blob: 9e07bae3296087e214d27ad45d6f03e17d8360e0 [file] [log] [blame]
Anthony Barbierdbdab852017-06-23 15:42:00 +01001<!-- HTML header for doxygen 1.8.9.1-->
2<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3<html xmlns="http://www.w3.org/1999/xhtml">
4<head>
5<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
6<meta http-equiv="X-UA-Compatible" content="IE=9"/>
Kaizen8938bd32017-09-28 14:38:23 +01007<meta name="generator" content="Doxygen 1.8.6"/>
Anthony Barbierdbdab852017-06-23 15:42:00 +01008<meta name="robots" content="NOINDEX, NOFOLLOW" /> <!-- Prevent indexing by search engines -->
9<title>Compute Library: arm_compute::test Namespace Reference</title>
10<link href="tabs.css" rel="stylesheet" type="text/css"/>
11<script type="text/javascript" src="jquery.js"></script>
12<script type="text/javascript" src="dynsections.js"></script>
13<link href="navtree.css" rel="stylesheet" type="text/css"/>
14<script type="text/javascript" src="resize.js"></script>
Anthony Barbierdbdab852017-06-23 15:42:00 +010015<script type="text/javascript" src="navtree.js"></script>
16<script type="text/javascript">
17 $(document).ready(initResizable);
18 $(window).load(resizeHeight);
19</script>
20<link href="search/search.css" rel="stylesheet" type="text/css"/>
Anthony Barbierdbdab852017-06-23 15:42:00 +010021<script type="text/javascript" src="search/search.js"></script>
22<script type="text/javascript">
Kaizen8938bd32017-09-28 14:38:23 +010023 $(document).ready(function() { searchBox.OnSelectItem(0); });
Anthony Barbierdbdab852017-06-23 15:42:00 +010024</script>
25<script type="text/x-mathjax-config">
26 MathJax.Hub.Config({
27 extensions: ["tex2jax.js"],
28 jax: ["input/TeX","output/HTML-CSS"],
29});
Kaizen8938bd32017-09-28 14:38:23 +010030</script><script src="http://cdn.mathjax.org/mathjax/latest/MathJax.js"></script>
Anthony Barbierdbdab852017-06-23 15:42:00 +010031<link href="doxygen.css" rel="stylesheet" type="text/css" />
32</head>
33<body>
34<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
35<div id="titlearea">
36<table cellspacing="0" cellpadding="0">
37 <tbody>
38 <tr style="height: 56px;">
39 <td style="padding-left: 0.5em;">
40 <div id="projectname">Compute Library
Kaizen8938bd32017-09-28 14:38:23 +010041 &#160;<span id="projectnumber">17.09</span>
Anthony Barbierdbdab852017-06-23 15:42:00 +010042 </div>
43 </td>
44 </tr>
45 </tbody>
46</table>
47</div>
48<!-- end header part -->
Kaizen8938bd32017-09-28 14:38:23 +010049<!-- Generated by Doxygen 1.8.6 -->
Anthony Barbierdbdab852017-06-23 15:42:00 +010050<script type="text/javascript">
51var searchBox = new SearchBox("searchBox", "search",false,'Search');
52</script>
53 <div id="navrow1" class="tabs">
54 <ul class="tablist">
55 <li><a href="index.xhtml"><span>Main&#160;Page</span></a></li>
56 <li><a href="pages.xhtml"><span>Related&#160;Pages</span></a></li>
57 <li class="current"><a href="namespaces.xhtml"><span>Namespaces</span></a></li>
58 <li><a href="annotated.xhtml"><span>Data&#160;Structures</span></a></li>
59 <li><a href="files.xhtml"><span>Files</span></a></li>
60 <li>
61 <div id="MSearchBox" class="MSearchBoxInactive">
62 <span class="left">
63 <img id="MSearchSelect" src="search/mag_sel.png"
64 onmouseover="return searchBox.OnSearchSelectShow()"
65 onmouseout="return searchBox.OnSearchSelectHide()"
66 alt=""/>
67 <input type="text" id="MSearchField" value="Search" accesskey="S"
68 onfocus="searchBox.OnSearchFieldFocus(true)"
69 onblur="searchBox.OnSearchFieldFocus(false)"
70 onkeyup="searchBox.OnSearchFieldChange(event)"/>
71 </span><span class="right">
72 <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
73 </span>
74 </div>
75 </li>
76 </ul>
77 </div>
78 <div id="navrow2" class="tabs2">
79 <ul class="tablist">
80 <li><a href="namespaces.xhtml"><span>Namespace&#160;List</span></a></li>
81 <li><a href="namespacemembers.xhtml"><span>Namespace&#160;Members</span></a></li>
82 </ul>
83 </div>
84</div><!-- top -->
85<div id="side-nav" class="ui-resizable side-nav-resizable">
86 <div id="nav-tree">
87 <div id="nav-tree-contents">
88 <div id="nav-sync" class="sync"></div>
89 </div>
90 </div>
91 <div id="splitbar" style="-moz-user-select:none;"
92 class="ui-resizable-handle">
93 </div>
94</div>
95<script type="text/javascript">
96$(document).ready(function(){initNavTree('namespacearm__compute_1_1test.xhtml','');});
97</script>
98<div id="doc-content">
99<!-- window showing the filter options -->
100<div id="MSearchSelectWindow"
101 onmouseover="return searchBox.OnSearchSelectShow()"
102 onmouseout="return searchBox.OnSearchSelectHide()"
103 onkeydown="return searchBox.OnSearchSelectKey(event)">
Kaizen8938bd32017-09-28 14:38:23 +0100104<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Data Structures</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark">&#160;</span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark">&#160;</span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark">&#160;</span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark">&#160;</span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark">&#160;</span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark">&#160;</span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(9)"><span class="SelectionMark">&#160;</span>Friends</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(10)"><span class="SelectionMark">&#160;</span>Macros</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(11)"><span class="SelectionMark">&#160;</span>Pages</a></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100105
106<!-- iframe showing the search results (closed by default) -->
107<div id="MSearchResultsWindow">
108<iframe src="javascript:void(0)" frameborder="0"
109 name="MSearchResults" id="MSearchResults">
110</iframe>
111</div>
112
113<div class="header">
114 <div class="summary">
115<a href="#namespaces">Namespaces</a> &#124;
116<a href="#nested-classes">Data Structures</a> &#124;
117<a href="#typedef-members">Typedefs</a> &#124;
118<a href="#func-members">Functions</a> &#124;
119<a href="#var-members">Variables</a> </div>
120 <div class="headertitle">
121<div class="title">arm_compute::test Namespace Reference</div> </div>
122</div><!--header-->
123<div class="contents">
124<table class="memberdecls">
125<tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="namespaces"></a>
126Namespaces</h2></td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100127<tr class="memitem:namespacearm__compute_1_1test_1_1_c_l_suite"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1_c_l_suite.xhtml">CLSuite</a></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100128<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100129<tr class="memitem:namespacearm__compute_1_1test_1_1datasets"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1datasets.xhtml">datasets</a></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100130<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100131<tr class="memitem:namespacearm__compute_1_1test_1_1fixed__point__arithmetic"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic.xhtml">fixed_point_arithmetic</a></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100132<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100133<tr class="memitem:namespacearm__compute_1_1test_1_1framework"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml">framework</a></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100134<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100135<tr class="memitem:namespacearm__compute_1_1test_1_1networks"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1networks.xhtml">networks</a></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100136<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100137<tr class="memitem:namespacearm__compute_1_1test_1_1traits"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1traits.xhtml">traits</a></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100138<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100139<tr class="memitem:namespacearm__compute_1_1test_1_1validation"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1validation.xhtml">validation</a></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100140<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
141</table><table class="memberdecls">
142<tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="nested-classes"></a>
143Data Structures</h2></td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100144<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_assets_library.xhtml">AssetsLibrary</a></td></tr>
145<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Factory class to create and fill tensors. <a href="classarm__compute_1_1test_1_1_assets_library.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100146<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100147<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_activation_layer_fixture.xhtml">ActivationLayerFixture</a></td></tr>
148<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_activation_layer_fixture.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100149<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100150<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_alex_net_fixture.xhtml">AlexNetFixture</a></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100151<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100152<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_batch_normalization_layer_fixture.xhtml">BatchNormalizationLayerFixture</a></td></tr>
153<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_batch_normalization_layer_fixture.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100154<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100155<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_convolution_layer_fixture.xhtml">ConvolutionLayerFixture</a></td></tr>
156<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_convolution_layer_fixture.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100157<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100158<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_depthwise_convolution_fixture.xhtml">DepthwiseConvolutionFixture</a></td></tr>
159<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_depthwise_convolution_fixture.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100160<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100161<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_depthwise_separable_convolution_layer_fixture.xhtml">DepthwiseSeparableConvolutionLayerFixture</a></td></tr>
162<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_depthwise_separable_convolution_layer_fixture.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100163<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100164<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_floor_fixture.xhtml">FloorFixture</a></td></tr>
165<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_floor_fixture.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100166<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100167<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_fully_connected_layer_fixture.xhtml">FullyConnectedLayerFixture</a></td></tr>
168<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_fully_connected_layer_fixture.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100169<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100170<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_g_e_m_m_fixture.xhtml">GEMMFixture</a></td></tr>
171<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_g_e_m_m_fixture.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100172<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100173<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_le_net5_fixture.xhtml">LeNet5Fixture</a></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100174<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100175<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_normalization_layer_fixture.xhtml">NormalizationLayerFixture</a></td></tr>
176<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_normalization_layer_fixture.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100177<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100178<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_pooling_layer_fixture.xhtml">PoolingLayerFixture</a></td></tr>
179<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_pooling_layer_fixture.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100180<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100181<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_r_o_i_pooling_layer_fixture.xhtml">ROIPoolingLayerFixture</a></td></tr>
182<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_r_o_i_pooling_layer_fixture.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100183<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100184<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a></td></tr>
185<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a> objects. <a href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100186<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100187<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_c_l_array_accessor.xhtml">CLArrayAccessor</a></td></tr>
188<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_c_l_array.xhtml">CLArray</a> objects. <a href="classarm__compute_1_1test_1_1_c_l_array_accessor.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100189<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100190<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_c_l_lut_accessor.xhtml">CLLutAccessor</a></td></tr>
191<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_c_l_lut.xhtml">CLLut</a> objects. <a href="classarm__compute_1_1test_1_1_c_l_lut_accessor.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100192<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
193<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_i_accessor.xhtml">IAccessor</a></td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100194<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Common interface to provide information and access to tensor like structures. <a href="classarm__compute_1_1test_1_1_i_accessor.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100195<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100196<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_i_array_accessor.xhtml">IArrayAccessor</a></td></tr>
197<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Common interface to provide information and access to array like structures. <a href="classarm__compute_1_1test_1_1_i_array_accessor.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100198<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100199<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_i_lut_accessor.xhtml">ILutAccessor</a></td></tr>
200<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Common interface to provide information and access to <a class="el" href="classarm__compute_1_1_lut.xhtml" title="Basic implementation of the LUT interface. ">Lut</a> like structures. <a href="classarm__compute_1_1test_1_1_i_lut_accessor.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100201<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100202<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a></td></tr>
203<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> objects. <a href="classarm__compute_1_1test_1_1_accessor.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100204<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100205<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_array_accessor.xhtml">ArrayAccessor</a></td></tr>
206<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_array_accessor.xhtml" title="ArrayAccessor implementation for Array objects. ">ArrayAccessor</a> implementation for <a class="el" href="classarm__compute_1_1_array.xhtml">Array</a> objects. <a href="classarm__compute_1_1test_1_1_array_accessor.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100207<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100208<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_lut_accessor.xhtml">LutAccessor</a></td></tr>
209<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_lut.xhtml">Lut</a> objects. <a href="classarm__compute_1_1test_1_1_lut_accessor.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100210<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100211<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_padding_calculator.xhtml">PaddingCalculator</a></td></tr>
212<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Calculate required padding. <a href="classarm__compute_1_1test_1_1_padding_calculator.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100213<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100214<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_raw_lut_accessor.xhtml">RawLutAccessor</a></td></tr>
215<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for std::map-lut objects. <a href="classarm__compute_1_1test_1_1_raw_lut_accessor.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100216<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
217<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_raw_tensor.xhtml">RawTensor</a></td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100218<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Subclass of <a class="el" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml" title="Simple tensor object that stores elements in a consecutive chunk of memory. ">SimpleTensor</a> using uint8_t as value type. <a href="classarm__compute_1_1test_1_1_raw_tensor.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100219<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100220<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor</a></td></tr>
221<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Simple tensor object that stores elements in a consecutive chunk of memory. <a href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100222<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
223<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_tensor_cache.xhtml">TensorCache</a></td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100224<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Stores <a class="el" href="classarm__compute_1_1test_1_1_raw_tensor.xhtml">RawTensor</a> categorised by the image they are created from including name, format and channel. <a href="classarm__compute_1_1test_1_1_tensor_cache.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100225<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100226<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">struct &#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="structarm__compute_1_1test_1_1common__promoted__signed__type.xhtml">common_promoted_signed_type</a></td></tr>
227<tr class="memdesc:"><td class="mdescLeft">&#160;</td><td class="mdescRight">Find the signed promoted common type. <a href="structarm__compute_1_1test_1_1common__promoted__signed__type.xhtml#details">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100228<tr class="separator:"><td class="memSeparator" colspan="2">&#160;</td></tr>
229</table><table class="memberdecls">
230<tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="typedef-members"></a>
231Typedefs</h2></td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100232<tr class="memitem:a74a10374253178ae54e1baab173698a1"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a74a10374253178ae54e1baab173698a1">CLActivationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_activation_layer_fixture.xhtml">ActivationLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_activation_layer.xhtml">CLActivationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> &gt;</td></tr>
233<tr class="separator:a74a10374253178ae54e1baab173698a1"><td class="memSeparator" colspan="2">&#160;</td></tr>
234<tr class="memitem:af80ea91532f0ebdccb3f1d8e507a98ad"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#af80ea91532f0ebdccb3f1d8e507a98ad">CLBatchNormalizationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_batch_normalization_layer_fixture.xhtml">BatchNormalizationLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_batch_normalization_layer.xhtml">CLBatchNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> &gt;</td></tr>
235<tr class="separator:af80ea91532f0ebdccb3f1d8e507a98ad"><td class="memSeparator" colspan="2">&#160;</td></tr>
236<tr class="memitem:ad275d75e1b63f91fdc59afe026688b12"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_convolution_layer_fixture.xhtml">ConvolutionLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_convolution_layer.xhtml">CLConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> &gt;</td></tr>
237<tr class="separator:ad275d75e1b63f91fdc59afe026688b12"><td class="memSeparator" colspan="2">&#160;</td></tr>
238<tr class="memitem:a1e3870d2e47dfd84b259bdbff0a6f5f8"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1e3870d2e47dfd84b259bdbff0a6f5f8">CLDepthwiseConvolutionFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_depthwise_convolution_fixture.xhtml">DepthwiseConvolutionFixture</a>&lt; <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_depthwise_convolution.xhtml">CLDepthwiseConvolution</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> &gt;</td></tr>
239<tr class="separator:a1e3870d2e47dfd84b259bdbff0a6f5f8"><td class="memSeparator" colspan="2">&#160;</td></tr>
240<tr class="memitem:adc07e82b4049d653c965af2606a7d70f"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#adc07e82b4049d653c965af2606a7d70f">CLDepthwiseSeparableConvolutionLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_depthwise_separable_convolution_layer_fixture.xhtml">DepthwiseSeparableConvolutionLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_depthwise_separable_convolution_layer.xhtml">CLDepthwiseSeparableConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> &gt;</td></tr>
241<tr class="separator:adc07e82b4049d653c965af2606a7d70f"><td class="memSeparator" colspan="2">&#160;</td></tr>
242<tr class="memitem:a4a14e383a632057e99845c74a72a6454"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4a14e383a632057e99845c74a72a6454">CLFloorFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_floor_fixture.xhtml">FloorFixture</a>&lt; <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_floor.xhtml">CLFloor</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> &gt;</td></tr>
243<tr class="separator:a4a14e383a632057e99845c74a72a6454"><td class="memSeparator" colspan="2">&#160;</td></tr>
244<tr class="memitem:a4c33955ce3f6ed3a4d756cdebf6c8b3a"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_fully_connected_layer_fixture.xhtml">FullyConnectedLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_fully_connected_layer.xhtml">CLFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> &gt;</td></tr>
245<tr class="separator:a4c33955ce3f6ed3a4d756cdebf6c8b3a"><td class="memSeparator" colspan="2">&#160;</td></tr>
246<tr class="memitem:abf07c2bf7d8e9c76e146f9b21bee88fd"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#abf07c2bf7d8e9c76e146f9b21bee88fd">CLGEMMFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_g_e_m_m_fixture.xhtml">GEMMFixture</a>&lt; <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_g_e_m_m.xhtml">CLGEMM</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> &gt;</td></tr>
247<tr class="separator:abf07c2bf7d8e9c76e146f9b21bee88fd"><td class="memSeparator" colspan="2">&#160;</td></tr>
248<tr class="memitem:af4f1c6ad288931f07f614316f57ed63b"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#af4f1c6ad288931f07f614316f57ed63b">CLNormalizationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_normalization_layer_fixture.xhtml">NormalizationLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_normalization_layer.xhtml">CLNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> &gt;</td></tr>
249<tr class="separator:af4f1c6ad288931f07f614316f57ed63b"><td class="memSeparator" colspan="2">&#160;</td></tr>
250<tr class="memitem:a9c81648f3199d0d1c3f34a29a7a2bb8d"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_pooling_layer_fixture.xhtml">PoolingLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_pooling_layer.xhtml">CLPoolingLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> &gt;</td></tr>
251<tr class="separator:a9c81648f3199d0d1c3f34a29a7a2bb8d"><td class="memSeparator" colspan="2">&#160;</td></tr>
252<tr class="memitem:a41884dec2ecae6674396802641b01060"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a41884dec2ecae6674396802641b01060">CLROIPoolingLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_r_o_i_pooling_layer_fixture.xhtml">ROIPoolingLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_r_o_i_pooling_layer.xhtml">CLROIPoolingLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>, <a class="el" href="classarm__compute_1_1_c_l_array.xhtml">CLArray</a>&lt; <a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a> &gt;, <a class="el" href="classarm__compute_1_1test_1_1_c_l_array_accessor.xhtml">CLArrayAccessor</a>&lt; <a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a> &gt;&gt;</td></tr>
253<tr class="separator:a41884dec2ecae6674396802641b01060"><td class="memSeparator" colspan="2">&#160;</td></tr>
254<tr class="memitem:aa631c5ec3d7cb3dab649f994e9e9217d"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa631c5ec3d7cb3dab649f994e9e9217d">CLAlexNetFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_alex_net_fixture.xhtml">AlexNetFixture</a>&lt; <a class="el" href="classarm__compute_1_1_i_c_l_tensor.xhtml">ICLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_sub_tensor.xhtml">CLSubTensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>, <a class="el" href="classarm__compute_1_1_c_l_activation_layer.xhtml">CLActivationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_convolution_layer.xhtml">CLConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_direct_convolution_layer.xhtml">CLDirectConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_fully_connected_layer.xhtml">CLFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_normalization_layer.xhtml">CLNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_pooling_layer.xhtml">CLPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_softmax_layer.xhtml">CLSoftmaxLayer</a> &gt;</td></tr>
255<tr class="separator:aa631c5ec3d7cb3dab649f994e9e9217d"><td class="memSeparator" colspan="2">&#160;</td></tr>
256<tr class="memitem:ae3b678c8477dd5acc5e264eae37b562c"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae3b678c8477dd5acc5e264eae37b562c">CLLeNet5Fixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_le_net5_fixture.xhtml">LeNet5Fixture</a>&lt; <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>, <a class="el" href="classarm__compute_1_1_c_l_activation_layer.xhtml">CLActivationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_convolution_layer.xhtml">CLConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_fully_connected_layer.xhtml">CLFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_pooling_layer.xhtml">CLPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_softmax_layer.xhtml">CLSoftmaxLayer</a> &gt;</td></tr>
257<tr class="separator:ae3b678c8477dd5acc5e264eae37b562c"><td class="memSeparator" colspan="2">&#160;</td></tr>
258<tr class="memitem:aeded391cb7ec7a44c41eb23544265894"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_activation_layer_fixture.xhtml">ActivationLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_activation_layer.xhtml">NEActivationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> &gt;</td></tr>
