NEConvolution7x7::run() |
| 150 | { |
| 151 | _border_handler.run(_border_handler.window()); |
| 152 | |
| 153 | if(_is_separable) |
| 154 | { |
| 155 | NEScheduler::get().multithread(&_kernel_hor); |
| 156 | NEScheduler::get().multithread(&_kernel_vert); |
| 157 | } |
| 158 | else |
| 159 | { |
| 160 | NEScheduler::get().multithread(&_kernel); |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | NEConvolution9x9::NEConvolution9x9() |
| 165 | : _tmp(), _is_separable(false), _kernel_hor(), _kernel_vert(), _kernel(), _border_handler() |
| 166 | { |
| 167 | } |
| 168 | |
| 169 | void NEConvolution9x9::configure(ITensor *input, ITensor *output, const int16_t *conv, uint32_t scale, BorderMode border_mode, uint8_t constant_border_value) |
| 170 | { |
| 171 | ARM_COMPUTE_ERROR_ON(conv == nullptr); |
| 172 | ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8); |
| 173 | ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::U8, DataType::S16); |
| 174 | |
| 175 | std::array<int16_t, 9> conv_col{ { 0 } }; |
| 176 | std::array<int16_t, 9> conv_row{ { 0 } }; |
| 177 | |
| 178 | _is_separable = separate_matrix(conv, conv_col.data(), conv_row.data(), 9); |
| 179 | |
| 180 | if(_is_separable) |
| 181 | { |
| 182 | DataType intermediate_type = DataType::UNKNOWN; |
| 183 | std::tie(std::ignore, intermediate_type) = data_type_for_convolution(conv_col.data(), conv_row.data(), 9); |
| 184 | |
| 185 | _tmp.allocator()->init(TensorInfo(input->info()->tensor_shape(), 1, intermediate_type)); |
| 186 | |
| 187 | if(scale == 0) |
| 188 | { |
| 189 | scale = calculate_matrix_scale(conv, 9); |
| 190 | } |
| 191 | |
| 192 | _kernel_hor.configure(input, &_tmp, conv_row.data(), border_mode == BorderMode::UNDEFINED); |
| 193 | _kernel_vert.configure(&_tmp, output, conv_col.data(), scale, border_mode == BorderMode::UNDEFINED); |
| 194 | |
| 195 | _tmp.allocator()->allocate(); |
| 196 | |
| 197 | _border_handler.configure(input, _kernel_hor.border_size(), border_mode, PixelValue(constant_border_value)); |
| 198 | } |
| 199 | else |
| 200 | { |
| 201 | _kernel.configure(input, output, conv, scale, border_mode == BorderMode::UNDEFINED); |
| 202 | _border_handler.configure(input, _kernel.border_size(), border_mode, PixelValue(constant_border_value)); |
| 203 | } |
| 204 | } |
| 205 | |
| 206 | void NEConvolution9x9::run() |
| 207 | { |
| 208 | _border_handler.run(_border_handler.window()); |
| 209 | |
| 210 | if(_is_separable) |
| 211 | { |
| 212 | NEScheduler::get().multithread(&_kernel_hor); |
| 213 | NEScheduler::get().multithread(&_kernel_vert); |
| 214 | } |
| 215 | else |
| 216 | { |
| 217 | NEScheduler::get().multithread(&_kernel); |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | void NEConvolutionRectangle::configure(ITensor *input, ITensor *output, const int16_t *conv, uint32_t rows, uint32_t cols, uint32_t scale, BorderMode border_mode, uint8_t constant_border_value) |
| 222 | { |
| 223 | auto k = arm_compute::cpp14::make_unique<NEConvolutionRectangleKernel>(); |
| 224 | k->configure(input, output, conv, rows, cols, scale, border_mode == BorderMode::UNDEFINED); |
| 225 | _kernel = std::move(k); |
| 226 | _border_handler.configure(input, _kernel->border_size(), border_mode, PixelValue(constant_border_value)); |
| 227 | } |