259<tr class="separator:aeded391cb7ec7a44c41eb23544265894"><td class="memSeparator" colspan="2">&#160;</td></tr>
260<tr class="memitem:ac7369c169e6de526fcb6f68e4a959444"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac7369c169e6de526fcb6f68e4a959444">NEBatchNormalizationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_batch_normalization_layer_fixture.xhtml">BatchNormalizationLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_batch_normalization_layer.xhtml">NEBatchNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> &gt;</td></tr>
261<tr class="separator:ac7369c169e6de526fcb6f68e4a959444"><td class="memSeparator" colspan="2">&#160;</td></tr>
262<tr class="memitem:a3168ad22b6ac1e9a6996b53e5038a7a2"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_convolution_layer_fixture.xhtml">ConvolutionLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_convolution_layer.xhtml">NEConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> &gt;</td></tr>
263<tr class="separator:a3168ad22b6ac1e9a6996b53e5038a7a2"><td class="memSeparator" colspan="2">&#160;</td></tr>
264<tr class="memitem:ac8cf6873b0e9ac7334bcbc042fdc5f02"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac8cf6873b0e9ac7334bcbc042fdc5f02">NEFloorFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_floor_fixture.xhtml">FloorFixture</a>&lt; <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_floor.xhtml">NEFloor</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> &gt;</td></tr>
265<tr class="separator:ac8cf6873b0e9ac7334bcbc042fdc5f02"><td class="memSeparator" colspan="2">&#160;</td></tr>
266<tr class="memitem:a0b4f7a523ddb2b823750ff5bdc03470c"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_fully_connected_layer_fixture.xhtml">FullyConnectedLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_fully_connected_layer.xhtml">NEFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> &gt;</td></tr>
267<tr class="separator:a0b4f7a523ddb2b823750ff5bdc03470c"><td class="memSeparator" colspan="2">&#160;</td></tr>
268<tr class="memitem:a789c444c1307e85eec5f8b0d75fd5f7d"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a789c444c1307e85eec5f8b0d75fd5f7d">NEGEMMFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_g_e_m_m_fixture.xhtml">GEMMFixture</a>&lt; <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m.xhtml">NEGEMM</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> &gt;</td></tr>
269<tr class="separator:a789c444c1307e85eec5f8b0d75fd5f7d"><td class="memSeparator" colspan="2">&#160;</td></tr>
270<tr class="memitem:acc2c4764a300b505b50e9ba0642eff2b"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#acc2c4764a300b505b50e9ba0642eff2b">NENormalizationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_normalization_layer_fixture.xhtml">NormalizationLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_normalization_layer.xhtml">NENormalizationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> &gt;</td></tr>
271<tr class="separator:acc2c4764a300b505b50e9ba0642eff2b"><td class="memSeparator" colspan="2">&#160;</td></tr>
272<tr class="memitem:aafcc5ee5a13d9ed18d31591bb1d50fb0"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_pooling_layer_fixture.xhtml">PoolingLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_pooling_layer.xhtml">NEPoolingLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> &gt;</td></tr>
273<tr class="separator:aafcc5ee5a13d9ed18d31591bb1d50fb0"><td class="memSeparator" colspan="2">&#160;</td></tr>
274<tr class="memitem:a7ad74154ac625702bef70b90243ae63f"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a7ad74154ac625702bef70b90243ae63f">NEROIPoolingLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_r_o_i_pooling_layer_fixture.xhtml">ROIPoolingLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_r_o_i_pooling_layer.xhtml">NEROIPoolingLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>, <a class="el" href="classarm__compute_1_1_array.xhtml">Array</a>&lt; <a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a> &gt;, <a class="el" href="classarm__compute_1_1test_1_1_array_accessor.xhtml">ArrayAccessor</a>&lt; <a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a> &gt;&gt;</td></tr>
275<tr class="separator:a7ad74154ac625702bef70b90243ae63f"><td class="memSeparator" colspan="2">&#160;</td></tr>
276<tr class="memitem:ae0e8bcf3b0ed15e708b4a38febfdb84e"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae0e8bcf3b0ed15e708b4a38febfdb84e">NEAlexNetFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_alex_net_fixture.xhtml">AlexNetFixture</a>&lt; <a class="el" href="classarm__compute_1_1_i_tensor.xhtml">ITensor</a>, <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_sub_tensor.xhtml">SubTensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>, <a class="el" href="classarm__compute_1_1_n_e_activation_layer.xhtml">NEActivationLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_convolution_layer.xhtml">NEConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_convolution_layer.xhtml">NEConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_fully_connected_layer.xhtml">NEFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_normalization_layer.xhtml">NENormalizationLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_pooling_layer.xhtml">NEPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml">NESoftmaxLayer</a> &gt;</td></tr>
277<tr class="separator:ae0e8bcf3b0ed15e708b4a38febfdb84e"><td class="memSeparator" colspan="2">&#160;</td></tr>
278<tr class="memitem:a6a292ad5fedcc7dea6c6eb1be6d4c0d3"><td class="memItemLeft" align="right" valign="top">using&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6a292ad5fedcc7dea6c6eb1be6d4c0d3">NELeNet5Fixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_le_net5_fixture.xhtml">LeNet5Fixture</a>&lt; <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>, <a class="el" href="classarm__compute_1_1_n_e_activation_layer.xhtml">NEActivationLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_convolution_layer.xhtml">NEConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_fully_connected_layer.xhtml">NEFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_pooling_layer.xhtml">NEPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml">NESoftmaxLayer</a> &gt;</td></tr>
279<tr class="separator:a6a292ad5fedcc7dea6c6eb1be6d4c0d3"><td class="memSeparator" colspan="2">&#160;</td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100280</table><table class="memberdecls">
281<tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="func-members"></a>
282Functions</h2></td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100283<tr class="memitem:a2fba44656470195a6245f922a1c264f5"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a2fba44656470195a6245f922a1c264f5">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2BatchNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#af80ea91532f0ebdccb3f1d8e507a98ad">CLBatchNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_batch_normalization_layer_dataset.xhtml">datasets::YOLOV2BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
284<tr class="separator:a2fba44656470195a6245f922a1c264f5"><td class="memSeparator" colspan="2">&#160;</td></tr>
285<tr class="memitem:a365d9325d2bba7fbf9983f80bfe8c796"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a365d9325d2bba7fbf9983f80bfe8c796">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4BatchNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#af80ea91532f0ebdccb3f1d8e507a98ad">CLBatchNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_batch_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
286<tr class="separator:a365d9325d2bba7fbf9983f80bfe8c796"><td class="memSeparator" colspan="2">&#160;</td></tr>
287<tr class="memitem:a2abd12df8c0c36eed83982ee073db2ff"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a2abd12df8c0c36eed83982ee073db2ff">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2BatchNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#af80ea91532f0ebdccb3f1d8e507a98ad">CLBatchNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_batch_normalization_layer_dataset.xhtml">datasets::YOLOV2BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
288<tr class="separator:a2abd12df8c0c36eed83982ee073db2ff"><td class="memSeparator" colspan="2">&#160;</td></tr>
289<tr class="memitem:a8457ac77df7a142e86354ac08fd5ba30"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a8457ac77df7a142e86354ac08fd5ba30">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4BatchNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#af80ea91532f0ebdccb3f1d8e507a98ad">CLBatchNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_batch_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
290<tr class="separator:a8457ac77df7a142e86354ac08fd5ba30"><td class="memSeparator" colspan="2">&#160;</td></tr>
291<tr class="memitem:a80d1181d85aefe33d6a8720152dba80b"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a80d1181d85aefe33d6a8720152dba80b">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_convolution_layer_dataset.xhtml">datasets::AlexNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
292<tr class="separator:a80d1181d85aefe33d6a8720152dba80b"><td class="memSeparator" colspan="2">&#160;</td></tr>
293<tr class="memitem:ac18e51057a61f7db456d1c8b9b03aa09"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac18e51057a61f7db456d1c8b9b03aa09">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_convolution_layer_dataset.xhtml">datasets::LeNet5ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
294<tr class="separator:ac18e51057a61f7db456d1c8b9b03aa09"><td class="memSeparator" colspan="2">&#160;</td></tr>
295<tr class="memitem:a3e452462cb397897f476f6d83b468914"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3e452462cb397897f476f6d83b468914">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
296<tr class="separator:a3e452462cb397897f476f6d83b468914"><td class="memSeparator" colspan="2">&#160;</td></tr>
297<tr class="memitem:aecd85eec5df288174be9b7e0fac6d1fe"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aecd85eec5df288174be9b7e0fac6d1fe">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
298<tr class="separator:aecd85eec5df288174be9b7e0fac6d1fe"><td class="memSeparator" colspan="2">&#160;</td></tr>
299<tr class="memitem:aea25c6951a5d4bcfeb95750105154506"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aea25c6951a5d4bcfeb95750105154506">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
300<tr class="separator:aea25c6951a5d4bcfeb95750105154506"><td class="memSeparator" colspan="2">&#160;</td></tr>
301<tr class="memitem:ac62a5389a4a60e89fabb6bb2153adfc5"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac62a5389a4a60e89fabb6bb2153adfc5">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_convolution_layer_dataset.xhtml">datasets::AlexNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
302<tr class="separator:ac62a5389a4a60e89fabb6bb2153adfc5"><td class="memSeparator" colspan="2">&#160;</td></tr>
303<tr class="memitem:a65a028ab7f8ba81db43d5963ea5343a4"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a65a028ab7f8ba81db43d5963ea5343a4">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_convolution_layer_dataset.xhtml">datasets::LeNet5ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
304<tr class="separator:a65a028ab7f8ba81db43d5963ea5343a4"><td class="memSeparator" colspan="2">&#160;</td></tr>
305<tr class="memitem:a6773bc983eece85b34d67c4ba3c09554"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6773bc983eece85b34d67c4ba3c09554">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
306<tr class="separator:a6773bc983eece85b34d67c4ba3c09554"><td class="memSeparator" colspan="2">&#160;</td></tr>
307<tr class="memitem:a4bdfdac4318cf7e4b09cc13a553363a7"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4bdfdac4318cf7e4b09cc13a553363a7">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
308<tr class="separator:a4bdfdac4318cf7e4b09cc13a553363a7"><td class="memSeparator" colspan="2">&#160;</td></tr>
309<tr class="memitem:a34df6fb97233366fc9083d79c13a5737"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a34df6fb97233366fc9083d79c13a5737">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
310<tr class="separator:a34df6fb97233366fc9083d79c13a5737"><td class="memSeparator" colspan="2">&#160;</td></tr>
311<tr class="memitem:a5a371e1a37be130dc9e8c905cd5efc29"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a5a371e1a37be130dc9e8c905cd5efc29">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_convolution_layer_dataset.xhtml">datasets::VGG16ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1, 4})))</td></tr>
312<tr class="separator:a5a371e1a37be130dc9e8c905cd5efc29"><td class="memSeparator" colspan="2">&#160;</td></tr>
313<tr class="memitem:a7473924d4fdf2b5dec0d8ee9aa11e25d"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a7473924d4fdf2b5dec0d8ee9aa11e25d">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_convolution_layer_dataset.xhtml">datasets::YOLOV2ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1, 4, 8})))</td></tr>
314<tr class="separator:a7473924d4fdf2b5dec0d8ee9aa11e25d"><td class="memSeparator" colspan="2">&#160;</td></tr>
315<tr class="memitem:ad7d919409d3d679cfbf28b2dae757fec"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad7d919409d3d679cfbf28b2dae757fec">REGISTER_FIXTURE_DATA_TEST_CASE</a> (MobileNetDepthwiseConvolution, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1e3870d2e47dfd84b259bdbff0a6f5f8">CLDepthwiseConvolutionFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_mobile_net_depthwise_convolution_dataset.xhtml">datasets::MobileNetDepthwiseConvolutionDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1})))</td></tr>
316<tr class="separator:ad7d919409d3d679cfbf28b2dae757fec"><td class="memSeparator" colspan="2">&#160;</td></tr>
317<tr class="memitem:a1f4b9eae17da2aebc223b0fdeee74cea"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1f4b9eae17da2aebc223b0fdeee74cea">REGISTER_FIXTURE_DATA_TEST_CASE</a> (MobileNetDepthwiseSeparableConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#adc07e82b4049d653c965af2606a7d70f">CLDepthwiseSeparableConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_mobile_net_depthwise_separable_convolution_layer_dataset.xhtml">datasets::MobileNetDepthwiseSeparableConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1})))</td></tr>
318<tr class="separator:a1f4b9eae17da2aebc223b0fdeee74cea"><td class="memSeparator" colspan="2">&#160;</td></tr>
319<tr class="memitem:ad52c9735c67d5972016f143cd15ea874"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad52c9735c67d5972016f143cd15ea874">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
320<tr class="separator:ad52c9735c67d5972016f143cd15ea874"><td class="memSeparator" colspan="2">&#160;</td></tr>
321<tr class="memitem:aa971f54dfef950c44d8973db82b91e4e"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa971f54dfef950c44d8973db82b91e4e">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
322<tr class="separator:aa971f54dfef950c44d8973db82b91e4e"><td class="memSeparator" colspan="2">&#160;</td></tr>
323<tr class="memitem:aa0a358cbff96894b77c9b3cfba3c2db4"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa0a358cbff96894b77c9b3cfba3c2db4">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
324<tr class="separator:aa0a358cbff96894b77c9b3cfba3c2db4"><td class="memSeparator" colspan="2">&#160;</td></tr>
325<tr class="memitem:afd1574f92e2d5a179c3c7f0e8e438bba"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#afd1574f92e2d5a179c3c7f0e8e438bba">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
326<tr class="separator:afd1574f92e2d5a179c3c7f0e8e438bba"><td class="memSeparator" colspan="2">&#160;</td></tr>
327<tr class="memitem:a91a53a55f1c814837ea5374d1c2095e8"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a91a53a55f1c814837ea5374d1c2095e8">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
328<tr class="separator:a91a53a55f1c814837ea5374d1c2095e8"><td class="memSeparator" colspan="2">&#160;</td></tr>
329<tr class="memitem:a959373f15eeea41ce740f0bc0ce2244a"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a959373f15eeea41ce740f0bc0ce2244a">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
330<tr class="separator:a959373f15eeea41ce740f0bc0ce2244a"><td class="memSeparator" colspan="2">&#160;</td></tr>
331<tr class="memitem:abb38304d29f99717ecc5c528962972a5"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#abb38304d29f99717ecc5c528962972a5">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
332<tr class="separator:abb38304d29f99717ecc5c528962972a5"><td class="memSeparator" colspan="2">&#160;</td></tr>
333<tr class="memitem:ae88c882e06dad040d2bb6278ef8c4c84"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae88c882e06dad040d2bb6278ef8c4c84">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
334<tr class="separator:ae88c882e06dad040d2bb6278ef8c4c84"><td class="memSeparator" colspan="2">&#160;</td></tr>
335<tr class="memitem:ab0595cda883cec6b1b3a5389fd786e9f"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ab0595cda883cec6b1b3a5389fd786e9f">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_convolution_layer_dataset.xhtml">datasets::VGG16ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1, 4, 8})))</td></tr>
336<tr class="separator:ab0595cda883cec6b1b3a5389fd786e9f"><td class="memSeparator" colspan="2">&#160;</td></tr>
337<tr class="memitem:aabdb95f3f541376f38e03d63957cd0af"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aabdb95f3f541376f38e03d63957cd0af">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_convolution_layer_dataset.xhtml">datasets::YOLOV2ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1, 4, 8})))</td></tr>
338<tr class="separator:aabdb95f3f541376f38e03d63957cd0af"><td class="memSeparator" colspan="2">&#160;</td></tr>
339<tr class="memitem:a6e81878e7ca8fecdd9f6e6bcc2a7b794"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6e81878e7ca8fecdd9f6e6bcc2a7b794">REGISTER_FIXTURE_DATA_TEST_CASE</a> (Floor, <a class="el" href="namespacearm__compute_1_1test.xhtml#a4a14e383a632057e99845c74a72a6454">CLFloorFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_small_shapes.xhtml">datasets::SmallShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
340<tr class="separator:a6e81878e7ca8fecdd9f6e6bcc2a7b794"><td class="memSeparator" colspan="2">&#160;</td></tr>
341<tr class="memitem:ae5411ce056673117b799d20c1c9484dd"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae5411ce056673117b799d20c1c9484dd">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetFullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_fully_connected_layer_dataset.xhtml">datasets::AlexNetFullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
342<tr class="separator:ae5411ce056673117b799d20c1c9484dd"><td class="memSeparator" colspan="2">&#160;</td></tr>
343<tr class="memitem:ae63877ff99387d51d4abc340a50f1093"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae63877ff99387d51d4abc340a50f1093">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_fully_connected_layer_dataset.xhtml">datasets::LeNet5FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
344<tr class="separator:ae63877ff99387d51d4abc340a50f1093"><td class="memSeparator" colspan="2">&#160;</td></tr>
345<tr class="memitem:a49ab3e510552d29b5698d55ef52674c3"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a49ab3e510552d29b5698d55ef52674c3">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_fully_connected_layer_dataset.xhtml">datasets::VGG16FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
346<tr class="separator:a49ab3e510552d29b5698d55ef52674c3"><td class="memSeparator" colspan="2">&#160;</td></tr>
347<tr class="memitem:a8cf1a9e06ce42b8ff57bf13aa2c2c047"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a8cf1a9e06ce42b8ff57bf13aa2c2c047">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
348<tr class="separator:a8cf1a9e06ce42b8ff57bf13aa2c2c047"><td class="memSeparator" colspan="2">&#160;</td></tr>
349<tr class="memitem:a8388dbd479dceaffb21c8fc564c5c420"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a8388dbd479dceaffb21c8fc564c5c420">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
350<tr class="separator:a8388dbd479dceaffb21c8fc564c5c420"><td class="memSeparator" colspan="2">&#160;</td></tr>
351<tr class="memitem:ab8549a72a0983f5281a5612979669e2d"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ab8549a72a0983f5281a5612979669e2d">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetFullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_fully_connected_layer_dataset.xhtml">datasets::AlexNetFullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
352<tr class="separator:ab8549a72a0983f5281a5612979669e2d"><td class="memSeparator" colspan="2">&#160;</td></tr>
353<tr class="memitem:adb9a698039f2f9414f3296a4d9070893"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#adb9a698039f2f9414f3296a4d9070893">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_fully_connected_layer_dataset.xhtml">datasets::LeNet5FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
354<tr class="separator:adb9a698039f2f9414f3296a4d9070893"><td class="memSeparator" colspan="2">&#160;</td></tr>
355<tr class="memitem:a6fef2cd462f91f3b071ee7d02322dbb6"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6fef2cd462f91f3b071ee7d02322dbb6">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_fully_connected_layer_dataset.xhtml">datasets::VGG16FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
356<tr class="separator:a6fef2cd462f91f3b071ee7d02322dbb6"><td class="memSeparator" colspan="2">&#160;</td></tr>
357<tr class="memitem:a463d7f372ea5c6217b8ee151b47f596e"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a463d7f372ea5c6217b8ee151b47f596e">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
358<tr class="separator:a463d7f372ea5c6217b8ee151b47f596e"><td class="memSeparator" colspan="2">&#160;</td></tr>
359<tr class="memitem:ad5d101b25bb35a8d9b1efc70102bb3a4"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad5d101b25bb35a8d9b1efc70102bb3a4">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
360<tr class="separator:ad5d101b25bb35a8d9b1efc70102bb3a4"><td class="memSeparator" colspan="2">&#160;</td></tr>
361<tr class="memitem:a2b1950a60a98dec32a7ca7531fded8ad"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a2b1950a60a98dec32a7ca7531fded8ad">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1GEMM, <a class="el" href="namespacearm__compute_1_1test.xhtml#abf07c2bf7d8e9c76e146f9b21bee88fd">CLGEMMFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_g_e_m_m_dataset.xhtml">datasets::GoogLeNetInceptionV1GEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
362<tr class="separator:a2b1950a60a98dec32a7ca7531fded8ad"><td class="memSeparator" colspan="2">&#160;</td></tr>
363<tr class="memitem:aef76c7b3cf7d1e3c6fc7ff96804a5753"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aef76c7b3cf7d1e3c6fc7ff96804a5753">REGISTER_FIXTURE_DATA_TEST_CASE</a> (MatrixMultiplyGEMM, <a class="el" href="namespacearm__compute_1_1test.xhtml#abf07c2bf7d8e9c76e146f9b21bee88fd">CLGEMMFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_matrix_multiply_g_e_m_m_dataset.xhtml">datasets::MatrixMultiplyGEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
364<tr class="separator:aef76c7b3cf7d1e3c6fc7ff96804a5753"><td class="memSeparator" colspan="2">&#160;</td></tr>
365<tr class="memitem:af935c08091163839aead6ac3023c2147"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#af935c08091163839aead6ac3023c2147">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogleNetGEMM, <a class="el" href="namespacearm__compute_1_1test.xhtml#abf07c2bf7d8e9c76e146f9b21bee88fd">CLGEMMFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_google_net_g_e_m_m_dataset.xhtml">datasets::GoogleNetGEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
366<tr class="separator:af935c08091163839aead6ac3023c2147"><td class="memSeparator" colspan="2">&#160;</td></tr>
367<tr class="memitem:a70d28ab3b5936a6454451d42f3c170f3"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a70d28ab3b5936a6454451d42f3c170f3">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#af4f1c6ad288931f07f614316f57ed63b">CLNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_normalization_layer_dataset.xhtml">datasets::AlexNetNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
368<tr class="separator:a70d28ab3b5936a6454451d42f3c170f3"><td class="memSeparator" colspan="2">&#160;</td></tr>
369<tr class="memitem:afc6ba7f0f4b792e2df1270d8f83f138d"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#afc6ba7f0f4b792e2df1270d8f83f138d">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1NormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#af4f1c6ad288931f07f614316f57ed63b">CLNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1NormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
370<tr class="separator:afc6ba7f0f4b792e2df1270d8f83f138d"><td class="memSeparator" colspan="2">&#160;</td></tr>
371<tr class="memitem:ae4dd72b2a2e5af0c89c5ce7d2443e115"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae4dd72b2a2e5af0c89c5ce7d2443e115">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#af4f1c6ad288931f07f614316f57ed63b">CLNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_normalization_layer_dataset.xhtml">datasets::AlexNetNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
372<tr class="separator:ae4dd72b2a2e5af0c89c5ce7d2443e115"><td class="memSeparator" colspan="2">&#160;</td></tr>
373<tr class="memitem:a62af6d63be834c648f251c0497e7b59f"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a62af6d63be834c648f251c0497e7b59f">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1NormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#af4f1c6ad288931f07f614316f57ed63b">CLNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1NormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
374<tr class="separator:a62af6d63be834c648f251c0497e7b59f"><td class="memSeparator" colspan="2">&#160;</td></tr>
375<tr class="memitem:a0e999f1d9f9608da6fb4bbde4afc078e"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0e999f1d9f9608da6fb4bbde4afc078e">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_pooling_layer_dataset.xhtml">datasets::AlexNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
376<tr class="separator:a0e999f1d9f9608da6fb4bbde4afc078e"><td class="memSeparator" colspan="2">&#160;</td></tr>
377<tr class="memitem:a0889351f9ee837c8009925f17dd4688b"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0889351f9ee837c8009925f17dd4688b">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_pooling_layer_dataset.xhtml">datasets::LeNet5PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
378<tr class="separator:a0889351f9ee837c8009925f17dd4688b"><td class="memSeparator" colspan="2">&#160;</td></tr>
379<tr class="memitem:a903e3acaf54969c5d276058e979a753c"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a903e3acaf54969c5d276058e979a753c">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
380<tr class="separator:a903e3acaf54969c5d276058e979a753c"><td class="memSeparator" colspan="2">&#160;</td></tr>
381<tr class="memitem:a85078031088e419e7f928e5ad5bbafa9"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a85078031088e419e7f928e5ad5bbafa9">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
382<tr class="separator:a85078031088e419e7f928e5ad5bbafa9"><td class="memSeparator" colspan="2">&#160;</td></tr>
383<tr class="memitem:a27cf9c407e83adbf0c837240a6bc3534"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a27cf9c407e83adbf0c837240a6bc3534">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_pooling_layer_dataset.xhtml">datasets::SqueezeNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
384<tr class="separator:a27cf9c407e83adbf0c837240a6bc3534"><td class="memSeparator" colspan="2">&#160;</td></tr>
385<tr class="memitem:afd017468a129b6650b73cb65ecc40516"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#afd017468a129b6650b73cb65ecc40516">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_pooling_layer_dataset.xhtml">datasets::VGG16PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
386<tr class="separator:afd017468a129b6650b73cb65ecc40516"><td class="memSeparator" colspan="2">&#160;</td></tr>
387<tr class="memitem:a36cad137a713f8be3263a1a6466c6bd7"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a36cad137a713f8be3263a1a6466c6bd7">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_pooling_layer_dataset.xhtml">datasets::YOLOV2PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
388<tr class="separator:a36cad137a713f8be3263a1a6466c6bd7"><td class="memSeparator" colspan="2">&#160;</td></tr>
389<tr class="memitem:a4558b577be27af2ceffffd986b1aab7f"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4558b577be27af2ceffffd986b1aab7f">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_pooling_layer_dataset.xhtml">datasets::AlexNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
390<tr class="separator:a4558b577be27af2ceffffd986b1aab7f"><td class="memSeparator" colspan="2">&#160;</td></tr>
391<tr class="memitem:a731977f1de2e0d6dd1512818540ab608"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a731977f1de2e0d6dd1512818540ab608">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_pooling_layer_dataset.xhtml">datasets::LeNet5PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
392<tr class="separator:a731977f1de2e0d6dd1512818540ab608"><td class="memSeparator" colspan="2">&#160;</td></tr>
393<tr class="memitem:a967825a64c529b573ca62e74179ee921"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a967825a64c529b573ca62e74179ee921">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
394<tr class="separator:a967825a64c529b573ca62e74179ee921"><td class="memSeparator" colspan="2">&#160;</td></tr>
395<tr class="memitem:ac06bd6612edf1bbb0c0f4b0d4aa86b32"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac06bd6612edf1bbb0c0f4b0d4aa86b32">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
396<tr class="separator:ac06bd6612edf1bbb0c0f4b0d4aa86b32"><td class="memSeparator" colspan="2">&#160;</td></tr>
397<tr class="memitem:a5f97a3f0575116d348f47489487d4214"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a5f97a3f0575116d348f47489487d4214">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_pooling_layer_dataset.xhtml">datasets::SqueezeNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
398<tr class="separator:a5f97a3f0575116d348f47489487d4214"><td class="memSeparator" colspan="2">&#160;</td></tr>
399<tr class="memitem:a6a51ef57457c994f04d0b54e76387add"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6a51ef57457c994f04d0b54e76387add">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_pooling_layer_dataset.xhtml">datasets::VGG16PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
400<tr class="separator:a6a51ef57457c994f04d0b54e76387add"><td class="memSeparator" colspan="2">&#160;</td></tr>
401<tr class="memitem:a7d579c9d463693975486ea2248adc966"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a7d579c9d463693975486ea2248adc966">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_pooling_layer_dataset.xhtml">datasets::YOLOV2PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
402<tr class="separator:a7d579c9d463693975486ea2248adc966"><td class="memSeparator" colspan="2">&#160;</td></tr>
403<tr class="memitem:ac7d54f1a842ebb07f378846c21ccbe97"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac7d54f1a842ebb07f378846c21ccbe97">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SmallROIPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a41884dec2ecae6674396802641b01060">CLROIPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_small_r_o_i_pooling_layer_dataset.xhtml">datasets::SmallROIPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;DataType&quot;,{DataType::F16, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">DataType::F32</a>})), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1, 4, 8})))</td></tr>
404<tr class="separator:ac7d54f1a842ebb07f378846c21ccbe97"><td class="memSeparator" colspan="2">&#160;</td></tr>
405<tr class="memitem:a69b2d4f81544c38878bd196d49d41360"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a69b2d4f81544c38878bd196d49d41360">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNet, <a class="el" href="namespacearm__compute_1_1test.xhtml#aa631c5ec3d7cb3dab649f994e9e9217d">CLAlexNetFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;DataType&quot;,{DataType::F16, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">DataType::F32</a>}), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1, 4, 8})))</td></tr>
406<tr class="separator:a69b2d4f81544c38878bd196d49d41360"><td class="memSeparator" colspan="2">&#160;</td></tr>
407<tr class="memitem:a485c6b6af55e2f12c1b7ef40546c08f7"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a485c6b6af55e2f12c1b7ef40546c08f7">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5, <a class="el" href="namespacearm__compute_1_1test.xhtml#ae3b678c8477dd5acc5e264eae37b562c">CLLeNet5Fixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1, 4, 8}))</td></tr>
408<tr class="separator:a485c6b6af55e2f12c1b7ef40546c08f7"><td class="memSeparator" colspan="2">&#160;</td></tr>
409<tr class="memitem:abfd4fd028574ac46a9d056e7a1ead6f7"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#abfd4fd028574ac46a9d056e7a1ead6f7">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_activation_layer_dataset.xhtml">datasets::AlexNetActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
410<tr class="separator:abfd4fd028574ac46a9d056e7a1ead6f7"><td class="memSeparator" colspan="2">&#160;</td></tr>
411<tr class="memitem:a70381b263268259b4b6fbff88a0526c4"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a70381b263268259b4b6fbff88a0526c4">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5ActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_activation_layer_dataset.xhtml">datasets::LeNet5ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
412<tr class="separator:a70381b263268259b4b6fbff88a0526c4"><td class="memSeparator" colspan="2">&#160;</td></tr>
413<tr class="memitem:add697a0c19a1638874c37d5d15fc2d83"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#add697a0c19a1638874c37d5d15fc2d83">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1ActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_activation_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
414<tr class="separator:add697a0c19a1638874c37d5d15fc2d83"><td class="memSeparator" colspan="2">&#160;</td></tr>
415<tr class="memitem:a117bc733390c845f7493e6dad0b75191"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a117bc733390c845f7493e6dad0b75191">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4ActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_activation_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
416<tr class="separator:a117bc733390c845f7493e6dad0b75191"><td class="memSeparator" colspan="2">&#160;</td></tr>
417<tr class="memitem:a70f04129817692e0b5727fb542f9153c"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a70f04129817692e0b5727fb542f9153c">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_activation_layer_dataset.xhtml">datasets::SqueezeNetActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
418<tr class="separator:a70f04129817692e0b5727fb542f9153c"><td class="memSeparator" colspan="2">&#160;</td></tr>
419<tr class="memitem:ab10eddd065a1bdb9c6b09cb1e1382f5a"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ab10eddd065a1bdb9c6b09cb1e1382f5a">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16ActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_activation_layer_dataset.xhtml">datasets::VGG16ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
420<tr class="separator:ab10eddd065a1bdb9c6b09cb1e1382f5a"><td class="memSeparator" colspan="2">&#160;</td></tr>
421<tr class="memitem:a572b94c09ce496eda95d8d544dc1c4d1"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a572b94c09ce496eda95d8d544dc1c4d1">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2ActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_activation_layer_dataset.xhtml">datasets::YOLOV2ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
422<tr class="separator:a572b94c09ce496eda95d8d544dc1c4d1"><td class="memSeparator" colspan="2">&#160;</td></tr>
423<tr class="memitem:a7677396611ac11166c6f7344f9e0ef12"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a7677396611ac11166c6f7344f9e0ef12">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_activation_layer_dataset.xhtml">datasets::AlexNetActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
424<tr class="separator:a7677396611ac11166c6f7344f9e0ef12"><td class="memSeparator" colspan="2">&#160;</td></tr>
425<tr class="memitem:a1afabd3008ddf541288b01fe746ab284"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1afabd3008ddf541288b01fe746ab284">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5ActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_activation_layer_dataset.xhtml">datasets::LeNet5ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
426<tr class="separator:a1afabd3008ddf541288b01fe746ab284"><td class="memSeparator" colspan="2">&#160;</td></tr>
427<tr class="memitem:a164c7e1e8e2e4de0ce6282d2b0835dd0"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a164c7e1e8e2e4de0ce6282d2b0835dd0">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1ActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_activation_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
428<tr class="separator:a164c7e1e8e2e4de0ce6282d2b0835dd0"><td class="memSeparator" colspan="2">&#160;</td></tr>
429<tr class="memitem:a6ada452bc1053385b8574f38d341ffc9"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6ada452bc1053385b8574f38d341ffc9">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4ActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_activation_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
430<tr class="separator:a6ada452bc1053385b8574f38d341ffc9"><td class="memSeparator" colspan="2">&#160;</td></tr>
431<tr class="memitem:a6692a58c12e2eff315715e6c971d0230"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6692a58c12e2eff315715e6c971d0230">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_activation_layer_dataset.xhtml">datasets::SqueezeNetActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
432<tr class="separator:a6692a58c12e2eff315715e6c971d0230"><td class="memSeparator" colspan="2">&#160;</td></tr>
433<tr class="memitem:a26e3678291b5f879d82808eda0d39bc2"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a26e3678291b5f879d82808eda0d39bc2">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16ActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_activation_layer_dataset.xhtml">datasets::VGG16ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
434<tr class="separator:a26e3678291b5f879d82808eda0d39bc2"><td class="memSeparator" colspan="2">&#160;</td></tr>
435<tr class="memitem:ab77581768cf2f7433ba92c2b42c4617e"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ab77581768cf2f7433ba92c2b42c4617e">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2ActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_activation_layer_dataset.xhtml">datasets::YOLOV2ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
436<tr class="separator:ab77581768cf2f7433ba92c2b42c4617e"><td class="memSeparator" colspan="2">&#160;</td></tr>
437<tr class="memitem:a9e4dd8377091a877cf271bb34f2ed7da"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9e4dd8377091a877cf271bb34f2ed7da">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2BatchNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ac7369c169e6de526fcb6f68e4a959444">NEBatchNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_batch_normalization_layer_dataset.xhtml">datasets::YOLOV2BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
438<tr class="separator:a9e4dd8377091a877cf271bb34f2ed7da"><td class="memSeparator" colspan="2">&#160;</td></tr>
439<tr class="memitem:a09be4cd69df94f0929598f03b32001f0"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a09be4cd69df94f0929598f03b32001f0">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4BatchNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ac7369c169e6de526fcb6f68e4a959444">NEBatchNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_batch_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
440<tr class="separator:a09be4cd69df94f0929598f03b32001f0"><td class="memSeparator" colspan="2">&#160;</td></tr>
441<tr class="memitem:aa37f90a45822a6f45002ad5fd1e69560"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa37f90a45822a6f45002ad5fd1e69560">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2BatchNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ac7369c169e6de526fcb6f68e4a959444">NEBatchNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_batch_normalization_layer_dataset.xhtml">datasets::YOLOV2BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
442<tr class="separator:aa37f90a45822a6f45002ad5fd1e69560"><td class="memSeparator" colspan="2">&#160;</td></tr>
443<tr class="memitem:aa93e94a58a377d2493868e24d746531b"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa93e94a58a377d2493868e24d746531b">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4BatchNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ac7369c169e6de526fcb6f68e4a959444">NEBatchNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_batch_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
444<tr class="separator:aa93e94a58a377d2493868e24d746531b"><td class="memSeparator" colspan="2">&#160;</td></tr>
445<tr class="memitem:a4fc639ce3410d3609337137d44a68ac9"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4fc639ce3410d3609337137d44a68ac9">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_convolution_layer_dataset.xhtml">datasets::AlexNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
446<tr class="separator:a4fc639ce3410d3609337137d44a68ac9"><td class="memSeparator" colspan="2">&#160;</td></tr>
447<tr class="memitem:a7da7dbada8d8e076c78d1402743b7de9"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a7da7dbada8d8e076c78d1402743b7de9">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_convolution_layer_dataset.xhtml">datasets::LeNet5ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
448<tr class="separator:a7da7dbada8d8e076c78d1402743b7de9"><td class="memSeparator" colspan="2">&#160;</td></tr>
449<tr class="memitem:a9c30ac20d9eae69db3b004f36d8efaca"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c30ac20d9eae69db3b004f36d8efaca">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
450<tr class="separator:a9c30ac20d9eae69db3b004f36d8efaca"><td class="memSeparator" colspan="2">&#160;</td></tr>
451<tr class="memitem:abe4e6a4ff5c68a5403ec4dc38149d097"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#abe4e6a4ff5c68a5403ec4dc38149d097">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
452<tr class="separator:abe4e6a4ff5c68a5403ec4dc38149d097"><td class="memSeparator" colspan="2">&#160;</td></tr>
453<tr class="memitem:a2a91a938df2a246bb92811fe90bf5ee0"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a2a91a938df2a246bb92811fe90bf5ee0">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
454<tr class="separator:a2a91a938df2a246bb92811fe90bf5ee0"><td class="memSeparator" colspan="2">&#160;</td></tr>
455<tr class="memitem:a8c86e43926d24040dbbc73e5ad638dea"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a8c86e43926d24040dbbc73e5ad638dea">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_convolution_layer_dataset.xhtml">datasets::AlexNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
456<tr class="separator:a8c86e43926d24040dbbc73e5ad638dea"><td class="memSeparator" colspan="2">&#160;</td></tr>
457<tr class="memitem:a11c4e187683f0687472d48d8f279c8fc"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a11c4e187683f0687472d48d8f279c8fc">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_convolution_layer_dataset.xhtml">datasets::LeNet5ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
458<tr class="separator:a11c4e187683f0687472d48d8f279c8fc"><td class="memSeparator" colspan="2">&#160;</td></tr>
459<tr class="memitem:a3df552423cbf598c725b9dc615f06315"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3df552423cbf598c725b9dc615f06315">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
460<tr class="separator:a3df552423cbf598c725b9dc615f06315"><td class="memSeparator" colspan="2">&#160;</td></tr>
461<tr class="memitem:a4470fc8180788f756fccdb77f9a25886"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4470fc8180788f756fccdb77f9a25886">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
462<tr class="separator:a4470fc8180788f756fccdb77f9a25886"><td class="memSeparator" colspan="2">&#160;</td></tr>
463<tr class="memitem:a029d80ad64be335749e827cc64efd88c"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a029d80ad64be335749e827cc64efd88c">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
464<tr class="separator:a029d80ad64be335749e827cc64efd88c"><td class="memSeparator" colspan="2">&#160;</td></tr>
465<tr class="memitem:a68166bcb788035f5a6c17fe0c68ae730"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a68166bcb788035f5a6c17fe0c68ae730">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_convolution_layer_dataset.xhtml">datasets::VGG16ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1, 4})))</td></tr>
466<tr class="separator:a68166bcb788035f5a6c17fe0c68ae730"><td class="memSeparator" colspan="2">&#160;</td></tr>
467<tr class="memitem:a0ca04d4de125be45c16b579b43d53835"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0ca04d4de125be45c16b579b43d53835">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_convolution_layer_dataset.xhtml">datasets::YOLOV2ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1, 4, 8})))</td></tr>
468<tr class="separator:a0ca04d4de125be45c16b579b43d53835"><td class="memSeparator" colspan="2">&#160;</td></tr>
469<tr class="memitem:abe7167f9af260495f067dd8f36251a3b"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#abe7167f9af260495f067dd8f36251a3b">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
470<tr class="separator:abe7167f9af260495f067dd8f36251a3b"><td class="memSeparator" colspan="2">&#160;</td></tr>
471<tr class="memitem:adc3f7b3f1d06144af1980e8705253583"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#adc3f7b3f1d06144af1980e8705253583">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
472<tr class="separator:adc3f7b3f1d06144af1980e8705253583"><td class="memSeparator" colspan="2">&#160;</td></tr>
473<tr class="memitem:a9cc3e01ede750344f389191184d4682d"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9cc3e01ede750344f389191184d4682d">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
474<tr class="separator:a9cc3e01ede750344f389191184d4682d"><td class="memSeparator" colspan="2">&#160;</td></tr>
475<tr class="memitem:a9c7a41c764eb85334c2d75df71d40cc4"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c7a41c764eb85334c2d75df71d40cc4">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
476<tr class="separator:a9c7a41c764eb85334c2d75df71d40cc4"><td class="memSeparator" colspan="2">&#160;</td></tr>
477<tr class="memitem:ad8c07298bae2d7cd7ace3ad869371b0b"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad8c07298bae2d7cd7ace3ad869371b0b">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
478<tr class="separator:ad8c07298bae2d7cd7ace3ad869371b0b"><td class="memSeparator" colspan="2">&#160;</td></tr>
479<tr class="memitem:a981537b01124fe1025ab51dfe0dde1ee"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a981537b01124fe1025ab51dfe0dde1ee">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
480<tr class="separator:a981537b01124fe1025ab51dfe0dde1ee"><td class="memSeparator" colspan="2">&#160;</td></tr>
481<tr class="memitem:a27446bd5b343d26d6028cd2ab34065a6"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a27446bd5b343d26d6028cd2ab34065a6">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
482<tr class="separator:a27446bd5b343d26d6028cd2ab34065a6"><td class="memSeparator" colspan="2">&#160;</td></tr>
483<tr class="memitem:a13170587db62e123a041d2b8cab82ef8"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a13170587db62e123a041d2b8cab82ef8">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
484<tr class="separator:a13170587db62e123a041d2b8cab82ef8"><td class="memSeparator" colspan="2">&#160;</td></tr>
485<tr class="memitem:a1f92978c7363135053baa95b94501676"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1f92978c7363135053baa95b94501676">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_convolution_layer_dataset.xhtml">datasets::VGG16ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1, 4, 8})))</td></tr>
486<tr class="separator:a1f92978c7363135053baa95b94501676"><td class="memSeparator" colspan="2">&#160;</td></tr>
487<tr class="memitem:af3310a6693b1d28b4d474e2a025b8777"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#af3310a6693b1d28b4d474e2a025b8777">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_convolution_layer_dataset.xhtml">datasets::YOLOV2ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1, 4, 8})))</td></tr>
488<tr class="separator:af3310a6693b1d28b4d474e2a025b8777"><td class="memSeparator" colspan="2">&#160;</td></tr>
489<tr class="memitem:a6faf0b684dd2c7e5bb111dd8f8f8c6f1"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6faf0b684dd2c7e5bb111dd8f8f8c6f1">REGISTER_FIXTURE_DATA_TEST_CASE</a> (Floor, <a class="el" href="namespacearm__compute_1_1test.xhtml#ac8cf6873b0e9ac7334bcbc042fdc5f02">NEFloorFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_small_shapes.xhtml">datasets::SmallShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
490<tr class="separator:a6faf0b684dd2c7e5bb111dd8f8f8c6f1"><td class="memSeparator" colspan="2">&#160;</td></tr>
491<tr class="memitem:a16176f104b13866fa9c0379d3fd9ef1f"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a16176f104b13866fa9c0379d3fd9ef1f">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetFullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_fully_connected_layer_dataset.xhtml">datasets::AlexNetFullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
492<tr class="separator:a16176f104b13866fa9c0379d3fd9ef1f"><td class="memSeparator" colspan="2">&#160;</td></tr>
493<tr class="memitem:ad83dbea09b27679e5c1d7950ae035f3a"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad83dbea09b27679e5c1d7950ae035f3a">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_fully_connected_layer_dataset.xhtml">datasets::LeNet5FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
494<tr class="separator:ad83dbea09b27679e5c1d7950ae035f3a"><td class="memSeparator" colspan="2">&#160;</td></tr>
495<tr class="memitem:a597d20f8105ae670eccdc44b0486ad4e"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a597d20f8105ae670eccdc44b0486ad4e">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_fully_connected_layer_dataset.xhtml">datasets::VGG16FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
496<tr class="separator:a597d20f8105ae670eccdc44b0486ad4e"><td class="memSeparator" colspan="2">&#160;</td></tr>
497<tr class="memitem:a033a42b308036c4e46a8bef7536d88f9"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a033a42b308036c4e46a8bef7536d88f9">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
498<tr class="separator:a033a42b308036c4e46a8bef7536d88f9"><td class="memSeparator" colspan="2">&#160;</td></tr>
499<tr class="memitem:a4b45a5a8afe0c81a4aafef1ba2ba96e8"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4b45a5a8afe0c81a4aafef1ba2ba96e8">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
500<tr class="separator:a4b45a5a8afe0c81a4aafef1ba2ba96e8"><td class="memSeparator" colspan="2">&#160;</td></tr>
501<tr class="memitem:a4325316dca63988d0c63c8e761143557"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4325316dca63988d0c63c8e761143557">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetFullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_fully_connected_layer_dataset.xhtml">datasets::AlexNetFullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
502<tr class="separator:a4325316dca63988d0c63c8e761143557"><td class="memSeparator" colspan="2">&#160;</td></tr>
503<tr class="memitem:a4ecb06077e2a789221648d0479e61809"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4ecb06077e2a789221648d0479e61809">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_fully_connected_layer_dataset.xhtml">datasets::LeNet5FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
504<tr class="separator:a4ecb06077e2a789221648d0479e61809"><td class="memSeparator" colspan="2">&#160;</td></tr>
505<tr class="memitem:adeee41f0a436718ca296fc99f2e2a151"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#adeee41f0a436718ca296fc99f2e2a151">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_fully_connected_layer_dataset.xhtml">datasets::VGG16FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
506<tr class="separator:adeee41f0a436718ca296fc99f2e2a151"><td class="memSeparator" colspan="2">&#160;</td></tr>
507<tr class="memitem:af5e14e7ca5ce517a75fb019b02108797"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#af5e14e7ca5ce517a75fb019b02108797">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
508<tr class="separator:af5e14e7ca5ce517a75fb019b02108797"><td class="memSeparator" colspan="2">&#160;</td></tr>
509<tr class="memitem:a1d77d86fcdca1b8578756eae70fcac85"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1d77d86fcdca1b8578756eae70fcac85">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
510<tr class="separator:a1d77d86fcdca1b8578756eae70fcac85"><td class="memSeparator" colspan="2">&#160;</td></tr>
511<tr class="memitem:a1d515029981b77ba7d02f20251013a3b"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1d515029981b77ba7d02f20251013a3b">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1GEMM, <a class="el" href="namespacearm__compute_1_1test.xhtml#a789c444c1307e85eec5f8b0d75fd5f7d">NEGEMMFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_g_e_m_m_dataset.xhtml">datasets::GoogLeNetInceptionV1GEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
512<tr class="separator:a1d515029981b77ba7d02f20251013a3b"><td class="memSeparator" colspan="2">&#160;</td></tr>
513<tr class="memitem:a5dbda869f12c5e1ffa17a2dce7e82609"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a5dbda869f12c5e1ffa17a2dce7e82609">REGISTER_FIXTURE_DATA_TEST_CASE</a> (MatrixMultiplyGEMM, <a class="el" href="namespacearm__compute_1_1test.xhtml#a789c444c1307e85eec5f8b0d75fd5f7d">NEGEMMFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_matrix_multiply_g_e_m_m_dataset.xhtml">datasets::MatrixMultiplyGEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
514<tr class="separator:a5dbda869f12c5e1ffa17a2dce7e82609"><td class="memSeparator" colspan="2">&#160;</td></tr>
515<tr class="memitem:ac9eaa20c5215f43c16202896b7ea9118"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac9eaa20c5215f43c16202896b7ea9118">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogleNetGEMM, <a class="el" href="namespacearm__compute_1_1test.xhtml#a789c444c1307e85eec5f8b0d75fd5f7d">NEGEMMFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_google_net_g_e_m_m_dataset.xhtml">datasets::GoogleNetGEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
516<tr class="separator:ac9eaa20c5215f43c16202896b7ea9118"><td class="memSeparator" colspan="2">&#160;</td></tr>
517<tr class="memitem:a3d815590d056717dde89027c469fba5a"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3d815590d056717dde89027c469fba5a">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#acc2c4764a300b505b50e9ba0642eff2b">NENormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_normalization_layer_dataset.xhtml">datasets::AlexNetNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
518<tr class="separator:a3d815590d056717dde89027c469fba5a"><td class="memSeparator" colspan="2">&#160;</td></tr>
519<tr class="memitem:a04a6f03a4f0b85f507735cd409a8b74d"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a04a6f03a4f0b85f507735cd409a8b74d">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1NormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#acc2c4764a300b505b50e9ba0642eff2b">NENormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1NormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
520<tr class="separator:a04a6f03a4f0b85f507735cd409a8b74d"><td class="memSeparator" colspan="2">&#160;</td></tr>
521<tr class="memitem:a962c45074ad2b94899bc7003b3db0509"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a962c45074ad2b94899bc7003b3db0509">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#acc2c4764a300b505b50e9ba0642eff2b">NENormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_normalization_layer_dataset.xhtml">datasets::AlexNetNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
522<tr class="separator:a962c45074ad2b94899bc7003b3db0509"><td class="memSeparator" colspan="2">&#160;</td></tr>
523<tr class="memitem:ab17878545b689878d626f8e2298d2b1b"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ab17878545b689878d626f8e2298d2b1b">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1NormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#acc2c4764a300b505b50e9ba0642eff2b">NENormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1NormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
524<tr class="separator:ab17878545b689878d626f8e2298d2b1b"><td class="memSeparator" colspan="2">&#160;</td></tr>
525<tr class="memitem:af33a8fe45c20501be3c2fa7aaa32bf26"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#af33a8fe45c20501be3c2fa7aaa32bf26">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_pooling_layer_dataset.xhtml">datasets::AlexNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
526<tr class="separator:af33a8fe45c20501be3c2fa7aaa32bf26"><td class="memSeparator" colspan="2">&#160;</td></tr>
527<tr class="memitem:a7d7ea7b966b70d0931772f51a2cfcdb0"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a7d7ea7b966b70d0931772f51a2cfcdb0">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_pooling_layer_dataset.xhtml">datasets::LeNet5PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
528<tr class="separator:a7d7ea7b966b70d0931772f51a2cfcdb0"><td class="memSeparator" colspan="2">&#160;</td></tr>
529<tr class="memitem:ac4a14a4ebd0a6067fa657e06d6e6d9ec"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac4a14a4ebd0a6067fa657e06d6e6d9ec">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
530<tr class="separator:ac4a14a4ebd0a6067fa657e06d6e6d9ec"><td class="memSeparator" colspan="2">&#160;</td></tr>
531<tr class="memitem:a97400b4e200d00d86169b2afc584d2e3"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a97400b4e200d00d86169b2afc584d2e3">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
532<tr class="separator:a97400b4e200d00d86169b2afc584d2e3"><td class="memSeparator" colspan="2">&#160;</td></tr>
533<tr class="memitem:aa7edcfdce59bb3cb0f1ed784a28fb6d2"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa7edcfdce59bb3cb0f1ed784a28fb6d2">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_pooling_layer_dataset.xhtml">datasets::SqueezeNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
534<tr class="separator:aa7edcfdce59bb3cb0f1ed784a28fb6d2"><td class="memSeparator" colspan="2">&#160;</td></tr>
535<tr class="memitem:ab644feafdb4a10f39c7e4acca32744eb"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ab644feafdb4a10f39c7e4acca32744eb">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_pooling_layer_dataset.xhtml">datasets::VGG16PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
536<tr class="separator:ab644feafdb4a10f39c7e4acca32744eb"><td class="memSeparator" colspan="2">&#160;</td></tr>
537<tr class="memitem:a49f6de6126e559d77c77ec1252ead9e1"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a49f6de6126e559d77c77ec1252ead9e1">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_pooling_layer_dataset.xhtml">datasets::YOLOV2PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;, 1)))</td></tr>
538<tr class="separator:a49f6de6126e559d77c77ec1252ead9e1"><td class="memSeparator" colspan="2">&#160;</td></tr>
539<tr class="memitem:a8050efac909e6e8fce5791d2205fe0a8"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a8050efac909e6e8fce5791d2205fe0a8">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_pooling_layer_dataset.xhtml">datasets::AlexNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
540<tr class="separator:a8050efac909e6e8fce5791d2205fe0a8"><td class="memSeparator" colspan="2">&#160;</td></tr>
541<tr class="memitem:a0a1da94fb11977ec74784861c2c56246"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0a1da94fb11977ec74784861c2c56246">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_pooling_layer_dataset.xhtml">datasets::LeNet5PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
542<tr class="separator:a0a1da94fb11977ec74784861c2c56246"><td class="memSeparator" colspan="2">&#160;</td></tr>
543<tr class="memitem:ad5101e30d9b5306231c7ed2ce71f350b"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad5101e30d9b5306231c7ed2ce71f350b">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
544<tr class="separator:ad5101e30d9b5306231c7ed2ce71f350b"><td class="memSeparator" colspan="2">&#160;</td></tr>
545<tr class="memitem:ad0b2b0d1564cc6c5ac951a7b8e59bda8"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad0b2b0d1564cc6c5ac951a7b8e59bda8">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
546<tr class="separator:ad0b2b0d1564cc6c5ac951a7b8e59bda8"><td class="memSeparator" colspan="2">&#160;</td></tr>
547<tr class="memitem:aa973f66482fdadbd2ab72cdb6face4b5"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa973f66482fdadbd2ab72cdb6face4b5">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_pooling_layer_dataset.xhtml">datasets::SqueezeNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
548<tr class="separator:aa973f66482fdadbd2ab72cdb6face4b5"><td class="memSeparator" colspan="2">&#160;</td></tr>
549<tr class="memitem:a9adba78f24e5c87b2c95a1c5e23883e9"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9adba78f24e5c87b2c95a1c5e23883e9">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_pooling_layer_dataset.xhtml">datasets::VGG16PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
550<tr class="separator:a9adba78f24e5c87b2c95a1c5e23883e9"><td class="memSeparator" colspan="2">&#160;</td></tr>
551<tr class="memitem:a03474ce6764bea95de0edb583d281017"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a03474ce6764bea95de0edb583d281017">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_pooling_layer_dataset.xhtml">datasets::YOLOV2PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{4, 8})))</td></tr>
552<tr class="separator:a03474ce6764bea95de0edb583d281017"><td class="memSeparator" colspan="2">&#160;</td></tr>
553<tr class="memitem:aa14390b7bed93ce327f5dedd89fc8928"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa14390b7bed93ce327f5dedd89fc8928">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SmallROIPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a7ad74154ac625702bef70b90243ae63f">NEROIPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_small_r_o_i_pooling_layer_dataset.xhtml">datasets::SmallROIPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;DataType&quot;,{DataType::F32})), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1, 4, 8})))</td></tr>
554<tr class="separator:aa14390b7bed93ce327f5dedd89fc8928"><td class="memSeparator" colspan="2">&#160;</td></tr>
555<tr class="memitem:a4fa3f7aa92292c25a9876a3b1cded7c9"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4fa3f7aa92292c25a9876a3b1cded7c9">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNet, <a class="el" href="namespacearm__compute_1_1test.xhtml#ae0e8bcf3b0ed15e708b4a38febfdb84e">NEAlexNetFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(alex_net_data_types, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1, 4, 8})))</td></tr>
556<tr class="separator:a4fa3f7aa92292c25a9876a3b1cded7c9"><td class="memSeparator" colspan="2">&#160;</td></tr>
557<tr class="memitem:a9ba464da0fc25dbd0cb96fe5c61494c4"><td class="memItemLeft" align="right" valign="top">&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9ba464da0fc25dbd0cb96fe5c61494c4">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5, <a class="el" href="namespacearm__compute_1_1test.xhtml#a6a292ad5fedcc7dea6c6eb1be6d4c0d3">NELeNet5Fixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;Batches&quot;,{1, 4, 8}))</td></tr>
558<tr class="separator:a9ba464da0fc25dbd0cb96fe5c61494c4"><td class="memSeparator" colspan="2">&#160;</td></tr>
559<tr class="memitem:a629633220b1b91a871c57b679b9f06e3"><td class="memTemplParams" colspan="2">template&lt;typename O , typename F , typename... As&gt; </td></tr>
560<tr class="memitem:a629633220b1b91a871c57b679b9f06e3"><td class="memTemplItemLeft" align="right" valign="top">void&#160;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a629633220b1b91a871c57b679b9f06e3">apply</a> (O *obj, F &amp;&amp;func, const std::tuple&lt; As...&gt; &amp;args)</td></tr>
561<tr class="separator:a629633220b1b91a871c57b679b9f06e3"><td class="memSeparator" colspan="2">&#160;</td></tr>
562<tr class="memitem:aa18932675cbb5eb9c9dbf8ff4d7106c7"><td class="memTemplParams" colspan="2">template&lt;typename T , typename std::enable_if&lt; std::is_same&lt; typename T::value_type, std::string &gt;::value, int &gt;::type = 0&gt; </td></tr>
563<tr class="memitem:aa18932675cbb5eb9c9dbf8ff4d7106c7"><td class="memTemplItemLeft" align="right" valign="top">std::string&#160;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa18932675cbb5eb9c9dbf8ff4d7106c7">join</a> (T first, T last, const std::string &amp;separator)</td></tr>
564<tr class="memdesc:aa18932675cbb5eb9c9dbf8ff4d7106c7"><td class="mdescLeft">&#160;</td><td class="mdescRight">Helper function to concatenate multiple strings. <a href="#aa18932675cbb5eb9c9dbf8ff4d7106c7">More...</a><br/></td></tr>
565<tr class="separator:aa18932675cbb5eb9c9dbf8ff4d7106c7"><td class="memSeparator" colspan="2">&#160;</td></tr>
566<tr class="memitem:a898a0423aace06af0f3a18a26a972a1a"><td class="memTemplParams" colspan="2">template&lt;typename T , typename UnaryOp &gt; </td></tr>
567<tr class="memitem:a898a0423aace06af0f3a18a26a972a1a"><td class="memTemplItemLeft" align="right" valign="top">std::string&#160;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a898a0423aace06af0f3a18a26a972a1a">join</a> (T &amp;&amp;first, T &amp;&amp;last, const std::string &amp;separator, UnaryOp &amp;&amp;op)</td></tr>
568<tr class="memdesc:a898a0423aace06af0f3a18a26a972a1a"><td class="mdescLeft">&#160;</td><td class="mdescRight">Helper function to concatenate multiple values. <a href="#a898a0423aace06af0f3a18a26a972a1a">More...</a><br/></td></tr>
569<tr class="separator:a898a0423aace06af0f3a18a26a972a1a"><td class="memSeparator" colspan="2">&#160;</td></tr>
570<tr class="memitem:a69835710fc772315f4e65ce156034530"><td class="memTemplParams" colspan="2">template&lt;typename T , typename std::enable_if&lt; std::is_arithmetic&lt; typename T::value_type &gt;::value, int &gt;::type = 0&gt; </td></tr>
571<tr class="memitem:a69835710fc772315f4e65ce156034530"><td class="memTemplItemLeft" align="right" valign="top">std::string&#160;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a69835710fc772315f4e65ce156034530">join</a> (T &amp;&amp;first, T &amp;&amp;last, const std::string &amp;separator)</td></tr>
572<tr class="memdesc:a69835710fc772315f4e65ce156034530"><td class="mdescLeft">&#160;</td><td class="mdescRight">Helper function to concatenate multiple values. <a href="#a69835710fc772315f4e65ce156034530">More...</a><br/></td></tr>
573<tr class="separator:a69835710fc772315f4e65ce156034530"><td class="memSeparator" colspan="2">&#160;</td></tr>
574<tr class="memitem:a5b67cbf475b1e1d3bec9b0b937fdafac"><td class="memItemLeft" align="right" valign="top">std::string&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a5b67cbf475b1e1d3bec9b0b937fdafac">tolower</a> (std::string string)</td></tr>
575<tr class="memdesc:a5b67cbf475b1e1d3bec9b0b937fdafac"><td class="mdescLeft">&#160;</td><td class="mdescRight">Convert string to lower case. <a href="#a5b67cbf475b1e1d3bec9b0b937fdafac">More...</a><br/></td></tr>
576<tr class="separator:a5b67cbf475b1e1d3bec9b0b937fdafac"><td class="memSeparator" colspan="2">&#160;</td></tr>
577<tr class="memitem:a8939810976531494e8db1f491bf61a35"><td class="memTemplParams" colspan="2">template&lt;typename D , typename T , typename... Ts&gt; </td></tr>
578<tr class="memitem:a8939810976531494e8db1f491bf61a35"><td class="memTemplItemLeft" align="right" valign="top">void&#160;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a8939810976531494e8db1f491bf61a35">fill_tensors</a> (D &amp;&amp;dist, std::initializer_list&lt; int &gt; seeds, T &amp;&amp;tensor, Ts &amp;&amp;...other_tensors)</td></tr>
579<tr class="separator:a8939810976531494e8db1f491bf61a35"><td class="memSeparator" colspan="2">&#160;</td></tr>
580<tr class="memitem:a28edc8880596d14c099f3c2509efc8b3"><td class="memTemplParams" colspan="2">template&lt;typename U &gt; </td></tr>
581<tr class="memitem:a28edc8880596d14c099f3c2509efc8b3"><td class="memTemplItemLeft" align="right" valign="top">void&#160;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a> (<a class="el" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor</a>&lt; U &gt; &amp;tensor1, <a class="el" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor</a>&lt; U &gt; &amp;tensor2)</td></tr>
582<tr class="separator:a28edc8880596d14c099f3c2509efc8b3"><td class="memSeparator" colspan="2">&#160;</td></tr>
583<tr class="memitem:af4bcf30f8c56f547f66d61c7c5ae01db"><td class="memTemplParams" colspan="2">template&lt;typename T , typename = typename std::enable_if&lt;std::is_floating_point&lt;T&gt;::value&gt;::type&gt; </td></tr>
584<tr class="memitem:af4bcf30f8c56f547f66d61c7c5ae01db"><td class="memTemplItemLeft" align="right" valign="top">T&#160;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#af4bcf30f8c56f547f66d61c7c5ae01db">round_half_up</a> (T <a class="el" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>)</td></tr>
585<tr class="memdesc:af4bcf30f8c56f547f66d61c7c5ae01db"><td class="mdescLeft">&#160;</td><td class="mdescRight">Round floating-point value with half value rounding to positive infinity. <a href="#af4bcf30f8c56f547f66d61c7c5ae01db">More...</a><br/></td></tr>
586<tr class="separator:af4bcf30f8c56f547f66d61c7c5ae01db"><td class="memSeparator" colspan="2">&#160;</td></tr>
587<tr class="memitem:ad93bb148a873f19ad7692756e59617f4"><td class="memTemplParams" colspan="2">template&lt;typename T , typename = typename std::enable_if&lt;std::is_floating_point&lt;T&gt;::value&gt;::type&gt; </td></tr>
588<tr class="memitem:ad93bb148a873f19ad7692756e59617f4"><td class="memTemplItemLeft" align="right" valign="top">T&#160;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad93bb148a873f19ad7692756e59617f4">round_half_even</a> (T <a class="el" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>, T epsilon=std::numeric_limits&lt; T &gt;::epsilon())</td></tr>
589<tr class="memdesc:ad93bb148a873f19ad7692756e59617f4"><td class="mdescLeft">&#160;</td><td class="mdescRight">Round floating-point value with half value rounding to nearest even. <a href="#ad93bb148a873f19ad7692756e59617f4">More...</a><br/></td></tr>
590<tr class="separator:ad93bb148a873f19ad7692756e59617f4"><td class="memSeparator" colspan="2">&#160;</td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100591<tr class="memitem:aa337ab76176f3c4193642ac6de3a61cf"><td class="memItemLeft" align="right" valign="top"><a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58">Format</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa337ab76176f3c4193642ac6de3a61cf">get_format_for_channel</a> (<a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455a">Channel</a> channel)</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100592<tr class="memdesc:aa337ab76176f3c4193642ac6de3a61cf"><td class="mdescLeft">&#160;</td><td class="mdescRight">Look up the format corresponding to a channel. <a href="#aa337ab76176f3c4193642ac6de3a61cf">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100593<tr class="separator:aa337ab76176f3c4193642ac6de3a61cf"><td class="memSeparator" colspan="2">&#160;</td></tr>
594<tr class="memitem:ac7dbe33793790fc37a5eda11ed6b0273"><td class="memItemLeft" align="right" valign="top"><a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58">Format</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac7dbe33793790fc37a5eda11ed6b0273">get_channel_format</a> (<a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455a">Channel</a> channel)</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100595<tr class="memdesc:ac7dbe33793790fc37a5eda11ed6b0273"><td class="mdescLeft">&#160;</td><td class="mdescRight">Return the format of a channel. <a href="#ac7dbe33793790fc37a5eda11ed6b0273">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100596<tr class="separator:ac7dbe33793790fc37a5eda11ed6b0273"><td class="memSeparator" colspan="2">&#160;</td></tr>
597<tr class="memitem:a1ebbb23b0094d47c51226d58e17e6447"><td class="memTemplParams" colspan="2">template&lt;typename F , typename T &gt; </td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100598<tr class="memitem:a1ebbb23b0094d47c51226d58e17e6447"><td class="memTemplItemLeft" align="right" valign="top">T&#160;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1ebbb23b0094d47c51226d58e17e6447">foldl</a> (F &amp;&amp;, const T &amp;<a class="el" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>)</td></tr>
599<tr class="memdesc:a1ebbb23b0094d47c51226d58e17e6447"><td class="mdescLeft">&#160;</td><td class="mdescRight">Base case of foldl. <a href="#a1ebbb23b0094d47c51226d58e17e6447">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100600<tr class="separator:a1ebbb23b0094d47c51226d58e17e6447"><td class="memSeparator" colspan="2">&#160;</td></tr>
601<tr class="memitem:ad933f996ccb22854ae56dd86de8cbbfe"><td class="memTemplParams" colspan="2">template&lt;typename F , typename T , typename U &gt; </td></tr>
602<tr class="memitem:ad933f996ccb22854ae56dd86de8cbbfe"><td class="memTemplItemLeft" align="right" valign="top">auto&#160;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad933f996ccb22854ae56dd86de8cbbfe">foldl</a> (F &amp;&amp;func, T &amp;&amp;value1, U &amp;&amp;value2) -&gt; decltype(func(value1, value2))</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100603<tr class="memdesc:ad933f996ccb22854ae56dd86de8cbbfe"><td class="mdescLeft">&#160;</td><td class="mdescRight">Base case of foldl. <a href="#ad933f996ccb22854ae56dd86de8cbbfe">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100604<tr class="separator:ad933f996ccb22854ae56dd86de8cbbfe"><td class="memSeparator" colspan="2">&#160;</td></tr>
605<tr class="memitem:a89322cccde5e0a27d3a41085d3fd366c"><td class="memTemplParams" colspan="2">template&lt;typename F , typename I , typename T , typename... Vs&gt; </td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100606<tr class="memitem:a89322cccde5e0a27d3a41085d3fd366c"><td class="memTemplItemLeft" align="right" valign="top">I&#160;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a89322cccde5e0a27d3a41085d3fd366c">foldl</a> (F &amp;&amp;func, I &amp;&amp;initial, T &amp;&amp;<a class="el" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>, Vs &amp;&amp;...values)</td></tr>
607<tr class="memdesc:a89322cccde5e0a27d3a41085d3fd366c"><td class="mdescLeft">&#160;</td><td class="mdescRight">Fold left. <a href="#a89322cccde5e0a27d3a41085d3fd366c">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100608<tr class="separator:a89322cccde5e0a27d3a41085d3fd366c"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100609<tr class="memitem:a4c9ad143c34306817986409ffb1dbd40"><td class="memItemLeft" align="right" valign="top"><a class="el" href="structarm__compute_1_1_valid_region.xhtml">ValidRegion</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4c9ad143c34306817986409ffb1dbd40">shape_to_valid_region</a> (<a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> shape, bool border_undefined=false, <a class="el" href="structarm__compute_1_1_border_size.xhtml">BorderSize</a> border_size=<a class="el" href="structarm__compute_1_1_border_size.xhtml">BorderSize</a>(0))</td></tr>
610<tr class="memdesc:a4c9ad143c34306817986409ffb1dbd40"><td class="mdescLeft">&#160;</td><td class="mdescRight">Create a valid region based on tensor shape, border mode and border size. <a href="#a4c9ad143c34306817986409ffb1dbd40">More...</a><br/></td></tr>
611<tr class="separator:a4c9ad143c34306817986409ffb1dbd40"><td class="memSeparator" colspan="2">&#160;</td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100612<tr class="memitem:a1e6934e95738573214c2ce1d6648d116"><td class="memTemplParams" colspan="2">template&lt;typename T &gt; </td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100613<tr class="memitem:a1e6934e95738573214c2ce1d6648d116"><td class="memTemplItemLeft" align="right" valign="top">void&#160;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1e6934e95738573214c2ce1d6648d116">store_value_with_data_type</a> (void *ptr, T <a class="el" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6">DataType</a> data_type)</td></tr>
614<tr class="memdesc:a1e6934e95738573214c2ce1d6648d116"><td class="mdescLeft">&#160;</td><td class="mdescRight">Write the value after casting the pointer according to <code>data_type</code>. <a href="#a1e6934e95738573214c2ce1d6648d116">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100615<tr class="separator:a1e6934e95738573214c2ce1d6648d116"><td class="memSeparator" colspan="2">&#160;</td></tr>
616<tr class="memitem:a4965b2f6821e0cf0afee738158bd8377"><td class="memTemplParams" colspan="2">template&lt;typename U , typename T &gt; </td></tr>
617<tr class="memitem:a4965b2f6821e0cf0afee738158bd8377"><td class="memTemplItemLeft" align="right" valign="top">T&#160;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4965b2f6821e0cf0afee738158bd8377">saturate_cast</a> (T val)</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100618<tr class="memdesc:a4965b2f6821e0cf0afee738158bd8377"><td class="mdescLeft">&#160;</td><td class="mdescRight">Saturate a value of type T against the numeric limits of type U. <a href="#a4965b2f6821e0cf0afee738158bd8377">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100619<tr class="separator:a4965b2f6821e0cf0afee738158bd8377"><td class="memSeparator" colspan="2">&#160;</td></tr>
620<tr class="memitem:a24d8c0391cfa38e78969b6ad97c0ff09"><td class="memItemLeft" align="right" valign="top"><a class="el" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a24d8c0391cfa38e78969b6ad97c0ff09">index2coord</a> (const <a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &amp;shape, int index)</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100621<tr class="memdesc:a24d8c0391cfa38e78969b6ad97c0ff09"><td class="mdescLeft">&#160;</td><td class="mdescRight">Convert a linear index into n-dimensional coordinates. <a href="#a24d8c0391cfa38e78969b6ad97c0ff09">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100622<tr class="separator:a24d8c0391cfa38e78969b6ad97c0ff09"><td class="memSeparator" colspan="2">&#160;</td></tr>
623<tr class="memitem:a9be4cb7e6ee20063a4a10bc3abb750b9"><td class="memItemLeft" align="right" valign="top">int&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9be4cb7e6ee20063a4a10bc3abb750b9">coord2index</a> (const <a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &amp;shape, const <a class="el" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> &amp;coord)</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100624<tr class="memdesc:a9be4cb7e6ee20063a4a10bc3abb750b9"><td class="mdescLeft">&#160;</td><td class="mdescRight">Linearise the given coordinate. <a href="#a9be4cb7e6ee20063a4a10bc3abb750b9">More...</a><br/></td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100625<tr class="separator:a9be4cb7e6ee20063a4a10bc3abb750b9"><td class="memSeparator" colspan="2">&#160;</td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100626<tr class="memitem:a856b55fc20ddcbdbeb84c35ae27bedac"><td class="memItemLeft" align="right" valign="top">bool&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a856b55fc20ddcbdbeb84c35ae27bedac">is_in_valid_region</a> (const <a class="el" href="structarm__compute_1_1_valid_region.xhtml">ValidRegion</a> &amp;valid_region, <a class="el" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> coord)</td></tr>
627<tr class="memdesc:a856b55fc20ddcbdbeb84c35ae27bedac"><td class="mdescLeft">&#160;</td><td class="mdescRight">Check if a coordinate is within a valid region. <a href="#a856b55fc20ddcbdbeb84c35ae27bedac">More...</a><br/></td></tr>
628<tr class="separator:a856b55fc20ddcbdbeb84c35ae27bedac"><td class="memSeparator" colspan="2">&#160;</td></tr>
629<tr class="memitem:a2ce249581879425cc66db8d364c838f3"><td class="memTemplParams" colspan="2">template&lt;typename T &gt; </td></tr>
630<tr class="memitem:a2ce249581879425cc66db8d364c838f3"><td class="memTemplItemLeft" align="right" valign="top">T&#160;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a2ce249581879425cc66db8d364c838f3">create_tensor</a> (const <a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &amp;shape, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6">DataType</a> data_type, int num_channels=1, int fixed_point_position=0)</td></tr>
631<tr class="memdesc:a2ce249581879425cc66db8d364c838f3"><td class="mdescLeft">&#160;</td><td class="mdescRight">Create and initialize a tensor of the given type. <a href="#a2ce249581879425cc66db8d364c838f3">More...</a><br/></td></tr>
632<tr class="separator:a2ce249581879425cc66db8d364c838f3"><td class="memSeparator" colspan="2">&#160;</td></tr>
633<tr class="memitem:ac7324cc960068b65c558b7d25dfe2914"><td class="memItemLeft" align="right" valign="top">std::vector&lt; <a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a> &gt;&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac7324cc960068b65c558b7d25dfe2914">generate_random_rois</a> (const <a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &amp;shape, const <a class="el" href="classarm__compute_1_1_r_o_i_pooling_layer_info.xhtml">ROIPoolingLayerInfo</a> &amp;pool_info, unsigned int num_rois, std::random_device::result_type seed)</td></tr>
634<tr class="memdesc:ac7324cc960068b65c558b7d25dfe2914"><td class="mdescLeft">&#160;</td><td class="mdescRight">Create a vector of random ROIs. <a href="#ac7324cc960068b65c558b7d25dfe2914">More...</a><br/></td></tr>
635<tr class="separator:ac7324cc960068b65c558b7d25dfe2914"><td class="memSeparator" colspan="2">&#160;</td></tr>
636<tr class="memitem:ac35e7a1ad467f5fe8620cbbc5793d53b"><td class="memTemplParams" colspan="2">template&lt;typename T , typename ArrayAccessor_T &gt; </td></tr>
637<tr class="memitem:ac35e7a1ad467f5fe8620cbbc5793d53b"><td class="memTemplItemLeft" align="right" valign="top">void&#160;</td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac35e7a1ad467f5fe8620cbbc5793d53b">fill_array</a> (ArrayAccessor_T &amp;&amp;array, const std::vector&lt; T &gt; &amp;v)</td></tr>
638<tr class="separator:ac35e7a1ad467f5fe8620cbbc5793d53b"><td class="memSeparator" colspan="2">&#160;</td></tr>
639<tr class="memitem:ae47155d6186155ec4da9295764b3c05a"><td class="memItemLeft" align="right" valign="top">std::string&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae47155d6186155ec4da9295764b3c05a">get_typestring</a> (<a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6">DataType</a> data_type)</td></tr>
640<tr class="memdesc:ae47155d6186155ec4da9295764b3c05a"><td class="mdescLeft">&#160;</td><td class="mdescRight">Obtain numpy type string from DataType. <a href="#ae47155d6186155ec4da9295764b3c05a">More...</a><br/></td></tr>
641<tr class="separator:ae47155d6186155ec4da9295764b3c05a"><td class="memSeparator" colspan="2">&#160;</td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100642</table><table class="memberdecls">
643<tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="var-members"></a>
644Variables</h2></td></tr>
Kaizen8938bd32017-09-28 14:38:23 +0100645<tr class="memitem:aab9a2ff74a27ae837d32a79a38952228"><td class="memItemLeft" align="right" valign="top">const auto&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a> = <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;DataType&quot;, { DataType::F32 })</td></tr>
646<tr class="separator:aab9a2ff74a27ae837d32a79a38952228"><td class="memSeparator" colspan="2">&#160;</td></tr>
647<tr class="memitem:a71326f0909d77386e29b511e1990a11f"><td class="memItemLeft" align="right" valign="top">std::unique_ptr&lt; <a class="el" href="classarm__compute_1_1test_1_1_assets_library.xhtml">AssetsLibrary</a> &gt;&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a71326f0909d77386e29b511e1990a11f">library</a></td></tr>
648<tr class="separator:a71326f0909d77386e29b511e1990a11f"><td class="memSeparator" colspan="2">&#160;</td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100649</table>
650<h2 class="groupheader">Typedef Documentation</h2>
Kaizen8938bd32017-09-28 14:38:23 +0100651<a class="anchor" id="a74a10374253178ae54e1baab173698a1"></a>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100652<div class="memitem">
653<div class="memproto">
654 <table class="memname">
655 <tr>
Kaizen8938bd32017-09-28 14:38:23 +0100656 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a74a10374253178ae54e1baab173698a1">CLActivationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_activation_layer_fixture.xhtml">ActivationLayerFixture</a>&lt;<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_activation_layer.xhtml">CLActivationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>&gt;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100657 </tr>
658 </table>
659</div><div class="memdoc">
660
Kaizen8938bd32017-09-28 14:38:23 +0100661<p>Definition at line <a class="el" href="benchmark_2_c_l_2_activation_layer_8cpp_source.xhtml#l00051">51</a> of file <a class="el" href="benchmark_2_c_l_2_activation_layer_8cpp_source.xhtml">ActivationLayer.cpp</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100662
663</div>
664</div>
Kaizen8938bd32017-09-28 14:38:23 +0100665<a class="anchor" id="aa631c5ec3d7cb3dab649f994e9e9217d"></a>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100666<div class="memitem">
667<div class="memproto">
668 <table class="memname">
669 <tr>
Kaizen8938bd32017-09-28 14:38:23 +0100670 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#aa631c5ec3d7cb3dab649f994e9e9217d">CLAlexNetFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_alex_net_fixture.xhtml">AlexNetFixture</a>&lt;<a class="el" href="classarm__compute_1_1_i_c_l_tensor.xhtml">ICLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_sub_tensor.xhtml">CLSubTensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>, <a class="el" href="classarm__compute_1_1_c_l_activation_layer.xhtml">CLActivationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_convolution_layer.xhtml">CLConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_direct_convolution_layer.xhtml">CLDirectConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_fully_connected_layer.xhtml">CLFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_normalization_layer.xhtml">CLNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_pooling_layer.xhtml">CLPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_softmax_layer.xhtml">CLSoftmaxLayer</a>&gt;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100671 </tr>
672 </table>
673</div><div class="memdoc">
674
Kaizen8938bd32017-09-28 14:38:23 +0100675<p>Definition at line <a class="el" href="benchmark_2_c_l_2_s_y_s_t_e_m_2_alex_net_8cpp_source.xhtml#l00056">56</a> of file <a class="el" href="benchmark_2_c_l_2_s_y_s_t_e_m_2_alex_net_8cpp_source.xhtml">AlexNet.cpp</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100676
677</div>
678</div>
Kaizen8938bd32017-09-28 14:38:23 +0100679<a class="anchor" id="af80ea91532f0ebdccb3f1d8e507a98ad"></a>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100680<div class="memitem">
681<div class="memproto">
682 <table class="memname">
683 <tr>
Kaizen8938bd32017-09-28 14:38:23 +0100684 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#af80ea91532f0ebdccb3f1d8e507a98ad">CLBatchNormalizationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_batch_normalization_layer_fixture.xhtml">BatchNormalizationLayerFixture</a>&lt;<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_batch_normalization_layer.xhtml">CLBatchNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>&gt;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100685 </tr>
686 </table>
687</div><div class="memdoc">
688
Kaizen8938bd32017-09-28 14:38:23 +0100689<p>Definition at line <a class="el" href="benchmark_2_c_l_2_batch_normalization_layer_8cpp_source.xhtml#l00046">46</a> of file <a class="el" href="benchmark_2_c_l_2_batch_normalization_layer_8cpp_source.xhtml">BatchNormalizationLayer.cpp</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100690
691</div>
692</div>
Kaizen8938bd32017-09-28 14:38:23 +0100693<a class="anchor" id="ad275d75e1b63f91fdc59afe026688b12"></a>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100694<div class="memitem">
695<div class="memproto">
696 <table class="memname">
697 <tr>
Kaizen8938bd32017-09-28 14:38:23 +0100698 <td class="memname">typedef <a class="el" href="classarm__compute_1_1test_1_1_convolution_layer_fixture.xhtml">ConvolutionLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_direct_convolution_layer.xhtml">CLDirectConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> &gt; <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a></td>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100699 </tr>
700 </table>
701</div><div class="memdoc">
702
Kaizen8938bd32017-09-28 14:38:23 +0100703<p>Definition at line <a class="el" href="benchmark_2_c_l_2_convolution_layer_8cpp_source.xhtml#l00051">51</a> of file <a class="el" href="benchmark_2_c_l_2_convolution_layer_8cpp_source.xhtml">ConvolutionLayer.cpp</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100704
705</div>
706</div>
Kaizen8938bd32017-09-28 14:38:23 +0100707<a class="anchor" id="a1e3870d2e47dfd84b259bdbff0a6f5f8"></a>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100708<div class="memitem">
709<div class="memproto">
710 <table class="memname">
711 <tr>
Kaizen8938bd32017-09-28 14:38:23 +0100712 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a1e3870d2e47dfd84b259bdbff0a6f5f8">CLDepthwiseConvolutionFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_depthwise_convolution_fixture.xhtml">DepthwiseConvolutionFixture</a>&lt;<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_depthwise_convolution.xhtml">CLDepthwiseConvolution</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>&gt;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100713 </tr>
714 </table>
715</div><div class="memdoc">
716
Kaizen8938bd32017-09-28 14:38:23 +0100717<p>Definition at line <a class="el" href="benchmark_2_c_l_2_depthwise_convolution_8cpp_source.xhtml#l00041">41</a> of file <a class="el" href="benchmark_2_c_l_2_depthwise_convolution_8cpp_source.xhtml">DepthwiseConvolution.cpp</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100718
719</div>
720</div>
Kaizen8938bd32017-09-28 14:38:23 +0100721<a class="anchor" id="adc07e82b4049d653c965af2606a7d70f"></a>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100722<div class="memitem">
723<div class="memproto">
724 <table class="memname">
725 <tr>
Kaizen8938bd32017-09-28 14:38:23 +0100726 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#adc07e82b4049d653c965af2606a7d70f">CLDepthwiseSeparableConvolutionLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_depthwise_separable_convolution_layer_fixture.xhtml">DepthwiseSeparableConvolutionLayerFixture</a>&lt;<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_depthwise_separable_convolution_layer.xhtml">CLDepthwiseSeparableConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>&gt;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100727 </tr>
728 </table>
729</div><div class="memdoc">
730
Kaizen8938bd32017-09-28 14:38:23 +0100731<p>Definition at line <a class="el" href="benchmark_2_c_l_2_depthwise_separable_convolution_layer_8cpp_source.xhtml#l00041">41</a> of file <a class="el" href="benchmark_2_c_l_2_depthwise_separable_convolution_layer_8cpp_source.xhtml">DepthwiseSeparableConvolutionLayer.cpp</a>.</p>
732
733</div>
734</div>
735<a class="anchor" id="a4a14e383a632057e99845c74a72a6454"></a>
736<div class="memitem">
737<div class="memproto">
738 <table class="memname">
739 <tr>
740 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a4a14e383a632057e99845c74a72a6454">CLFloorFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_floor_fixture.xhtml">FloorFixture</a>&lt;<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_floor.xhtml">CLFloor</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>&gt;</td>
741 </tr>
742 </table>
743</div><div class="memdoc">
744
745<p>Definition at line <a class="el" href="benchmark_2_c_l_2_floor_8cpp_source.xhtml#l00045">45</a> of file <a class="el" href="benchmark_2_c_l_2_floor_8cpp_source.xhtml">Floor.cpp</a>.</p>
746
747</div>
748</div>
749<a class="anchor" id="a4c33955ce3f6ed3a4d756cdebf6c8b3a"></a>
750<div class="memitem">
751<div class="memproto">
752 <table class="memname">
753 <tr>
754 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_fully_connected_layer_fixture.xhtml">FullyConnectedLayerFixture</a>&lt;<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_fully_connected_layer.xhtml">CLFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>&gt;</td>
755 </tr>
756 </table>
757</div><div class="memdoc">
758
759<p>Definition at line <a class="el" href="benchmark_2_c_l_2_fully_connected_layer_8cpp_source.xhtml#l00049">49</a> of file <a class="el" href="benchmark_2_c_l_2_fully_connected_layer_8cpp_source.xhtml">FullyConnectedLayer.cpp</a>.</p>
760
761</div>
762</div>
763<a class="anchor" id="abf07c2bf7d8e9c76e146f9b21bee88fd"></a>
764<div class="memitem">
765<div class="memproto">
766 <table class="memname">
767 <tr>
768 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#abf07c2bf7d8e9c76e146f9b21bee88fd">CLGEMMFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_g_e_m_m_fixture.xhtml">GEMMFixture</a>&lt;<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_g_e_m_m.xhtml">CLGEMM</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>&gt;</td>
769 </tr>
770 </table>
771</div><div class="memdoc">
772
773<p>Definition at line <a class="el" href="benchmark_2_c_l_2_g_e_m_m_8cpp_source.xhtml#l00046">46</a> of file <a class="el" href="benchmark_2_c_l_2_g_e_m_m_8cpp_source.xhtml">GEMM.cpp</a>.</p>
774
775</div>
776</div>
777<a class="anchor" id="ae3b678c8477dd5acc5e264eae37b562c"></a>
778<div class="memitem">
779<div class="memproto">
780 <table class="memname">
781 <tr>
782 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#ae3b678c8477dd5acc5e264eae37b562c">CLLeNet5Fixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_le_net5_fixture.xhtml">LeNet5Fixture</a>&lt;<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>, <a class="el" href="classarm__compute_1_1_c_l_activation_layer.xhtml">CLActivationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_convolution_layer.xhtml">CLConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_fully_connected_layer.xhtml">CLFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_pooling_layer.xhtml">CLPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_softmax_layer.xhtml">CLSoftmaxLayer</a>&gt;</td>
783 </tr>
784 </table>
785</div><div class="memdoc">
786
787<p>Definition at line <a class="el" href="benchmark_2_c_l_2_s_y_s_t_e_m_2_le_net5_8cpp_source.xhtml#l00049">49</a> of file <a class="el" href="benchmark_2_c_l_2_s_y_s_t_e_m_2_le_net5_8cpp_source.xhtml">LeNet5.cpp</a>.</p>
788
789</div>
790</div>
791<a class="anchor" id="af4f1c6ad288931f07f614316f57ed63b"></a>
792<div class="memitem">
793<div class="memproto">
794 <table class="memname">
795 <tr>
796 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#af4f1c6ad288931f07f614316f57ed63b">CLNormalizationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_normalization_layer_fixture.xhtml">NormalizationLayerFixture</a>&lt;<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_normalization_layer.xhtml">CLNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>&gt;</td>
797 </tr>
798 </table>
799</div><div class="memdoc">
800
801<p>Definition at line <a class="el" href="benchmark_2_c_l_2_normalization_layer_8cpp_source.xhtml#l00046">46</a> of file <a class="el" href="benchmark_2_c_l_2_normalization_layer_8cpp_source.xhtml">NormalizationLayer.cpp</a>.</p>
802
803</div>
804</div>
805<a class="anchor" id="a9c81648f3199d0d1c3f34a29a7a2bb8d"></a>
806<div class="memitem">
807<div class="memproto">
808 <table class="memname">
809 <tr>
810 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_pooling_layer_fixture.xhtml">PoolingLayerFixture</a>&lt;<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_pooling_layer.xhtml">CLPoolingLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>&gt;</td>
811 </tr>
812 </table>
813</div><div class="memdoc">
814
815<p>Definition at line <a class="el" href="benchmark_2_c_l_2_pooling_layer_8cpp_source.xhtml#l00051">51</a> of file <a class="el" href="benchmark_2_c_l_2_pooling_layer_8cpp_source.xhtml">PoolingLayer.cpp</a>.</p>
816
817</div>
818</div>
819<a class="anchor" id="a41884dec2ecae6674396802641b01060"></a>
820<div class="memitem">
821<div class="memproto">
822 <table class="memname">
823 <tr>
824 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a41884dec2ecae6674396802641b01060">CLROIPoolingLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_r_o_i_pooling_layer_fixture.xhtml">ROIPoolingLayerFixture</a>&lt;<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_r_o_i_pooling_layer.xhtml">CLROIPoolingLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>, <a class="el" href="classarm__compute_1_1_c_l_array.xhtml">CLArray</a>&lt;<a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a>&gt;, <a class="el" href="classarm__compute_1_1test_1_1_c_l_array_accessor.xhtml">CLArrayAccessor</a>&lt;<a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a>&gt;&gt;</td>
825 </tr>
826 </table>
827</div><div class="memdoc">
828
829<p>Definition at line <a class="el" href="_c_l_2_r_o_i_pooling_layer_8cpp_source.xhtml#l00042">42</a> of file <a class="el" href="_c_l_2_r_o_i_pooling_layer_8cpp_source.xhtml">ROIPoolingLayer.cpp</a>.</p>
830
831</div>
832</div>
833<a class="anchor" id="aeded391cb7ec7a44c41eb23544265894"></a>
834<div class="memitem">
835<div class="memproto">
836 <table class="memname">
837 <tr>
838 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_activation_layer_fixture.xhtml">ActivationLayerFixture</a>&lt;<a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_activation_layer.xhtml">NEActivationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>&gt;</td>
839 </tr>
840 </table>
841</div><div class="memdoc">
842
843<p>Definition at line <a class="el" href="benchmark_2_n_e_o_n_2_activation_layer_8cpp_source.xhtml#l00055">55</a> of file <a class="el" href="benchmark_2_n_e_o_n_2_activation_layer_8cpp_source.xhtml">ActivationLayer.cpp</a>.</p>
844
845</div>
846</div>
847<a class="anchor" id="ae0e8bcf3b0ed15e708b4a38febfdb84e"></a>
848<div class="memitem">
849<div class="memproto">
850 <table class="memname">
851 <tr>
852 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#ae0e8bcf3b0ed15e708b4a38febfdb84e">NEAlexNetFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_alex_net_fixture.xhtml">AlexNetFixture</a>&lt;<a class="el" href="classarm__compute_1_1_i_tensor.xhtml">ITensor</a>, <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_sub_tensor.xhtml">SubTensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>, <a class="el" href="classarm__compute_1_1_n_e_activation_layer.xhtml">NEActivationLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_convolution_layer.xhtml">NEConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_convolution_layer.xhtml">NEConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_fully_connected_layer.xhtml">NEFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_normalization_layer.xhtml">NENormalizationLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_pooling_layer.xhtml">NEPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml">NESoftmaxLayer</a>&gt;</td>
853 </tr>
854 </table>
855</div><div class="memdoc">
856
857<p>Definition at line <a class="el" href="benchmark_2_n_e_o_n_2_s_y_s_t_e_m_2_alex_net_8cpp_source.xhtml#l00065">65</a> of file <a class="el" href="benchmark_2_n_e_o_n_2_s_y_s_t_e_m_2_alex_net_8cpp_source.xhtml">AlexNet.cpp</a>.</p>
858
859</div>
860</div>
861<a class="anchor" id="ac7369c169e6de526fcb6f68e4a959444"></a>
862<div class="memitem">
863<div class="memproto">
864 <table class="memname">
865 <tr>
866 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#ac7369c169e6de526fcb6f68e4a959444">NEBatchNormalizationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_batch_normalization_layer_fixture.xhtml">BatchNormalizationLayerFixture</a>&lt;<a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_batch_normalization_layer.xhtml">NEBatchNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>&gt;</td>
867 </tr>
868 </table>
869</div><div class="memdoc">
870
871<p>Definition at line <a class="el" href="benchmark_2_n_e_o_n_2_batch_normalization_layer_8cpp_source.xhtml#l00051">51</a> of file <a class="el" href="benchmark_2_n_e_o_n_2_batch_normalization_layer_8cpp_source.xhtml">BatchNormalizationLayer.cpp</a>.</p>
872
873</div>
874</div>
875<a class="anchor" id="a3168ad22b6ac1e9a6996b53e5038a7a2"></a>
876<div class="memitem">
877<div class="memproto">
878 <table class="memname">
879 <tr>
880 <td class="memname">typedef <a class="el" href="classarm__compute_1_1test_1_1_convolution_layer_fixture.xhtml">ConvolutionLayerFixture</a>&lt; <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_direct_convolution_layer.xhtml">NEDirectConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> &gt; <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a></td>
881 </tr>
882 </table>
883</div><div class="memdoc">
884
885<p>Definition at line <a class="el" href="benchmark_2_n_e_o_n_2_convolution_layer_8cpp_source.xhtml#l00055">55</a> of file <a class="el" href="benchmark_2_n_e_o_n_2_convolution_layer_8cpp_source.xhtml">ConvolutionLayer.cpp</a>.</p>
886
887</div>
888</div>
889<a class="anchor" id="ac8cf6873b0e9ac7334bcbc042fdc5f02"></a>
890<div class="memitem">
891<div class="memproto">
892 <table class="memname">
893 <tr>
894 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#ac8cf6873b0e9ac7334bcbc042fdc5f02">NEFloorFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_floor_fixture.xhtml">FloorFixture</a>&lt;<a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_floor.xhtml">NEFloor</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>&gt;</td>
895 </tr>
896 </table>
897</div><div class="memdoc">
898
899<p>Definition at line <a class="el" href="benchmark_2_n_e_o_n_2_floor_8cpp_source.xhtml#l00045">45</a> of file <a class="el" href="benchmark_2_n_e_o_n_2_floor_8cpp_source.xhtml">Floor.cpp</a>.</p>
900
901</div>
902</div>
903<a class="anchor" id="a0b4f7a523ddb2b823750ff5bdc03470c"></a>
904<div class="memitem">
905<div class="memproto">
906 <table class="memname">
907 <tr>
908 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_fully_connected_layer_fixture.xhtml">FullyConnectedLayerFixture</a>&lt;<a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_fully_connected_layer.xhtml">NEFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>&gt;</td>
909 </tr>
910 </table>
911</div><div class="memdoc">
912
913<p>Definition at line <a class="el" href="benchmark_2_n_e_o_n_2_fully_connected_layer_8cpp_source.xhtml#l00053">53</a> of file <a class="el" href="benchmark_2_n_e_o_n_2_fully_connected_layer_8cpp_source.xhtml">FullyConnectedLayer.cpp</a>.</p>
914
915</div>
916</div>
917<a class="anchor" id="a789c444c1307e85eec5f8b0d75fd5f7d"></a>
918<div class="memitem">
919<div class="memproto">
920 <table class="memname">
921 <tr>
922 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a789c444c1307e85eec5f8b0d75fd5f7d">NEGEMMFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_g_e_m_m_fixture.xhtml">GEMMFixture</a>&lt;<a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m.xhtml">NEGEMM</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>&gt;</td>
923 </tr>
924 </table>
925</div><div class="memdoc">
926
927<p>Definition at line <a class="el" href="benchmark_2_n_e_o_n_2_g_e_m_m_8cpp_source.xhtml#l00054">54</a> of file <a class="el" href="benchmark_2_n_e_o_n_2_g_e_m_m_8cpp_source.xhtml">GEMM.cpp</a>.</p>
928
929</div>
930</div>
931<a class="anchor" id="a6a292ad5fedcc7dea6c6eb1be6d4c0d3"></a>
932<div class="memitem">
933<div class="memproto">
934 <table class="memname">
935 <tr>
936 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a6a292ad5fedcc7dea6c6eb1be6d4c0d3">NELeNet5Fixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_le_net5_fixture.xhtml">LeNet5Fixture</a>&lt;<a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>, <a class="el" href="classarm__compute_1_1_n_e_activation_layer.xhtml">NEActivationLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_convolution_layer.xhtml">NEConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_fully_connected_layer.xhtml">NEFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_pooling_layer.xhtml">NEPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml">NESoftmaxLayer</a>&gt;</td>
937 </tr>
938 </table>
939</div><div class="memdoc">
940
941<p>Definition at line <a class="el" href="benchmark_2_n_e_o_n_2_s_y_s_t_e_m_2_le_net5_8cpp_source.xhtml#l00049">49</a> of file <a class="el" href="benchmark_2_n_e_o_n_2_s_y_s_t_e_m_2_le_net5_8cpp_source.xhtml">LeNet5.cpp</a>.</p>
942
943</div>
944</div>
945<a class="anchor" id="acc2c4764a300b505b50e9ba0642eff2b"></a>
946<div class="memitem">
947<div class="memproto">
948 <table class="memname">
949 <tr>
950 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#acc2c4764a300b505b50e9ba0642eff2b">NENormalizationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_normalization_layer_fixture.xhtml">NormalizationLayerFixture</a>&lt;<a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_normalization_layer.xhtml">NENormalizationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>&gt;</td>
951 </tr>
952 </table>
953</div><div class="memdoc">
954
955<p>Definition at line <a class="el" href="benchmark_2_n_e_o_n_2_normalization_layer_8cpp_source.xhtml#l00049">49</a> of file <a class="el" href="benchmark_2_n_e_o_n_2_normalization_layer_8cpp_source.xhtml">NormalizationLayer.cpp</a>.</p>
956
957</div>
958</div>
959<a class="anchor" id="aafcc5ee5a13d9ed18d31591bb1d50fb0"></a>
960<div class="memitem">
961<div class="memproto">
962 <table class="memname">
963 <tr>
964 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_pooling_layer_fixture.xhtml">PoolingLayerFixture</a>&lt;<a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_pooling_layer.xhtml">NEPoolingLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>&gt;</td>
965 </tr>
966 </table>
967</div><div class="memdoc">
968
969<p>Definition at line <a class="el" href="benchmark_2_n_e_o_n_2_pooling_layer_8cpp_source.xhtml#l00055">55</a> of file <a class="el" href="benchmark_2_n_e_o_n_2_pooling_layer_8cpp_source.xhtml">PoolingLayer.cpp</a>.</p>
970
971</div>
972</div>
973<a class="anchor" id="a7ad74154ac625702bef70b90243ae63f"></a>
974<div class="memitem">
975<div class="memproto">
976 <table class="memname">
977 <tr>
978 <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a7ad74154ac625702bef70b90243ae63f">NEROIPoolingLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_r_o_i_pooling_layer_fixture.xhtml">ROIPoolingLayerFixture</a>&lt;<a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_r_o_i_pooling_layer.xhtml">NEROIPoolingLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>, <a class="el" href="classarm__compute_1_1_array.xhtml">Array</a>&lt;<a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a>&gt;, <a class="el" href="classarm__compute_1_1test_1_1_array_accessor.xhtml">ArrayAccessor</a>&lt;<a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a>&gt;&gt;</td>
979 </tr>
980 </table>
981</div><div class="memdoc">
982
983<p>Definition at line <a class="el" href="_n_e_o_n_2_r_o_i_pooling_layer_8cpp_source.xhtml#l00042">42</a> of file <a class="el" href="_n_e_o_n_2_r_o_i_pooling_layer_8cpp_source.xhtml">ROIPoolingLayer.cpp</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +0100984
985</div>
986</div>
987<h2 class="groupheader">Function Documentation</h2>
Kaizen8938bd32017-09-28 14:38:23 +0100988<a class="anchor" id="a629633220b1b91a871c57b679b9f06e3"></a>
989<div class="memitem">
990<div class="memproto">
991 <table class="memname">
992 <tr>
993 <td class="memname">void arm_compute::test::apply </td>
994 <td>(</td>
995 <td class="paramtype">O *&#160;</td>
996 <td class="paramname"><em>obj</em>, </td>
997 </tr>
998 <tr>
999 <td class="paramkey"></td>
1000 <td></td>
1001 <td class="paramtype">F &amp;&amp;&#160;</td>
1002 <td class="paramname"><em>func</em>, </td>
1003 </tr>
1004 <tr>
1005 <td class="paramkey"></td>
1006 <td></td>
1007 <td class="paramtype">const std::tuple&lt; As...&gt; &amp;&#160;</td>
1008 <td class="paramname"><em>args</em>&#160;</td>
1009 </tr>
1010 <tr>
1011 <td></td>
1012 <td>)</td>
1013 <td></td><td></td>
1014 </tr>
1015 </table>
1016</div><div class="memdoc">
1017
1018<p>Definition at line <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00079">79</a> of file <a class="el" href="tests_2framework_2_utils_8h_source.xhtml">Utils.h</a>.</p>
1019
1020<p>References <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00072">arm_compute::test::framework::apply_impl()</a>.</p>
1021<div class="fragment"><div class="line"><a name="l00080"></a><span class="lineno"> 80</span>&#160;{</div>
1022<div class="line"><a name="l00081"></a><span class="lineno"> 81</span>&#160; <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#a8daf3ad5a8666ce417ad176256a592eb">detail::apply_impl</a>(obj, std::forward&lt;F&gt;(func), <a class="code" href="namespacecaffe__data__extractor.xhtml#aad3cdfd6574de97bf37448087aaff11d">args</a>, detail::sequence_t&lt;<span class="keyword">sizeof</span>...(As)&gt;());</div>
1023<div class="line"><a name="l00082"></a><span class="lineno"> 82</span>&#160;}</div>
1024<div class="ttc" id="namespacearm__compute_1_1test_1_1framework_xhtml_a8daf3ad5a8666ce417ad176256a592eb"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1framework.xhtml#a8daf3ad5a8666ce417ad176256a592eb">arm_compute::test::framework::apply_impl</a></div><div class="ttdeci">void apply_impl(O *obj, F &amp;&amp;func, const std::tuple&lt; As...&gt; &amp;args, detail::sequence&lt; S...&gt;)</div><div class="ttdef"><b>Definition:</b> <a href="tests_2framework_2_utils_8h_source.xhtml#l00072">Utils.h:72</a></div></div>
1025<div class="ttc" id="namespacecaffe__data__extractor_xhtml_aad3cdfd6574de97bf37448087aaff11d"><div class="ttname"><a href="namespacecaffe__data__extractor.xhtml#aad3cdfd6574de97bf37448087aaff11d">caffe_data_extractor.args</a></div><div class="ttdeci">tuple args</div><div class="ttdef"><b>Definition:</b> <a href="caffe__data__extractor_8py_source.xhtml#l00021">caffe_data_extractor.py:21</a></div></div>
1026</div><!-- fragment -->
1027</div>
1028</div>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001029<a class="anchor" id="a9be4cb7e6ee20063a4a10bc3abb750b9"></a>
1030<div class="memitem">
1031<div class="memproto">
1032<table class="mlabels">
1033 <tr>
1034 <td class="mlabels-left">
1035 <table class="memname">
1036 <tr>
1037 <td class="memname">int arm_compute::test::coord2index </td>
1038 <td>(</td>
Kaizen8938bd32017-09-28 14:38:23 +01001039 <td class="paramtype">const TensorShape &amp;&#160;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001040 <td class="paramname"><em>shape</em>, </td>
1041 </tr>
1042 <tr>
1043 <td class="paramkey"></td>
1044 <td></td>
Kaizen8938bd32017-09-28 14:38:23 +01001045 <td class="paramtype">const Coordinates &amp;&#160;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001046 <td class="paramname"><em>coord</em>&#160;</td>
1047 </tr>
1048 <tr>
1049 <td></td>
1050 <td>)</td>
1051 <td></td><td></td>
1052 </tr>
1053 </table>
1054 </td>
1055 <td class="mlabels-right">
1056<span class="mlabels"><span class="mlabel">inline</span></span> </td>
1057 </tr>
1058</table>
1059</div><div class="memdoc">
1060
1061<p>Linearise the given coordinate. </p>
1062<p>Transforms the given coordinate into a linear offset in terms of elements.</p>
1063<dl class="params"><dt>Parameters</dt><dd>
1064 <table class="params">
1065 <tr><td class="paramdir">[in]</td><td class="paramname">shape</td><td>Shape of the n-dimensional tensor. </td></tr>
1066 <tr><td class="paramdir">[in]</td><td class="paramname">coord</td><td>The to be converted coordinate.</td></tr>
1067 </table>
1068 </dd>
1069</dl>
1070<dl class="section return"><dt>Returns</dt><dd>Linear offset to the element. </dd></dl>
1071
Kaizen8938bd32017-09-28 14:38:23 +01001072<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00337">337</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001073
Kaizen8938bd32017-09-28 14:38:23 +01001074<p>References <a class="el" href="_error_8h_source.xhtml#l00115">ARM_COMPUTE_ERROR_ON_MSG</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00109">Dimensions&lt; T &gt;::num_dimensions()</a>, and <a class="el" href="_tensor_shape_8h_source.xhtml#l00135">TensorShape::total_size()</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001075
Kaizen8938bd32017-09-28 14:38:23 +01001076<p>Referenced by <a class="el" href="tests_2validation_2_c_p_p_2_utils_8h_source.xhtml#l00081">arm_compute::test::validation::apply_2d_spatial_filter()</a>, <a class="el" href="_raw_tensor_8cpp_source.xhtml#l00057">RawTensor::operator()()</a>, <a class="el" href="_simple_tensor_8h_source.xhtml#l00323">SimpleTensor&lt; T &gt;::operator()()</a>, <a class="el" href="_c_p_p_2_scale_8cpp_source.xhtml#l00039">arm_compute::test::validation::reference::scale()</a>, and <a class="el" href="tests_2validation_2_c_p_p_2_utils_8h_source.xhtml#l00046">arm_compute::test::validation::tensor_elem_at()</a>.</p>
1077<div class="fragment"><div class="line"><a name="l00338"></a><span class="lineno"> 338</span>&#160;{</div>
1078<div class="line"><a name="l00339"></a><span class="lineno"> 339</span>&#160; <a class="code" href="_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.total_size() == 0, <span class="stringliteral">&quot;Cannot get index from empty shape&quot;</span>);</div>
1079<div class="line"><a name="l00340"></a><span class="lineno"> 340</span>&#160; <a class="code" href="_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a>(coord.num_dimensions() == 0, <span class="stringliteral">&quot;Cannot get index of empty coordinate&quot;</span>);</div>
1080<div class="line"><a name="l00341"></a><span class="lineno"> 341</span>&#160;</div>
1081<div class="line"><a name="l00342"></a><span class="lineno"> 342</span>&#160; <span class="keywordtype">int</span> index = 0;</div>
1082<div class="line"><a name="l00343"></a><span class="lineno"> 343</span>&#160; <span class="keywordtype">int</span> dim_size = 1;</div>
1083<div class="line"><a name="l00344"></a><span class="lineno"> 344</span>&#160;</div>
1084<div class="line"><a name="l00345"></a><span class="lineno"> 345</span>&#160; <span class="keywordflow">for</span>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = 0; i &lt; coord.num_dimensions(); ++i)</div>
1085<div class="line"><a name="l00346"></a><span class="lineno"> 346</span>&#160; {</div>
1086<div class="line"><a name="l00347"></a><span class="lineno"> 347</span>&#160; index += coord[i] * dim_size;</div>
1087<div class="line"><a name="l00348"></a><span class="lineno"> 348</span>&#160; dim_size *= <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>[i];</div>
1088<div class="line"><a name="l00349"></a><span class="lineno"> 349</span>&#160; }</div>
1089<div class="line"><a name="l00350"></a><span class="lineno"> 350</span>&#160;</div>
1090<div class="line"><a name="l00351"></a><span class="lineno"> 351</span>&#160; <span class="keywordflow">return</span> index;</div>
1091<div class="line"><a name="l00352"></a><span class="lineno"> 352</span>&#160;}</div>
1092<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
1093<div class="ttc" id="_error_8h_xhtml_a5bbdcf574d3f5e412fa6a1117911e67b"><div class="ttname"><a href="_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON_MSG(cond,...)</div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00115">Error.h:115</a></div></div>
1094</div><!-- fragment -->
1095</div>
1096</div>
1097<a class="anchor" id="a2ce249581879425cc66db8d364c838f3"></a>
1098<div class="memitem">
1099<div class="memproto">
1100<table class="mlabels">
1101 <tr>
1102 <td class="mlabels-left">
1103 <table class="memname">
1104 <tr>
1105 <td class="memname">T arm_compute::test::create_tensor </td>
1106 <td>(</td>
1107 <td class="paramtype">const TensorShape &amp;&#160;</td>
1108 <td class="paramname"><em>shape</em>, </td>
1109 </tr>
1110 <tr>
1111 <td class="paramkey"></td>
1112 <td></td>
1113 <td class="paramtype">DataType&#160;</td>
1114 <td class="paramname"><em>data_type</em>, </td>
1115 </tr>
1116 <tr>
1117 <td class="paramkey"></td>
1118 <td></td>
1119 <td class="paramtype">int&#160;</td>
1120 <td class="paramname"><em>num_channels</em> = <code>1</code>, </td>
1121 </tr>
1122 <tr>
1123 <td class="paramkey"></td>
1124 <td></td>
1125 <td class="paramtype">int&#160;</td>
1126 <td class="paramname"><em>fixed_point_position</em> = <code>0</code>&#160;</td>
1127 </tr>
1128 <tr>
1129 <td></td>
1130 <td>)</td>
1131 <td></td><td></td>
1132 </tr>
1133 </table>
1134 </td>
1135 <td class="mlabels-right">
1136<span class="mlabels"><span class="mlabel">inline</span></span> </td>
1137 </tr>
1138</table>
1139</div><div class="memdoc">
1140
1141<p>Create and initialize a tensor of the given type. </p>
1142<dl class="params"><dt>Parameters</dt><dd>
1143 <table class="params">
1144 <tr><td class="paramdir">[in]</td><td class="paramname">shape</td><td><a class="el" href="classarm__compute_1_1_tensor.xhtml" title="Basic implementation of the tensor interface. ">Tensor</a> shape. </td></tr>
1145 <tr><td class="paramdir">[in]</td><td class="paramname">data_type</td><td>Data type. </td></tr>
1146 <tr><td class="paramdir">[in]</td><td class="paramname">num_channels</td><td>(Optional) Number of channels. </td></tr>
1147 <tr><td class="paramdir">[in]</td><td class="paramname">fixed_point_position</td><td>(Optional) Number of fractional bits.</td></tr>
1148 </table>
1149 </dd>
1150</dl>
1151<dl class="section return"><dt>Returns</dt><dd>Initialized tensor of given type. </dd></dl>
1152
1153<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00378">378</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
1154<div class="fragment"><div class="line"><a name="l00379"></a><span class="lineno"> 379</span>&#160;{</div>
1155<div class="line"><a name="l00380"></a><span class="lineno"> 380</span>&#160; T tensor;</div>
1156<div class="line"><a name="l00381"></a><span class="lineno"> 381</span>&#160; tensor.allocator()-&gt;init(TensorInfo(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>, num_channels, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">data_type</a>, fixed_point_position));</div>
1157<div class="line"><a name="l00382"></a><span class="lineno"> 382</span>&#160;</div>
1158<div class="line"><a name="l00383"></a><span class="lineno"> 383</span>&#160; <span class="keywordflow">return</span> tensor;</div>
1159<div class="line"><a name="l00384"></a><span class="lineno"> 384</span>&#160;}</div>
1160<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
1161<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_ac2ad7f431e3446fddcd9b6b9f93c4c14"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">arm_compute::test::validation::data_type</a></div><div class="ttdeci">data_type</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00090">MinMaxLocation.cpp:90</a></div></div>
1162</div><!-- fragment -->
1163</div>
1164</div>
1165<a class="anchor" id="ac35e7a1ad467f5fe8620cbbc5793d53b"></a>
1166<div class="memitem">
1167<div class="memproto">
1168<table class="mlabels">
1169 <tr>
1170 <td class="mlabels-left">
1171 <table class="memname">
1172 <tr>
1173 <td class="memname">void arm_compute::test::fill_array </td>
1174 <td>(</td>
1175 <td class="paramtype">ArrayAccessor_T &amp;&amp;&#160;</td>
1176 <td class="paramname"><em>array</em>, </td>
1177 </tr>
1178 <tr>
1179 <td class="paramkey"></td>
1180 <td></td>
1181 <td class="paramtype">const std::vector&lt; T &gt; &amp;&#160;</td>
1182 <td class="paramname"><em>v</em>&#160;</td>
1183 </tr>
1184 <tr>
1185 <td></td>
1186 <td>)</td>
1187 <td></td><td></td>
1188 </tr>
1189 </table>
1190 </td>
1191 <td class="mlabels-right">
1192<span class="mlabels"><span class="mlabel">inline</span></span> </td>
1193 </tr>
1194</table>
1195</div><div class="memdoc">
1196
1197<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00433">433</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
1198
1199<p>Referenced by <a class="el" href="_r_o_i_pooling_layer_fixture_8h_source.xhtml#l00045">ROIPoolingLayerFixture&lt; TensorType, Function, Accessor, Array_T, ArrayAccessor &gt;::setup()</a>.</p>
1200<div class="fragment"><div class="line"><a name="l00434"></a><span class="lineno"> 434</span>&#160;{</div>
1201<div class="line"><a name="l00435"></a><span class="lineno"> 435</span>&#160; array.resize(v.size());</div>
1202<div class="line"><a name="l00436"></a><span class="lineno"> 436</span>&#160; std::memcpy(array.buffer(), v.data(), v.size() * <span class="keyword">sizeof</span>(T));</div>
1203<div class="line"><a name="l00437"></a><span class="lineno"> 437</span>&#160;}</div>
1204</div><!-- fragment -->
1205</div>
1206</div>
1207<a class="anchor" id="a8939810976531494e8db1f491bf61a35"></a>
1208<div class="memitem">
1209<div class="memproto">
1210 <table class="memname">
1211 <tr>
1212 <td class="memname">void arm_compute::test::fill_tensors </td>
1213 <td>(</td>
1214 <td class="paramtype">D &amp;&amp;&#160;</td>
1215 <td class="paramname"><em>dist</em>, </td>
1216 </tr>
1217 <tr>
1218 <td class="paramkey"></td>
1219 <td></td>
1220 <td class="paramtype">std::initializer_list&lt; int &gt;&#160;</td>
1221 <td class="paramname"><em>seeds</em>, </td>
1222 </tr>
1223 <tr>
1224 <td class="paramkey"></td>
1225 <td></td>
1226 <td class="paramtype">T &amp;&amp;&#160;</td>
1227 <td class="paramname"><em>tensor</em>, </td>
1228 </tr>
1229 <tr>
1230 <td class="paramkey"></td>
1231 <td></td>
1232 <td class="paramtype">Ts &amp;&amp;...&#160;</td>
1233 <td class="paramname"><em>other_tensors</em>&#160;</td>
1234 </tr>
1235 <tr>
1236 <td></td>
1237 <td>)</td>
1238 <td></td><td></td>
1239 </tr>
1240 </table>
1241</div><div class="memdoc">
1242
1243<p>Definition at line <a class="el" href="_helper_8h_source.xhtml#l00039">39</a> of file <a class="el" href="_helper_8h_source.xhtml">Helper.h</a>.</p>
1244
1245<p>References <a class="el" href="_error_8h_source.xhtml#l00124">ARM_COMPUTE_ERROR_ON</a>, and <a class="el" href="main_8cpp_source.xhtml#l00054">library</a>.</p>
1246<div class="fragment"><div class="line"><a name="l00040"></a><span class="lineno"> 40</span>&#160;{</div>
1247<div class="line"><a name="l00041"></a><span class="lineno"> 41</span>&#160; <span class="keyword">const</span> std::array &lt; T, 1 + <span class="keyword">sizeof</span>...(Ts) &gt; tensors{ { std::forward&lt;T&gt;(tensor), std::forward&lt;Ts&gt;(other_tensors)... } };</div>
1248<div class="line"><a name="l00042"></a><span class="lineno"> 42</span>&#160; std::vector&lt;int&gt; vs(seeds);</div>
1249<div class="line"><a name="l00043"></a><span class="lineno"> 43</span>&#160; <a class="code" href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a>(vs.size() != tensors.size());</div>
1250<div class="line"><a name="l00044"></a><span class="lineno"> 44</span>&#160; <span class="keywordtype">int</span> k = 0;</div>
1251<div class="line"><a name="l00045"></a><span class="lineno"> 45</span>&#160; <span class="keywordflow">for</span>(<span class="keyword">auto</span> tp : tensors)</div>
1252<div class="line"><a name="l00046"></a><span class="lineno"> 46</span>&#160; {</div>
1253<div class="line"><a name="l00047"></a><span class="lineno"> 47</span>&#160; <a class="code" href="namespacearm__compute_1_1test.xhtml#a71326f0909d77386e29b511e1990a11f">library</a>-&gt;fill(Accessor(*tp), std::forward&lt;D&gt;(dist), vs[k++]);</div>
1254<div class="line"><a name="l00048"></a><span class="lineno"> 48</span>&#160; }</div>
1255<div class="line"><a name="l00049"></a><span class="lineno"> 49</span>&#160;}</div>
1256<div class="ttc" id="_error_8h_xhtml_a54a6080c9f4df1f908e57a9bbb46f5da"><div class="ttname"><a href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON(cond)</div><div class="ttdoc">If the condition is true then an error message is printed and an exception thrown. </div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00124">Error.h:124</a></div></div>
1257<div class="ttc" id="namespacearm__compute_1_1test_xhtml_a71326f0909d77386e29b511e1990a11f"><div class="ttname"><a href="namespacearm__compute_1_1test.xhtml#a71326f0909d77386e29b511e1990a11f">arm_compute::test::library</a></div><div class="ttdeci">std::unique_ptr&lt; AssetsLibrary &gt; library</div><div class="ttdef"><b>Definition:</b> <a href="main_8cpp_source.xhtml#l00054">main.cpp:54</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001258</div><!-- fragment -->
1259</div>
1260</div>
1261<a class="anchor" id="a1ebbb23b0094d47c51226d58e17e6447"></a>
1262<div class="memitem">
1263<div class="memproto">
1264<table class="mlabels">
1265 <tr>
1266 <td class="mlabels-left">
1267 <table class="memname">
1268 <tr>
1269 <td class="memname">T arm_compute::test::foldl </td>
1270 <td>(</td>
1271 <td class="paramtype">F &amp;&amp;&#160;</td>
1272 <td class="paramname">, </td>
1273 </tr>
1274 <tr>
1275 <td class="paramkey"></td>
1276 <td></td>
1277 <td class="paramtype">const T &amp;&#160;</td>
1278 <td class="paramname"><em>value</em>&#160;</td>
1279 </tr>
1280 <tr>
1281 <td></td>
1282 <td>)</td>
1283 <td></td><td></td>
1284 </tr>
1285 </table>
1286 </td>
1287 <td class="mlabels-right">
1288<span class="mlabels"><span class="mlabel">inline</span></span> </td>
1289 </tr>
1290</table>
1291</div><div class="memdoc">
1292
1293<p>Base case of foldl. </p>
1294<dl class="section return"><dt>Returns</dt><dd>value. </dd></dl>
1295
Kaizen8938bd32017-09-28 14:38:23 +01001296<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00156">156</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001297
Kaizen8938bd32017-09-28 14:38:23 +01001298<p>References <a class="el" href="hwc_8hpp_source.xhtml#l00269">value</a>.</p>
1299
1300<p>Referenced by <a class="el" href="tests_2_utils_8h_source.xhtml#l00179">foldl()</a>.</p>
1301<div class="fragment"><div class="line"><a name="l00157"></a><span class="lineno"> 157</span>&#160;{</div>
1302<div class="line"><a name="l00158"></a><span class="lineno"> 158</span>&#160; <span class="keywordflow">return</span> <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
1303<div class="line"><a name="l00159"></a><span class="lineno"> 159</span>&#160;}</div>
1304<div class="ttc" id="hwc_8hpp_xhtml_a0f61d63b009d0880a89c843bd50d8d76"><div class="ttname"><a href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a></div><div class="ttdeci">void * value</div><div class="ttdef"><b>Definition:</b> <a href="hwc_8hpp_source.xhtml#l00269">hwc.hpp:269</a></div></div>
1305</div><!-- fragment -->
Anthony Barbierdbdab852017-06-23 15:42:00 +01001306</div>
1307</div>
1308<a class="anchor" id="ad933f996ccb22854ae56dd86de8cbbfe"></a>
1309<div class="memitem">
1310<div class="memproto">
1311<table class="mlabels">
1312 <tr>
1313 <td class="mlabels-left">
1314 <table class="memname">
1315 <tr>
1316 <td class="memname">auto arm_compute::test::foldl </td>
1317 <td>(</td>
1318 <td class="paramtype">F &amp;&amp;&#160;</td>
1319 <td class="paramname"><em>func</em>, </td>
1320 </tr>
1321 <tr>
1322 <td class="paramkey"></td>
1323 <td></td>
1324 <td class="paramtype">T &amp;&amp;&#160;</td>
1325 <td class="paramname"><em>value1</em>, </td>
1326 </tr>
1327 <tr>
1328 <td class="paramkey"></td>
1329 <td></td>
1330 <td class="paramtype">U &amp;&amp;&#160;</td>
1331 <td class="paramname"><em>value2</em>&#160;</td>
1332 </tr>
1333 <tr>
1334 <td></td>
1335 <td>)</td>
1336 <td></td><td> -&gt; decltype(func(value1, value2))
1337</td>
1338 </tr>
1339 </table>
1340 </td>
1341 <td class="mlabels-right">
1342<span class="mlabels"><span class="mlabel">inline</span></span> </td>
1343 </tr>
1344</table>
1345</div><div class="memdoc">
1346
1347<p>Base case of foldl. </p>
1348<dl class="section return"><dt>Returns</dt><dd>func(value1, value2). </dd></dl>
1349
Kaizen8938bd32017-09-28 14:38:23 +01001350<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00166">166</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
1351<div class="fragment"><div class="line"><a name="l00167"></a><span class="lineno"> 167</span>&#160;{</div>
1352<div class="line"><a name="l00168"></a><span class="lineno"> 168</span>&#160; <span class="keywordflow">return</span> func(value1, value2);</div>
1353<div class="line"><a name="l00169"></a><span class="lineno"> 169</span>&#160;}</div>
1354</div><!-- fragment -->
Anthony Barbierdbdab852017-06-23 15:42:00 +01001355</div>
1356</div>
1357<a class="anchor" id="a89322cccde5e0a27d3a41085d3fd366c"></a>
1358<div class="memitem">
1359<div class="memproto">
1360<table class="mlabels">
1361 <tr>
1362 <td class="mlabels-left">
1363 <table class="memname">
1364 <tr>
1365 <td class="memname">I arm_compute::test::foldl </td>
1366 <td>(</td>
1367 <td class="paramtype">F &amp;&amp;&#160;</td>
1368 <td class="paramname"><em>func</em>, </td>
1369 </tr>
1370 <tr>
1371 <td class="paramkey"></td>
1372 <td></td>
1373 <td class="paramtype">I &amp;&amp;&#160;</td>
1374 <td class="paramname"><em>initial</em>, </td>
1375 </tr>
1376 <tr>
1377 <td class="paramkey"></td>
1378 <td></td>
1379 <td class="paramtype">T &amp;&amp;&#160;</td>
1380 <td class="paramname"><em>value</em>, </td>
1381 </tr>
1382 <tr>
1383 <td class="paramkey"></td>
1384 <td></td>
1385 <td class="paramtype">Vs &amp;&amp;...&#160;</td>
1386 <td class="paramname"><em>values</em>&#160;</td>
1387 </tr>
1388 <tr>
1389 <td></td>
1390 <td>)</td>
1391 <td></td><td></td>
1392 </tr>
1393 </table>
1394 </td>
1395 <td class="mlabels-right">
1396<span class="mlabels"><span class="mlabel">inline</span></span> </td>
1397 </tr>
1398</table>
1399</div><div class="memdoc">
1400
1401<p>Fold left. </p>
1402<dl class="params"><dt>Parameters</dt><dd>
1403 <table class="params">
1404 <tr><td class="paramdir">[in]</td><td class="paramname">func</td><td>Binary function to be called. </td></tr>
1405 <tr><td class="paramdir">[in]</td><td class="paramname">initial</td><td>Initial value. </td></tr>
1406 <tr><td class="paramdir">[in]</td><td class="paramname">value</td><td>Argument passed to the function. </td></tr>
1407 <tr><td class="paramdir">[in]</td><td class="paramname">values</td><td>Remaining arguments. </td></tr>
1408 </table>
1409 </dd>
1410</dl>
1411
Kaizen8938bd32017-09-28 14:38:23 +01001412<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00179">179</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001413
Kaizen8938bd32017-09-28 14:38:23 +01001414<p>References <a class="el" href="tests_2_utils_8h_source.xhtml#l00156">foldl()</a>.</p>
1415<div class="fragment"><div class="line"><a name="l00180"></a><span class="lineno"> 180</span>&#160;{</div>
1416<div class="line"><a name="l00181"></a><span class="lineno"> 181</span>&#160; <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1test.xhtml#a89322cccde5e0a27d3a41085d3fd366c">foldl</a>(std::forward&lt;F&gt;(func), func(std::forward&lt;I&gt;(initial), std::forward&lt;T&gt;(<a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>)), std::forward&lt;Vs&gt;(values)...);</div>
1417<div class="line"><a name="l00182"></a><span class="lineno"> 182</span>&#160;}</div>
1418<div class="ttc" id="namespacearm__compute_1_1test_xhtml_a89322cccde5e0a27d3a41085d3fd366c"><div class="ttname"><a href="namespacearm__compute_1_1test.xhtml#a89322cccde5e0a27d3a41085d3fd366c">arm_compute::test::foldl</a></div><div class="ttdeci">I foldl(F &amp;&amp;func, I &amp;&amp;initial, T &amp;&amp;value, Vs &amp;&amp;...values)</div><div class="ttdoc">Fold left. </div><div class="ttdef"><b>Definition:</b> <a href="tests_2_utils_8h_source.xhtml#l00179">Utils.h:179</a></div></div>
1419<div class="ttc" id="hwc_8hpp_xhtml_a0f61d63b009d0880a89c843bd50d8d76"><div class="ttname"><a href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a></div><div class="ttdeci">void * value</div><div class="ttdef"><b>Definition:</b> <a href="hwc_8hpp_source.xhtml#l00269">hwc.hpp:269</a></div></div>
1420</div><!-- fragment -->
1421</div>
1422</div>
1423<a class="anchor" id="ac7324cc960068b65c558b7d25dfe2914"></a>
1424<div class="memitem">
1425<div class="memproto">
1426<table class="mlabels">
1427 <tr>
1428 <td class="mlabels-left">
1429 <table class="memname">
1430 <tr>
1431 <td class="memname">std::vector&lt;<a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a>&gt; arm_compute::test::generate_random_rois </td>
1432 <td>(</td>
1433 <td class="paramtype">const TensorShape &amp;&#160;</td>
1434 <td class="paramname"><em>shape</em>, </td>
1435 </tr>
1436 <tr>
1437 <td class="paramkey"></td>
1438 <td></td>
1439 <td class="paramtype">const ROIPoolingLayerInfo &amp;&#160;</td>
1440 <td class="paramname"><em>pool_info</em>, </td>
1441 </tr>
1442 <tr>
1443 <td class="paramkey"></td>
1444 <td></td>
1445 <td class="paramtype">unsigned int&#160;</td>
1446 <td class="paramname"><em>num_rois</em>, </td>
1447 </tr>
1448 <tr>
1449 <td class="paramkey"></td>
1450 <td></td>
1451 <td class="paramtype">std::random_device::result_type&#160;</td>
1452 <td class="paramname"><em>seed</em>&#160;</td>
1453 </tr>
1454 <tr>
1455 <td></td>
1456 <td>)</td>
1457 <td></td><td></td>
1458 </tr>
1459 </table>
1460 </td>
1461 <td class="mlabels-right">
1462<span class="mlabels"><span class="mlabel">inline</span></span> </td>
1463 </tr>
1464</table>
1465</div><div class="memdoc">
1466
1467<p>Create a vector of random ROIs. </p>
1468<dl class="params"><dt>Parameters</dt><dd>
1469 <table class="params">
1470 <tr><td class="paramdir">[in]</td><td class="paramname">shape</td><td>The shape of the input tensor. </td></tr>
1471 <tr><td class="paramdir">[in]</td><td class="paramname">pool_info</td><td>The <a class="el" href="structarm__compute_1_1_r_o_i.xhtml" title="Region of interest. ">ROI</a> pooling information. </td></tr>
1472 <tr><td class="paramdir">[in]</td><td class="paramname">num_rois</td><td>The number of ROIs to be created. </td></tr>
1473 <tr><td class="paramdir">[in]</td><td class="paramname">seed</td><td>The random seed to be used.</td></tr>
1474 </table>
1475 </dd>
1476</dl>
1477<dl class="section return"><dt>Returns</dt><dd>A vector that contains the requested number of random ROIs </dd></dl>
1478
1479<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00395">395</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
1480
1481<p>References <a class="el" href="_error_8h_source.xhtml#l00124">ARM_COMPUTE_ERROR_ON</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00312">ROI::batch_idx</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00290">Rectangle::height</a>, <a class="el" href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">arm_compute::test::fixed_point_arithmetic::detail::max()</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00495">ROIPoolingLayerInfo::pooled_height()</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00491">ROIPoolingLayerInfo::pooled_width()</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00311">ROI::rect</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00499">ROIPoolingLayerInfo::spatial_scale()</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00289">Rectangle::width</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00081">Dimensions&lt; T &gt;::x()</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00287">Rectangle::x</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00086">Dimensions&lt; T &gt;::y()</a>, and <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00288">Rectangle::y</a>.</p>
1482
1483<p>Referenced by <a class="el" href="_r_o_i_pooling_layer_fixture_8h_source.xhtml#l00045">ROIPoolingLayerFixture&lt; TensorType, Function, Accessor, Array_T, ArrayAccessor &gt;::setup()</a>.</p>
1484<div class="fragment"><div class="line"><a name="l00396"></a><span class="lineno"> 396</span>&#160;{</div>
1485<div class="line"><a name="l00397"></a><span class="lineno"> 397</span>&#160; <a class="code" href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a>((pool_info.pooled_width() &lt; 4) || (pool_info.pooled_height() &lt; 4));</div>
1486<div class="line"><a name="l00398"></a><span class="lineno"> 398</span>&#160;</div>
1487<div class="line"><a name="l00399"></a><span class="lineno"> 399</span>&#160; std::vector&lt;ROI&gt; rois;</div>
1488<div class="line"><a name="l00400"></a><span class="lineno"> 400</span>&#160; std::mt19937 gen(seed);</div>
1489<div class="line"><a name="l00401"></a><span class="lineno"> 401</span>&#160; <span class="keyword">const</span> <span class="keywordtype">int</span> pool_width = pool_info.pooled_width();</div>
1490<div class="line"><a name="l00402"></a><span class="lineno"> 402</span>&#160; <span class="keyword">const</span> <span class="keywordtype">int</span> pool_height = pool_info.pooled_height();</div>
1491<div class="line"><a name="l00403"></a><span class="lineno"> 403</span>&#160; <span class="keyword">const</span> <span class="keywordtype">float</span> roi_scale = pool_info.spatial_scale();</div>
1492<div class="line"><a name="l00404"></a><span class="lineno"> 404</span>&#160;</div>
1493<div class="line"><a name="l00405"></a><span class="lineno"> 405</span>&#160; <span class="comment">// Calculate distribution bounds</span></div>
1494<div class="line"><a name="l00406"></a><span class="lineno"> 406</span>&#160; <span class="keyword">const</span> <span class="keyword">auto</span> scaled_width = <span class="keyword">static_cast&lt;</span><span class="keywordtype">int</span><span class="keyword">&gt;</span>((<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.x() / roi_scale) / pool_width);</div>
1495<div class="line"><a name="l00407"></a><span class="lineno"> 407</span>&#160; <span class="keyword">const</span> <span class="keyword">auto</span> scaled_height = <span class="keyword">static_cast&lt;</span><span class="keywordtype">int</span><span class="keyword">&gt;</span>((<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.y() / roi_scale) / pool_height);</div>
1496<div class="line"><a name="l00408"></a><span class="lineno"> 408</span>&#160; <span class="keyword">const</span> <span class="keyword">auto</span> min_width = <span class="keyword">static_cast&lt;</span><span class="keywordtype">int</span><span class="keyword">&gt;</span>(pool_width / roi_scale);</div>
1497<div class="line"><a name="l00409"></a><span class="lineno"> 409</span>&#160; <span class="keyword">const</span> <span class="keyword">auto</span> min_height = <span class="keyword">static_cast&lt;</span><span class="keywordtype">int</span><span class="keyword">&gt;</span>(pool_height / roi_scale);</div>
1498<div class="line"><a name="l00410"></a><span class="lineno"> 410</span>&#160;</div>
1499<div class="line"><a name="l00411"></a><span class="lineno"> 411</span>&#160; <span class="comment">// Create distributions</span></div>
1500<div class="line"><a name="l00412"></a><span class="lineno"> 412</span>&#160; std::uniform_int_distribution&lt;int&gt; dist_batch(0, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>[3] - 1);</div>
1501<div class="line"><a name="l00413"></a><span class="lineno"> 413</span>&#160; std::uniform_int_distribution&lt;int&gt; dist_x(0, scaled_width);</div>
1502<div class="line"><a name="l00414"></a><span class="lineno"> 414</span>&#160; std::uniform_int_distribution&lt;int&gt; dist_y(0, scaled_height);</div>
1503<div class="line"><a name="l00415"></a><span class="lineno"> 415</span>&#160; std::uniform_int_distribution&lt;int&gt; dist_w(min_width, <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::max</a>(min_width, (pool_width - 2) * scaled_width));</div>
1504<div class="line"><a name="l00416"></a><span class="lineno"> 416</span>&#160; std::uniform_int_distribution&lt;int&gt; dist_h(min_height, <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::max</a>(min_height, (pool_height - 2) * scaled_height));</div>
1505<div class="line"><a name="l00417"></a><span class="lineno"> 417</span>&#160;</div>
1506<div class="line"><a name="l00418"></a><span class="lineno"> 418</span>&#160; <span class="keywordflow">for</span>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> r = 0; r &lt; num_rois; ++r)</div>
1507<div class="line"><a name="l00419"></a><span class="lineno"> 419</span>&#160; {</div>
1508<div class="line"><a name="l00420"></a><span class="lineno"> 420</span>&#160; ROI roi;</div>
1509<div class="line"><a name="l00421"></a><span class="lineno"> 421</span>&#160; roi.batch_idx = dist_batch(gen);</div>
1510<div class="line"><a name="l00422"></a><span class="lineno"> 422</span>&#160; roi.rect.x = dist_x(gen);</div>
1511<div class="line"><a name="l00423"></a><span class="lineno"> 423</span>&#160; roi.rect.y = dist_y(gen);</div>
1512<div class="line"><a name="l00424"></a><span class="lineno"> 424</span>&#160; roi.rect.width = dist_w(gen);</div>
1513<div class="line"><a name="l00425"></a><span class="lineno"> 425</span>&#160; roi.rect.height = dist_h(gen);</div>
1514<div class="line"><a name="l00426"></a><span class="lineno"> 426</span>&#160; rois.push_back(roi);</div>
1515<div class="line"><a name="l00427"></a><span class="lineno"> 427</span>&#160; }</div>
1516<div class="line"><a name="l00428"></a><span class="lineno"> 428</span>&#160;</div>
1517<div class="line"><a name="l00429"></a><span class="lineno"> 429</span>&#160; <span class="keywordflow">return</span> rois;</div>
1518<div class="line"><a name="l00430"></a><span class="lineno"> 430</span>&#160;}</div>
1519<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
1520<div class="ttc" id="_error_8h_xhtml_a54a6080c9f4df1f908e57a9bbb46f5da"><div class="ttname"><a href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON(cond)</div><div class="ttdoc">If the condition is true then an error message is printed and an exception thrown. </div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00124">Error.h:124</a></div></div>
1521<div class="ttc" id="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail_xhtml_ad91bb73431b4de1f4946ed949d444849"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">arm_compute::test::fixed_point_arithmetic::detail::max</a></div><div class="ttdeci">fixed_point&lt; T &gt; max(fixed_point&lt; T &gt; x, fixed_point&lt; T &gt; y)</div><div class="ttdef"><b>Definition:</b> <a href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">FixedPoint.h:889</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001522</div><!-- fragment -->
1523</div>
1524</div>
1525<a class="anchor" id="ac7dbe33793790fc37a5eda11ed6b0273"></a>
1526<div class="memitem">
1527<div class="memproto">
1528<table class="mlabels">
1529 <tr>
1530 <td class="mlabels-left">
1531 <table class="memname">
1532 <tr>
1533 <td class="memname"><a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58">Format</a> arm_compute::test::get_channel_format </td>
1534 <td>(</td>
Kaizen8938bd32017-09-28 14:38:23 +01001535 <td class="paramtype">Channel&#160;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001536 <td class="paramname"><em>channel</em></td><td>)</td>
1537 <td></td>
1538 </tr>
1539 </table>
1540 </td>
1541 <td class="mlabels-right">
1542<span class="mlabels"><span class="mlabel">inline</span></span> </td>
1543 </tr>
1544</table>
1545</div><div class="memdoc">
1546
1547<p>Return the format of a channel. </p>
1548<dl class="params"><dt>Parameters</dt><dd>
1549 <table class="params">
1550 <tr><td class="paramdir">[in]</td><td class="paramname">channel</td><td>Channel type.</td></tr>
1551 </table>
1552 </dd>
1553</dl>
1554<dl class="section return"><dt>Returns</dt><dd>Format of the given channel. </dd></dl>
1555
Kaizen8938bd32017-09-28 14:38:23 +01001556<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00138">138</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001557
1558<p>References <a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aa9d5ed678fe57bcca610140957afab571">arm_compute::B</a>, <a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aadfcf28d0734569a6a693bc8194de62bf">arm_compute::G</a>, <a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aae1e1d3d40573127e9ee0480caf1283d6">arm_compute::R</a>, and <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6669348b484e3008dca2bfa8e85e40b5">arm_compute::U8</a>.</p>
Kaizen8938bd32017-09-28 14:38:23 +01001559<div class="fragment"><div class="line"><a name="l00139"></a><span class="lineno"> 139</span>&#160;{</div>
1560<div class="line"><a name="l00140"></a><span class="lineno"> 140</span>&#160; <span class="keywordflow">switch</span>(channel)</div>
1561<div class="line"><a name="l00141"></a><span class="lineno"> 141</span>&#160; {</div>
1562<div class="line"><a name="l00142"></a><span class="lineno"> 142</span>&#160; <span class="keywordflow">case</span> Channel::R:</div>
1563<div class="line"><a name="l00143"></a><span class="lineno"> 143</span>&#160; <span class="keywordflow">case</span> Channel::G:</div>
1564<div class="line"><a name="l00144"></a><span class="lineno"> 144</span>&#160; <span class="keywordflow">case</span> Channel::B:</div>
1565<div class="line"><a name="l00145"></a><span class="lineno"> 145</span>&#160; <span class="keywordflow">return</span> Format::U8;</div>
1566<div class="line"><a name="l00146"></a><span class="lineno"> 146</span>&#160; <span class="keywordflow">default</span>:</div>
1567<div class="line"><a name="l00147"></a><span class="lineno"> 147</span>&#160; <span class="keywordflow">throw</span> std::runtime_error(<span class="stringliteral">&quot;Unsupported channel&quot;</span>);</div>
1568<div class="line"><a name="l00148"></a><span class="lineno"> 148</span>&#160; }</div>
1569<div class="line"><a name="l00149"></a><span class="lineno"> 149</span>&#160;}</div>
1570</div><!-- fragment -->
Anthony Barbierdbdab852017-06-23 15:42:00 +01001571</div>
1572</div>
1573<a class="anchor" id="aa337ab76176f3c4193642ac6de3a61cf"></a>
1574<div class="memitem">
1575<div class="memproto">
1576<table class="mlabels">
1577 <tr>
1578 <td class="mlabels-left">
1579 <table class="memname">
1580 <tr>
1581 <td class="memname"><a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58">Format</a> arm_compute::test::get_format_for_channel </td>
1582 <td>(</td>
Kaizen8938bd32017-09-28 14:38:23 +01001583 <td class="paramtype">Channel&#160;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001584 <td class="paramname"><em>channel</em></td><td>)</td>
1585 <td></td>
1586 </tr>
1587 </table>
1588 </td>
1589 <td class="mlabels-right">
1590<span class="mlabels"><span class="mlabel">inline</span></span> </td>
1591 </tr>
1592</table>
1593</div><div class="memdoc">
1594
1595<p>Look up the format corresponding to a channel. </p>
1596<dl class="params"><dt>Parameters</dt><dd>
1597 <table class="params">
1598 <tr><td class="paramdir">[in]</td><td class="paramname">channel</td><td>Channel type.</td></tr>
1599 </table>
1600 </dd>
1601</dl>
1602<dl class="section return"><dt>Returns</dt><dd>Format that contains the given channel. </dd></dl>
1603
Kaizen8938bd32017-09-28 14:38:23 +01001604<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00119">119</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001605
1606<p>References <a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aa9d5ed678fe57bcca610140957afab571">arm_compute::B</a>, <a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aadfcf28d0734569a6a693bc8194de62bf">arm_compute::G</a>, <a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aae1e1d3d40573127e9ee0480caf1283d6">arm_compute::R</a>, and <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a30ff380a3be74628024063a99fba10f0">arm_compute::RGB888</a>.</p>
1607
Kaizen8938bd32017-09-28 14:38:23 +01001608<p>Referenced by <a class="el" href="_assets_library_8cpp_source.xhtml#l00205">AssetsLibrary::fill()</a>, and <a class="el" href="_assets_library_8cpp_source.xhtml#l00422">AssetsLibrary::get()</a>.</p>
1609<div class="fragment"><div class="line"><a name="l00120"></a><span class="lineno"> 120</span>&#160;{</div>
1610<div class="line"><a name="l00121"></a><span class="lineno"> 121</span>&#160; <span class="keywordflow">switch</span>(channel)</div>
1611<div class="line"><a name="l00122"></a><span class="lineno"> 122</span>&#160; {</div>
1612<div class="line"><a name="l00123"></a><span class="lineno"> 123</span>&#160; <span class="keywordflow">case</span> Channel::R:</div>
1613<div class="line"><a name="l00124"></a><span class="lineno"> 124</span>&#160; <span class="keywordflow">case</span> Channel::G:</div>
1614<div class="line"><a name="l00125"></a><span class="lineno"> 125</span>&#160; <span class="keywordflow">case</span> Channel::B:</div>
1615<div class="line"><a name="l00126"></a><span class="lineno"> 126</span>&#160; <span class="keywordflow">return</span> Format::RGB888;</div>
1616<div class="line"><a name="l00127"></a><span class="lineno"> 127</span>&#160; <span class="keywordflow">default</span>:</div>
1617<div class="line"><a name="l00128"></a><span class="lineno"> 128</span>&#160; <span class="keywordflow">throw</span> std::runtime_error(<span class="stringliteral">&quot;Unsupported channel&quot;</span>);</div>
1618<div class="line"><a name="l00129"></a><span class="lineno"> 129</span>&#160; }</div>
1619<div class="line"><a name="l00130"></a><span class="lineno"> 130</span>&#160;}</div>
1620</div><!-- fragment -->
1621</div>
1622</div>
1623<a class="anchor" id="ae47155d6186155ec4da9295764b3c05a"></a>
1624<div class="memitem">
1625<div class="memproto">
1626<table class="mlabels">
1627 <tr>
1628 <td class="mlabels-left">
1629 <table class="memname">
1630 <tr>
1631 <td class="memname">std::string arm_compute::test::get_typestring </td>
1632 <td>(</td>
1633 <td class="paramtype">DataType&#160;</td>
1634 <td class="paramname"><em>data_type</em></td><td>)</td>
1635 <td></td>
1636 </tr>
1637 </table>
1638 </td>
1639 <td class="mlabels-right">
1640<span class="mlabels"><span class="mlabel">inline</span></span> </td>
1641 </tr>
1642</table>
1643</div><div class="memdoc">
1644
1645<p>Obtain numpy type string from DataType. </p>
1646<dl class="params"><dt>Parameters</dt><dd>
1647 <table class="params">
1648 <tr><td class="paramdir">[in]</td><td class="paramname">data_type</td><td>Data type.</td></tr>
1649 </table>
1650 </dd>
1651</dl>
1652<dl class="section return"><dt>Returns</dt><dd>numpy type string. </dd></dl>
1653
1654<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00445">445</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
1655
1656<p>References <a class="el" href="_error_8h_source.xhtml#l00031">ARM_COMPUTE_ERROR</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">arm_compute::F32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a1ad5f6f3069070ec4cbbdc94d5e61e0e">arm_compute::F64</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6e0b0886efb94aec797f6b830329b72c">arm_compute::S16</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58aa1e28eee0339658d39a8b4d325b56e9c">arm_compute::S32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a115dca124dc6423c7a400b8a8a0270cc">arm_compute::S64</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6aafb0fced528eaac5fe170b763cda5975">arm_compute::S8</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6abd7ef6d4f35bc7d05c559b65032f15d1">arm_compute::SIZET</a>, <a class="el" href="_toolchain_support_8h_source.xhtml#l00168">arm_compute::support::cpp11::to_string()</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58aef9ef3ebca4d2b64b6ec83808bafa5f2">arm_compute::U16</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58ac8bd5bedff8ef192d39a962afc0e19ee">arm_compute::U32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a31d65cccd6593e4101db93fb878abcaa">arm_compute::U64</a>, and <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6669348b484e3008dca2bfa8e85e40b5">arm_compute::U8</a>.</p>
1657
1658<p>Referenced by <a class="el" href="_assets_library_8h_source.xhtml#l00653">AssetsLibrary::fill_layer_data()</a>.</p>
1659<div class="fragment"><div class="line"><a name="l00446"></a><span class="lineno"> 446</span>&#160;{</div>
1660<div class="line"><a name="l00447"></a><span class="lineno"> 447</span>&#160; <span class="comment">// Check endianness</span></div>
1661<div class="line"><a name="l00448"></a><span class="lineno"> 448</span>&#160; <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = 1;</div>
1662<div class="line"><a name="l00449"></a><span class="lineno"> 449</span>&#160; <span class="keyword">const</span> <span class="keywordtype">char</span> *c = <span class="keyword">reinterpret_cast&lt;</span><span class="keyword">const </span><span class="keywordtype">char</span> *<span class="keyword">&gt;</span>(&amp;i);</div>
1663<div class="line"><a name="l00450"></a><span class="lineno"> 450</span>&#160; std::string endianness;</div>
1664<div class="line"><a name="l00451"></a><span class="lineno"> 451</span>&#160; <span class="keywordflow">if</span>(*c == 1)</div>
1665<div class="line"><a name="l00452"></a><span class="lineno"> 452</span>&#160; {</div>
1666<div class="line"><a name="l00453"></a><span class="lineno"> 453</span>&#160; endianness = std::string(<span class="stringliteral">&quot;&lt;&quot;</span>);</div>
1667<div class="line"><a name="l00454"></a><span class="lineno"> 454</span>&#160; }</div>
1668<div class="line"><a name="l00455"></a><span class="lineno"> 455</span>&#160; <span class="keywordflow">else</span></div>
1669<div class="line"><a name="l00456"></a><span class="lineno"> 456</span>&#160; {</div>
1670<div class="line"><a name="l00457"></a><span class="lineno"> 457</span>&#160; endianness = std::string(<span class="stringliteral">&quot;&gt;&quot;</span>);</div>
1671<div class="line"><a name="l00458"></a><span class="lineno"> 458</span>&#160; }</div>
1672<div class="line"><a name="l00459"></a><span class="lineno"> 459</span>&#160; <span class="keyword">const</span> std::string no_endianness(<span class="stringliteral">&quot;|&quot;</span>);</div>
1673<div class="line"><a name="l00460"></a><span class="lineno"> 460</span>&#160;</div>
1674<div class="line"><a name="l00461"></a><span class="lineno"> 461</span>&#160; <span class="keywordflow">switch</span>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">data_type</a>)</div>
1675<div class="line"><a name="l00462"></a><span class="lineno"> 462</span>&#160; {</div>
1676<div class="line"><a name="l00463"></a><span class="lineno"> 463</span>&#160; <span class="keywordflow">case</span> DataType::U8:</div>
1677<div class="line"><a name="l00464"></a><span class="lineno"> 464</span>&#160; <span class="keywordflow">return</span> no_endianness + <span class="stringliteral">&quot;u&quot;</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(uint8_t));</div>
1678<div class="line"><a name="l00465"></a><span class="lineno"> 465</span>&#160; <span class="keywordflow">case</span> DataType::S8:</div>
1679<div class="line"><a name="l00466"></a><span class="lineno"> 466</span>&#160; <span class="keywordflow">return</span> no_endianness + <span class="stringliteral">&quot;i&quot;</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(int8_t));</div>
1680<div class="line"><a name="l00467"></a><span class="lineno"> 467</span>&#160; <span class="keywordflow">case</span> DataType::U16:</div>
1681<div class="line"><a name="l00468"></a><span class="lineno"> 468</span>&#160; <span class="keywordflow">return</span> endianness + <span class="stringliteral">&quot;u&quot;</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(uint16_t));</div>
1682<div class="line"><a name="l00469"></a><span class="lineno"> 469</span>&#160; <span class="keywordflow">case</span> DataType::S16:</div>
1683<div class="line"><a name="l00470"></a><span class="lineno"> 470</span>&#160; <span class="keywordflow">return</span> endianness + <span class="stringliteral">&quot;i&quot;</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(int16_t));</div>
1684<div class="line"><a name="l00471"></a><span class="lineno"> 471</span>&#160; <span class="keywordflow">case</span> DataType::U32:</div>
1685<div class="line"><a name="l00472"></a><span class="lineno"> 472</span>&#160; <span class="keywordflow">return</span> endianness + <span class="stringliteral">&quot;u&quot;</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(uint32_t));</div>
1686<div class="line"><a name="l00473"></a><span class="lineno"> 473</span>&#160; <span class="keywordflow">case</span> DataType::S32:</div>
1687<div class="line"><a name="l00474"></a><span class="lineno"> 474</span>&#160; <span class="keywordflow">return</span> endianness + <span class="stringliteral">&quot;i&quot;</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(int32_t));</div>
1688<div class="line"><a name="l00475"></a><span class="lineno"> 475</span>&#160; <span class="keywordflow">case</span> DataType::U64:</div>
1689<div class="line"><a name="l00476"></a><span class="lineno"> 476</span>&#160; <span class="keywordflow">return</span> endianness + <span class="stringliteral">&quot;u&quot;</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(uint64_t));</div>
1690<div class="line"><a name="l00477"></a><span class="lineno"> 477</span>&#160; <span class="keywordflow">case</span> DataType::S64:</div>
1691<div class="line"><a name="l00478"></a><span class="lineno"> 478</span>&#160; <span class="keywordflow">return</span> endianness + <span class="stringliteral">&quot;i&quot;</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(int64_t));</div>
1692<div class="line"><a name="l00479"></a><span class="lineno"> 479</span>&#160; <span class="keywordflow">case</span> DataType::F32:</div>
1693<div class="line"><a name="l00480"></a><span class="lineno"> 480</span>&#160; <span class="keywordflow">return</span> endianness + <span class="stringliteral">&quot;f&quot;</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(<span class="keywordtype">float</span>));</div>
1694<div class="line"><a name="l00481"></a><span class="lineno"> 481</span>&#160; <span class="keywordflow">case</span> DataType::F64:</div>
1695<div class="line"><a name="l00482"></a><span class="lineno"> 482</span>&#160; <span class="keywordflow">return</span> endianness + <span class="stringliteral">&quot;f&quot;</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(<span class="keywordtype">double</span>));</div>
1696<div class="line"><a name="l00483"></a><span class="lineno"> 483</span>&#160; <span class="keywordflow">case</span> DataType::SIZET:</div>
1697<div class="line"><a name="l00484"></a><span class="lineno"> 484</span>&#160; <span class="keywordflow">return</span> endianness + <span class="stringliteral">&quot;u&quot;</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(<span class="keywordtype">size_t</span>));</div>
1698<div class="line"><a name="l00485"></a><span class="lineno"> 485</span>&#160; <span class="keywordflow">default</span>:</div>
1699<div class="line"><a name="l00486"></a><span class="lineno"> 486</span>&#160; <a class="code" href="_error_8h.xhtml#a05b19c75afe9c24200a62b9724734bbd">ARM_COMPUTE_ERROR</a>(<span class="stringliteral">&quot;NOT SUPPORTED!&quot;</span>);</div>
1700<div class="line"><a name="l00487"></a><span class="lineno"> 487</span>&#160; }</div>
1701<div class="line"><a name="l00488"></a><span class="lineno"> 488</span>&#160;}</div>
1702<div class="ttc" id="_error_8h_xhtml_a05b19c75afe9c24200a62b9724734bbd"><div class="ttname"><a href="_error_8h.xhtml#a05b19c75afe9c24200a62b9724734bbd">ARM_COMPUTE_ERROR</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR(...)</div><div class="ttdoc">Print the given message then throw an std::runtime_error. </div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00031">Error.h:31</a></div></div>
1703<div class="ttc" id="namespacearm__compute_1_1test_1_1framework_xhtml_ace86dc6f3dfa4f3c256b3999ab250c0a"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">arm_compute::test::framework::to_string</a></div><div class="ttdeci">std::string to_string(DatasetMode mode)</div><div class="ttdef"><b>Definition:</b> <a href="_dataset_modes_8h_source.xhtml#l00097">DatasetModes.h:97</a></div></div>
1704<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_ac2ad7f431e3446fddcd9b6b9f93c4c14"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">arm_compute::test::validation::data_type</a></div><div class="ttdeci">data_type</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00090">MinMaxLocation.cpp:90</a></div></div>
1705</div><!-- fragment -->
Anthony Barbierdbdab852017-06-23 15:42:00 +01001706</div>
1707</div>
1708<a class="anchor" id="a24d8c0391cfa38e78969b6ad97c0ff09"></a>
1709<div class="memitem">
1710<div class="memproto">
1711<table class="mlabels">
1712 <tr>
1713 <td class="mlabels-left">
1714 <table class="memname">
1715 <tr>
1716 <td class="memname"><a class="el" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> arm_compute::test::index2coord </td>
1717 <td>(</td>
Kaizen8938bd32017-09-28 14:38:23 +01001718 <td class="paramtype">const TensorShape &amp;&#160;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001719 <td class="paramname"><em>shape</em>, </td>
1720 </tr>
1721 <tr>
1722 <td class="paramkey"></td>
1723 <td></td>
1724 <td class="paramtype">int&#160;</td>
1725 <td class="paramname"><em>index</em>&#160;</td>
1726 </tr>
1727 <tr>
1728 <td></td>
1729 <td>)</td>
1730 <td></td><td></td>
1731 </tr>
1732 </table>
1733 </td>
1734 <td class="mlabels-right">
1735<span class="mlabels"><span class="mlabel">inline</span></span> </td>
1736 </tr>
1737</table>
1738</div><div class="memdoc">
1739
1740<p>Convert a linear index into n-dimensional coordinates. </p>
1741<dl class="params"><dt>Parameters</dt><dd>
1742 <table class="params">
1743 <tr><td class="paramdir">[in]</td><td class="paramname">shape</td><td>Shape of the n-dimensional tensor. </td></tr>
1744 <tr><td class="paramdir">[in]</td><td class="paramname">index</td><td>Linear index specifying the i-th element.</td></tr>
1745 </table>
1746 </dd>
1747</dl>
1748<dl class="section return"><dt>Returns</dt><dd>n-dimensional coordinates. </dd></dl>
1749
Kaizen8938bd32017-09-28 14:38:23 +01001750<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00308">308</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001751
Kaizen8938bd32017-09-28 14:38:23 +01001752<p>References <a class="el" href="_error_8h_source.xhtml#l00115">ARM_COMPUTE_ERROR_ON_MSG</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00109">Dimensions&lt; T &gt;::num_dimensions()</a>, <a class="el" href="_tensor_shape_8h_source.xhtml#l00074">TensorShape::set()</a>, and <a class="el" href="_tensor_shape_8h_source.xhtml#l00135">TensorShape::total_size()</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001753
Kaizen8938bd32017-09-28 14:38:23 +01001754<p>Referenced by <a class="el" href="_c_p_p_2_box3x3_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::box3x3()</a>, <a class="el" href="_assets_library_8h_source.xhtml#l00435">AssetsLibrary::fill()</a>, <a class="el" href="_c_p_p_2_gaussian3x3_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::gaussian3x3()</a>, <a class="el" href="_c_p_p_2_gaussian5x5_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::gaussian5x5()</a>, <a class="el" href="_c_p_p_2_non_linear_filter_8cpp_source.xhtml#l00036">arm_compute::test::validation::reference::non_linear_filter()</a>, <a class="el" href="_non_maxima_suppression_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::non_maxima_suppression()</a>, <a class="el" href="_c_p_p_2_scale_8cpp_source.xhtml#l00039">arm_compute::test::validation::reference::scale()</a>, <a class="el" href="_c_p_p_2_sobel_8cpp_source.xhtml#l00106">arm_compute::test::validation::reference::sobel()</a>, <a class="el" href="tests_2validation_2_c_p_p_2_utils_8cpp_source.xhtml#l00069">arm_compute::test::validation::transpose()</a>, and <a class="el" href="_validation_8cpp_source.xhtml#l00173">arm_compute::test::validation::validate()</a>.</p>
1755<div class="fragment"><div class="line"><a name="l00309"></a><span class="lineno"> 309</span>&#160;{</div>
1756<div class="line"><a name="l00310"></a><span class="lineno"> 310</span>&#160; <span class="keywordtype">int</span> num_elements = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.total_size();</div>
1757<div class="line"><a name="l00311"></a><span class="lineno"> 311</span>&#160;</div>
1758<div class="line"><a name="l00312"></a><span class="lineno"> 312</span>&#160; <a class="code" href="_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a>(index &lt; 0 || index &gt;= num_elements, <span class="stringliteral">&quot;Index has to be in [0, num_elements]&quot;</span>);</div>
1759<div class="line"><a name="l00313"></a><span class="lineno"> 313</span>&#160; <a class="code" href="_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a>(num_elements == 0, <span class="stringliteral">&quot;Cannot create coordinate from empty shape&quot;</span>);</div>
1760<div class="line"><a name="l00314"></a><span class="lineno"> 314</span>&#160;</div>
1761<div class="line"><a name="l00315"></a><span class="lineno"> 315</span>&#160; Coordinates coord{ 0 };</div>
1762<div class="line"><a name="l00316"></a><span class="lineno"> 316</span>&#160;</div>
1763<div class="line"><a name="l00317"></a><span class="lineno"> 317</span>&#160; <span class="keywordflow">for</span>(<span class="keywordtype">int</span> d = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.num_dimensions() - 1; d &gt;= 0; --d)</div>
1764<div class="line"><a name="l00318"></a><span class="lineno"> 318</span>&#160; {</div>
1765<div class="line"><a name="l00319"></a><span class="lineno"> 319</span>&#160; num_elements /= <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>[d];</div>
1766<div class="line"><a name="l00320"></a><span class="lineno"> 320</span>&#160; coord.set(d, index / num_elements);</div>
1767<div class="line"><a name="l00321"></a><span class="lineno"> 321</span>&#160; index %= num_elements;</div>
1768<div class="line"><a name="l00322"></a><span class="lineno"> 322</span>&#160; }</div>
1769<div class="line"><a name="l00323"></a><span class="lineno"> 323</span>&#160;</div>
1770<div class="line"><a name="l00324"></a><span class="lineno"> 324</span>&#160; <span class="keywordflow">return</span> coord;</div>
1771<div class="line"><a name="l00325"></a><span class="lineno"> 325</span>&#160;}</div>
1772<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
1773<div class="ttc" id="_error_8h_xhtml_a5bbdcf574d3f5e412fa6a1117911e67b"><div class="ttname"><a href="_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON_MSG(cond,...)</div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00115">Error.h:115</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001774</div><!-- fragment -->
1775</div>
1776</div>
Kaizen8938bd32017-09-28 14:38:23 +01001777<a class="anchor" id="a856b55fc20ddcbdbeb84c35ae27bedac"></a>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001778<div class="memitem">
1779<div class="memproto">
1780<table class="mlabels">
1781 <tr>
1782 <td class="mlabels-left">
1783 <table class="memname">
1784 <tr>
1785 <td class="memname">bool arm_compute::test::is_in_valid_region </td>
1786 <td>(</td>
Kaizen8938bd32017-09-28 14:38:23 +01001787 <td class="paramtype">const ValidRegion &amp;&#160;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001788 <td class="paramname"><em>valid_region</em>, </td>
1789 </tr>
1790 <tr>
1791 <td class="paramkey"></td>
1792 <td></td>
Kaizen8938bd32017-09-28 14:38:23 +01001793 <td class="paramtype">Coordinates&#160;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001794 <td class="paramname"><em>coord</em>&#160;</td>
1795 </tr>
1796 <tr>
1797 <td></td>
1798 <td>)</td>
1799 <td></td><td></td>
1800 </tr>
1801 </table>
1802 </td>
1803 <td class="mlabels-right">
1804<span class="mlabels"><span class="mlabel">inline</span></span> </td>
1805 </tr>
1806</table>
1807</div><div class="memdoc">
1808
1809<p>Check if a coordinate is within a valid region. </p>
1810
Kaizen8938bd32017-09-28 14:38:23 +01001811<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00355">355</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001812
Kaizen8938bd32017-09-28 14:38:23 +01001813<p>References <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00118">ValidRegion::end()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00045">Dimensions&lt; int &gt;::num_max_dimensions</a>, and <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00112">ValidRegion::start()</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001814
Kaizen8938bd32017-09-28 14:38:23 +01001815<p>Referenced by <a class="el" href="_c_p_p_2_non_linear_filter_8cpp_source.xhtml#l00036">arm_compute::test::validation::reference::non_linear_filter()</a>, <a class="el" href="_non_maxima_suppression_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::non_maxima_suppression()</a>, <a class="el" href="_c_p_p_2_sobel_8cpp_source.xhtml#l00106">arm_compute::test::validation::reference::sobel()</a>, and <a class="el" href="_validation_8h_source.xhtml#l00306">arm_compute::test::validation::validate()</a>.</p>
1816<div class="fragment"><div class="line"><a name="l00356"></a><span class="lineno"> 356</span>&#160;{</div>
1817<div class="line"><a name="l00357"></a><span class="lineno"> 357</span>&#160; <span class="keywordflow">for</span>(<span class="keywordtype">size_t</span> d = 0; d &lt; Coordinates::num_max_dimensions; ++d)</div>
1818<div class="line"><a name="l00358"></a><span class="lineno"> 358</span>&#160; {</div>
1819<div class="line"><a name="l00359"></a><span class="lineno"> 359</span>&#160; <span class="keywordflow">if</span>(coord[d] &lt; valid_region.start(d) || coord[d] &gt;= valid_region.end(d))</div>
1820<div class="line"><a name="l00360"></a><span class="lineno"> 360</span>&#160; {</div>
1821<div class="line"><a name="l00361"></a><span class="lineno"> 361</span>&#160; <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
1822<div class="line"><a name="l00362"></a><span class="lineno"> 362</span>&#160; }</div>
1823<div class="line"><a name="l00363"></a><span class="lineno"> 363</span>&#160; }</div>
1824<div class="line"><a name="l00364"></a><span class="lineno"> 364</span>&#160;</div>
1825<div class="line"><a name="l00365"></a><span class="lineno"> 365</span>&#160; <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
1826<div class="line"><a name="l00366"></a><span class="lineno"> 366</span>&#160;}</div>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001827</div><!-- fragment -->
1828</div>
1829</div>
Kaizen8938bd32017-09-28 14:38:23 +01001830<a class="anchor" id="aa18932675cbb5eb9c9dbf8ff4d7106c7"></a>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001831<div class="memitem">
1832<div class="memproto">
Anthony Barbierdbdab852017-06-23 15:42:00 +01001833 <table class="memname">
1834 <tr>
Kaizen8938bd32017-09-28 14:38:23 +01001835 <td class="memname">std::string arm_compute::test::join </td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001836 <td>(</td>
Kaizen8938bd32017-09-28 14:38:23 +01001837 <td class="paramtype">T&#160;</td>
1838 <td class="paramname"><em>first</em>, </td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001839 </tr>
1840 <tr>
1841 <td class="paramkey"></td>
1842 <td></td>
Kaizen8938bd32017-09-28 14:38:23 +01001843 <td class="paramtype">T&#160;</td>
1844 <td class="paramname"><em>last</em>, </td>
1845 </tr>
1846 <tr>
1847 <td class="paramkey"></td>
1848 <td></td>
1849 <td class="paramtype">const std::string &amp;&#160;</td>
1850 <td class="paramname"><em>separator</em>&#160;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001851 </tr>
1852 <tr>
1853 <td></td>
1854 <td>)</td>
1855 <td></td><td></td>
1856 </tr>
1857 </table>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001858</div><div class="memdoc">
1859
Kaizen8938bd32017-09-28 14:38:23 +01001860<p>Helper function to concatenate multiple strings. </p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001861<dl class="params"><dt>Parameters</dt><dd>
1862 <table class="params">
Kaizen8938bd32017-09-28 14:38:23 +01001863 <tr><td class="paramdir">[in]</td><td class="paramname">first</td><td><a class="el" href="classarm__compute_1_1_iterator.xhtml" title="Iterator updated by execute_window_loop for each window element. ">Iterator</a> pointing to the first element to be concatenated. </td></tr>
1864 <tr><td class="paramdir">[in]</td><td class="paramname">last</td><td><a class="el" href="classarm__compute_1_1_iterator.xhtml" title="Iterator updated by execute_window_loop for each window element. ">Iterator</a> pointing behind the last element to be concatenated. </td></tr>
1865 <tr><td class="paramdir">[in]</td><td class="paramname">separator</td><td>String used to join the elements.</td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001866 </table>
1867 </dd>
1868</dl>
Kaizen8938bd32017-09-28 14:38:23 +01001869<dl class="section return"><dt>Returns</dt><dd>String containing all elements joined by <code>separator</code>. </dd></dl>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001870
Kaizen8938bd32017-09-28 14:38:23 +01001871<p>Definition at line <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00093">93</a> of file <a class="el" href="tests_2framework_2_utils_8h_source.xhtml">Utils.h</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001872
Kaizen8938bd32017-09-28 14:38:23 +01001873<p>References <a class="el" href="accumulate_8cl_source.xhtml#l00041">accumulate()</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001874
Kaizen8938bd32017-09-28 14:38:23 +01001875<p>Referenced by <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00136">join()</a>, and <a class="el" href="_j_s_o_n_printer_8cpp_source.xhtml#l00157">JSONPrinter::print_measurements()</a>.</p>
1876<div class="fragment"><div class="line"><a name="l00094"></a><span class="lineno"> 94</span>&#160;{</div>
1877<div class="line"><a name="l00095"></a><span class="lineno"> 95</span>&#160; <span class="keywordflow">return</span> <a class="code" href="accumulate_8cl.xhtml#a00e540076dd545ad59ac7482f8cdf514">std::accumulate</a>(std::next(first), last, *first, [&amp;separator](<span class="keyword">const</span> std::string &amp; base, <span class="keyword">const</span> std::string &amp; suffix)</div>
1878<div class="line"><a name="l00096"></a><span class="lineno"> 96</span>&#160; {</div>
1879<div class="line"><a name="l00097"></a><span class="lineno"> 97</span>&#160; <span class="keywordflow">return</span> base + separator + suffix;</div>
1880<div class="line"><a name="l00098"></a><span class="lineno"> 98</span>&#160; });</div>
1881<div class="line"><a name="l00099"></a><span class="lineno"> 99</span>&#160;}</div>
1882<div class="ttc" id="accumulate_8cl_xhtml_a00e540076dd545ad59ac7482f8cdf514"><div class="ttname"><a href="accumulate_8cl.xhtml#a00e540076dd545ad59ac7482f8cdf514">accumulate</a></div><div class="ttdeci">__kernel void accumulate(__global uchar *input_ptr, uint input_stride_x, uint input_step_x, uint input_stride_y, uint input_step_y, uint input_offset_first_element_in_bytes, __global uchar *accu_ptr, uint accu_stride_x, uint accu_step_x, uint accu_stride_y, uint accu_step_y, uint accu_offset_first_element_in_bytes)</div><div class="ttdoc">This function accumulates an input image into output image. </div><div class="ttdef"><b>Definition:</b> <a href="accumulate_8cl_source.xhtml#l00041">accumulate.cl:41</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +01001883</div><!-- fragment -->
1884</div>
1885</div>
Kaizen8938bd32017-09-28 14:38:23 +01001886<a class="anchor" id="a898a0423aace06af0f3a18a26a972a1a"></a>
1887<div class="memitem">
1888<div class="memproto">
1889 <table class="memname">
1890 <tr>
1891 <td class="memname">std::string arm_compute::test::join </td>
1892 <td>(</td>
1893 <td class="paramtype">T &amp;&amp;&#160;</td>
1894 <td class="paramname"><em>first</em>, </td>
1895 </tr>
1896 <tr>
1897 <td class="paramkey"></td>
1898 <td></td>
1899 <td class="paramtype">T &amp;&amp;&#160;</td>
1900 <td class="paramname"><em>last</em>, </td>
1901 </tr>
1902 <tr>
1903 <td class="paramkey"></td>
1904 <td></td>
1905 <td class="paramtype">const std::string &amp;&#160;</td>
1906 <td class="paramname"><em>separator</em>, </td>
1907 </tr>
1908 <tr>
1909 <td class="paramkey"></td>
1910 <td></td>
1911 <td class="paramtype">UnaryOp &amp;&amp;&#160;</td>
1912 <td class="paramname"><em>op</em>&#160;</td>
1913 </tr>
1914 <tr>
1915 <td></td>
1916 <td>)</td>
1917 <td></td><td></td>
1918 </tr>
1919 </table>
1920</div><div class="memdoc">
1921
1922<p>Helper function to concatenate multiple values. </p>
1923<p>All values are converted to std::string using the provided operation before being joined.</p>
1924<p>The signature of op has to be equivalent to std::string op(const T::value_type &amp;val).</p>
1925<dl class="params"><dt>Parameters</dt><dd>
1926 <table class="params">
1927 <tr><td class="paramdir">[in]</td><td class="paramname">first</td><td><a class="el" href="classarm__compute_1_1_iterator.xhtml" title="Iterator updated by execute_window_loop for each window element. ">Iterator</a> pointing to the first element to be concatenated. </td></tr>
1928 <tr><td class="paramdir">[in]</td><td class="paramname">last</td><td><a class="el" href="classarm__compute_1_1_iterator.xhtml" title="Iterator updated by execute_window_loop for each window element. ">Iterator</a> pointing behind the last element to be concatenated. </td></tr>
1929 <tr><td class="paramdir">[in]</td><td class="paramname">separator</td><td>String used to join the elements. </td></tr>
1930 <tr><td class="paramdir">[in]</td><td class="paramname">op</td><td>Conversion function.</td></tr>
1931 </table>
1932 </dd>
1933</dl>
1934<dl class="section return"><dt>Returns</dt><dd>String containing all elements joined by <code>separator</code>. </dd></dl>
1935
1936<p>Definition at line <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00117">117</a> of file <a class="el" href="tests_2framework_2_utils_8h_source.xhtml">Utils.h</a>.</p>
1937
1938<p>References <a class="el" href="accumulate_8cl_source.xhtml#l00041">accumulate()</a>.</p>
1939<div class="fragment"><div class="line"><a name="l00118"></a><span class="lineno"> 118</span>&#160;{</div>
1940<div class="line"><a name="l00119"></a><span class="lineno"> 119</span>&#160; <span class="keywordflow">return</span> <a class="code" href="accumulate_8cl.xhtml#a00e540076dd545ad59ac7482f8cdf514">std::accumulate</a>(std::next(first), last, op(*first), [&amp;separator, &amp;op](<span class="keyword">const</span> std::string &amp; base, <span class="keyword">const</span> <span class="keyword">typename</span> T::value_type &amp; suffix)</div>
1941<div class="line"><a name="l00120"></a><span class="lineno"> 120</span>&#160; {</div>
1942<div class="line"><a name="l00121"></a><span class="lineno"> 121</span>&#160; <span class="keywordflow">return</span> base + separator + op(suffix);</div>
1943<div class="line"><a name="l00122"></a><span class="lineno"> 122</span>&#160; });</div>
1944<div class="line"><a name="l00123"></a><span class="lineno"> 123</span>&#160;}</div>
1945<div class="ttc" id="accumulate_8cl_xhtml_a00e540076dd545ad59ac7482f8cdf514"><div class="ttname"><a href="accumulate_8cl.xhtml#a00e540076dd545ad59ac7482f8cdf514">accumulate</a></div><div class="ttdeci">__kernel void accumulate(__global uchar *input_ptr, uint input_stride_x, uint input_step_x, uint input_stride_y, uint input_step_y, uint input_offset_first_element_in_bytes, __global uchar *accu_ptr, uint accu_stride_x, uint accu_step_x, uint accu_stride_y, uint accu_step_y, uint accu_offset_first_element_in_bytes)</div><div class="ttdoc">This function accumulates an input image into output image. </div><div class="ttdef"><b>Definition:</b> <a href="accumulate_8cl_source.xhtml#l00041">accumulate.cl:41</a></div></div>
1946</div><!-- fragment -->
1947</div>
1948</div>
1949<a class="anchor" id="a69835710fc772315f4e65ce156034530"></a>
1950<div class="memitem">
1951<div class="memproto">
1952 <table class="memname">
1953 <tr>
1954 <td class="memname">std::string arm_compute::test::join </td>
1955 <td>(</td>
1956 <td class="paramtype">T &amp;&amp;&#160;</td>
1957 <td class="paramname"><em>first</em>, </td>
1958 </tr>
1959 <tr>
1960 <td class="paramkey"></td>
1961 <td></td>
1962 <td class="paramtype">T &amp;&amp;&#160;</td>
1963 <td class="paramname"><em>last</em>, </td>
1964 </tr>
1965 <tr>
1966 <td class="paramkey"></td>
1967 <td></td>
1968 <td class="paramtype">const std::string &amp;&#160;</td>
1969 <td class="paramname"><em>separator</em>&#160;</td>
1970 </tr>
1971 <tr>
1972 <td></td>
1973 <td>)</td>
1974 <td></td><td></td>
1975 </tr>
1976 </table>
1977</div><div class="memdoc">
1978
1979<p>Helper function to concatenate multiple values. </p>
1980<p>All values are converted to std::string using std::to_string before being joined.</p>
1981<dl class="params"><dt>Parameters</dt><dd>
1982 <table class="params">
1983 <tr><td class="paramdir">[in]</td><td class="paramname">first</td><td><a class="el" href="classarm__compute_1_1_iterator.xhtml" title="Iterator updated by execute_window_loop for each window element. ">Iterator</a> pointing to the first element to be concatenated. </td></tr>
1984 <tr><td class="paramdir">[in]</td><td class="paramname">last</td><td><a class="el" href="classarm__compute_1_1_iterator.xhtml" title="Iterator updated by execute_window_loop for each window element. ">Iterator</a> pointing behind the last element to be concatenated. </td></tr>
1985 <tr><td class="paramdir">[in]</td><td class="paramname">separator</td><td>String used to join the elements.</td></tr>
1986 </table>
1987 </dd>
1988</dl>
1989<dl class="section return"><dt>Returns</dt><dd>String containing all elements joined by <code>separator</code>. </dd></dl>
1990
1991<p>Definition at line <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00136">136</a> of file <a class="el" href="tests_2framework_2_utils_8h_source.xhtml">Utils.h</a>.</p>
1992
1993<p>References <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00093">join()</a>, and <a class="el" href="_toolchain_support_8h_source.xhtml#l00168">arm_compute::support::cpp11::to_string()</a>.</p>
1994<div class="fragment"><div class="line"><a name="l00137"></a><span class="lineno"> 137</span>&#160;{</div>
1995<div class="line"><a name="l00138"></a><span class="lineno"> 138</span>&#160; <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1test.xhtml#a69835710fc772315f4e65ce156034530">join</a>(std::forward&lt;T&gt;(first), std::forward&lt;T&gt;(last), separator, <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>);</div>
1996<div class="line"><a name="l00139"></a><span class="lineno"> 139</span>&#160;}</div>
1997<div class="ttc" id="namespacearm__compute_1_1test_1_1framework_xhtml_ace86dc6f3dfa4f3c256b3999ab250c0a"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">arm_compute::test::framework::to_string</a></div><div class="ttdeci">std::string to_string(DatasetMode mode)</div><div class="ttdef"><b>Definition:</b> <a href="_dataset_modes_8h_source.xhtml#l00097">DatasetModes.h:97</a></div></div>
1998<div class="ttc" id="namespacearm__compute_1_1test_xhtml_a69835710fc772315f4e65ce156034530"><div class="ttname"><a href="namespacearm__compute_1_1test.xhtml#a69835710fc772315f4e65ce156034530">arm_compute::test::join</a></div><div class="ttdeci">std::string join(T &amp;&amp;first, T &amp;&amp;last, const std::string &amp;separator)</div><div class="ttdoc">Helper function to concatenate multiple values. </div><div class="ttdef"><b>Definition:</b> <a href="tests_2framework_2_utils_8h_source.xhtml#l00136">Utils.h:136</a></div></div>
1999</div><!-- fragment -->
2000</div>
2001</div>
2002<a class="anchor" id="ad7d919409d3d679cfbf28b2dae757fec"></a>
2003<div class="memitem">
2004<div class="memproto">
2005 <table class="memname">
2006 <tr>
2007 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2008 <td>(</td>
2009 <td class="paramtype">MobileNetDepthwiseConvolution&#160;</td>
2010 <td class="paramname">, </td>
2011 </tr>
2012 <tr>
2013 <td class="paramkey"></td>
2014 <td></td>
2015 <td class="paramtype">CLDepthwiseConvolutionFixture&#160;</td>
2016 <td class="paramname">, </td>
2017 </tr>
2018 <tr>
2019 <td class="paramkey"></td>
2020 <td></td>
2021 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2022 <td class="paramname">, </td>
2023 </tr>
2024 <tr>
2025 <td class="paramkey"></td>
2026 <td></td>
2027 <td class="paramtype">framework::dataset::&#160;</td>
2028 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::MobileNetDepthwiseConvolutionDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{1})&#160;</td>
2029 </tr>
2030 <tr>
2031 <td></td>
2032 <td>)</td>
2033 <td></td><td></td>
2034 </tr>
2035 </table>
2036</div><div class="memdoc">
2037
2038</div>
2039</div>
2040<a class="anchor" id="a1f4b9eae17da2aebc223b0fdeee74cea"></a>
2041<div class="memitem">
2042<div class="memproto">
2043 <table class="memname">
2044 <tr>
2045 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2046 <td>(</td>
2047 <td class="paramtype">MobileNetDepthwiseSeparableConvolutionLayer&#160;</td>
2048 <td class="paramname">, </td>
2049 </tr>
2050 <tr>
2051 <td class="paramkey"></td>
2052 <td></td>
2053 <td class="paramtype">CLDepthwiseSeparableConvolutionLayerFixture&#160;</td>
2054 <td class="paramname">, </td>
2055 </tr>
2056 <tr>
2057 <td class="paramkey"></td>
2058 <td></td>
2059 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2060 <td class="paramname">, </td>
2061 </tr>
2062 <tr>
2063 <td class="paramkey"></td>
2064 <td></td>
2065 <td class="paramtype">framework::dataset::&#160;</td>
2066 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::MobileNetDepthwiseSeparableConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{1})&#160;</td>
2067 </tr>
2068 <tr>
2069 <td></td>
2070 <td>)</td>
2071 <td></td><td></td>
2072 </tr>
2073 </table>
2074</div><div class="memdoc">
2075
2076</div>
2077</div>
2078<a class="anchor" id="aa14390b7bed93ce327f5dedd89fc8928"></a>
2079<div class="memitem">
2080<div class="memproto">
2081 <table class="memname">
2082 <tr>
2083 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2084 <td>(</td>
2085 <td class="paramtype">SmallROIPoolingLayer&#160;</td>
2086 <td class="paramname">, </td>
2087 </tr>
2088 <tr>
2089 <td class="paramkey"></td>
2090 <td></td>
2091 <td class="paramtype">NEROIPoolingLayerFixture&#160;</td>
2092 <td class="paramname">, </td>
2093 </tr>
2094 <tr>
2095 <td class="paramkey"></td>
2096 <td></td>
2097 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2098 <td class="paramname">, </td>
2099 </tr>
2100 <tr>
2101 <td class="paramkey"></td>
2102 <td></td>
2103 <td class="paramtype">framework::dataset::&#160;</td>
2104 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SmallROIPoolingLayerDataset(), framework::dataset::make(&quot;DataType&quot;,{DataType::F32})), framework::dataset::make(&quot;Batches&quot;,{1, 4, 8})&#160;</td>
2105 </tr>
2106 <tr>
2107 <td></td>
2108 <td>)</td>
2109 <td></td><td></td>
2110 </tr>
2111 </table>
2112</div><div class="memdoc">
2113
2114</div>
2115</div>
2116<a class="anchor" id="ac7d54f1a842ebb07f378846c21ccbe97"></a>
2117<div class="memitem">
2118<div class="memproto">
2119 <table class="memname">
2120 <tr>
2121 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2122 <td>(</td>
2123 <td class="paramtype">SmallROIPoolingLayer&#160;</td>
2124 <td class="paramname">, </td>
2125 </tr>
2126 <tr>
2127 <td class="paramkey"></td>
2128 <td></td>
2129 <td class="paramtype">CLROIPoolingLayerFixture&#160;</td>
2130 <td class="paramname">, </td>
2131 </tr>
2132 <tr>
2133 <td class="paramkey"></td>
2134 <td></td>
2135 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2136 <td class="paramname">, </td>
2137 </tr>
2138 <tr>
2139 <td class="paramkey"></td>
2140 <td></td>
2141 <td class="paramtype">framework::dataset::&#160;</td>
2142 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SmallROIPoolingLayerDataset(), framework::dataset::make(&quot;DataType&quot;,{DataType::F16, DataType::F32})), framework::dataset::make(&quot;Batches&quot;,{1, 4, 8})&#160;</td>
2143 </tr>
2144 <tr>
2145 <td></td>
2146 <td>)</td>
2147 <td></td><td></td>
2148 </tr>
2149 </table>
2150</div><div class="memdoc">
2151
2152</div>
2153</div>
2154<a class="anchor" id="a6faf0b684dd2c7e5bb111dd8f8f8c6f1"></a>
2155<div class="memitem">
2156<div class="memproto">
2157 <table class="memname">
2158 <tr>
2159 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2160 <td>(</td>
2161 <td class="paramtype">Floor&#160;</td>
2162 <td class="paramname">, </td>
2163 </tr>
2164 <tr>
2165 <td class="paramkey"></td>
2166 <td></td>
2167 <td class="paramtype">NEFloorFixture&#160;</td>
2168 <td class="paramname">, </td>
2169 </tr>
2170 <tr>
2171 <td class="paramkey"></td>
2172 <td></td>
2173 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2174 <td class="paramname">, </td>
2175 </tr>
2176 <tr>
2177 <td class="paramkey"></td>
2178 <td></td>
2179 <td class="paramtype">framework::dataset::&#160;</td>
2180 <td class="paramname"><em>combine</em>datasets::SmallShapes(), data_types&#160;</td>
2181 </tr>
2182 <tr>
2183 <td></td>
2184 <td>)</td>
2185 <td></td><td></td>
2186 </tr>
2187 </table>
2188</div><div class="memdoc">
2189
2190</div>
2191</div>
2192<a class="anchor" id="a6e81878e7ca8fecdd9f6e6bcc2a7b794"></a>
2193<div class="memitem">
2194<div class="memproto">
2195 <table class="memname">
2196 <tr>
2197 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2198 <td>(</td>
2199 <td class="paramtype">Floor&#160;</td>
2200 <td class="paramname">, </td>
2201 </tr>
2202 <tr>
2203 <td class="paramkey"></td>
2204 <td></td>
2205 <td class="paramtype">CLFloorFixture&#160;</td>
2206 <td class="paramname">, </td>
2207 </tr>
2208 <tr>
2209 <td class="paramkey"></td>
2210 <td></td>
2211 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2212 <td class="paramname">, </td>
2213 </tr>
2214 <tr>
2215 <td class="paramkey"></td>
2216 <td></td>
2217 <td class="paramtype">framework::dataset::&#160;</td>
2218 <td class="paramname"><em>combine</em>datasets::SmallShapes(), data_types&#160;</td>
2219 </tr>
2220 <tr>
2221 <td></td>
2222 <td>)</td>
2223 <td></td><td></td>
2224 </tr>
2225 </table>
2226</div><div class="memdoc">
2227
2228</div>
2229</div>
2230<a class="anchor" id="a2fba44656470195a6245f922a1c264f5"></a>
2231<div class="memitem">
2232<div class="memproto">
2233 <table class="memname">
2234 <tr>
2235 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2236 <td>(</td>
2237 <td class="paramtype">YOLOV2BatchNormalizationLayer&#160;</td>
2238 <td class="paramname">, </td>
2239 </tr>
2240 <tr>
2241 <td class="paramkey"></td>
2242 <td></td>
2243 <td class="paramtype">CLBatchNormalizationLayerFixture&#160;</td>
2244 <td class="paramname">, </td>
2245 </tr>
2246 <tr>
2247 <td class="paramkey"></td>
2248 <td></td>
2249 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2250 <td class="paramname">, </td>
2251 </tr>
2252 <tr>
2253 <td class="paramkey"></td>
2254 <td></td>
2255 <td class="paramtype">framework::dataset::&#160;</td>
2256 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2BatchNormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
2257 </tr>
2258 <tr>
2259 <td></td>
2260 <td>)</td>
2261 <td></td><td></td>
2262 </tr>
2263 </table>
2264</div><div class="memdoc">
2265
2266</div>
2267</div>
2268<a class="anchor" id="a2b1950a60a98dec32a7ca7531fded8ad"></a>
2269<div class="memitem">
2270<div class="memproto">
2271 <table class="memname">
2272 <tr>
2273 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2274 <td>(</td>
2275 <td class="paramtype">GoogLeNetInceptionV1GEMM&#160;</td>
2276 <td class="paramname">, </td>
2277 </tr>
2278 <tr>
2279 <td class="paramkey"></td>
2280 <td></td>
2281 <td class="paramtype">CLGEMMFixture&#160;</td>
2282 <td class="paramname">, </td>
2283 </tr>
2284 <tr>
2285 <td class="paramkey"></td>
2286 <td></td>
2287 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2288 <td class="paramname">, </td>
2289 </tr>
2290 <tr>
2291 <td class="paramkey"></td>
2292 <td></td>
2293 <td class="paramtype">framework::dataset::&#160;</td>
2294 <td class="paramname"><em>combine</em>datasets::GoogLeNetInceptionV1GEMMDataset(), data_types&#160;</td>
2295 </tr>
2296 <tr>
2297 <td></td>
2298 <td>)</td>
2299 <td></td><td></td>
2300 </tr>
2301 </table>
2302</div><div class="memdoc">
2303
2304</div>
2305</div>
2306<a class="anchor" id="a70d28ab3b5936a6454451d42f3c170f3"></a>
2307<div class="memitem">
2308<div class="memproto">
2309 <table class="memname">
2310 <tr>
2311 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2312 <td>(</td>
2313 <td class="paramtype">AlexNetNormalizationLayer&#160;</td>
2314 <td class="paramname">, </td>
2315 </tr>
2316 <tr>
2317 <td class="paramkey"></td>
2318 <td></td>
2319 <td class="paramtype">CLNormalizationLayerFixture&#160;</td>
2320 <td class="paramname">, </td>
2321 </tr>
2322 <tr>
2323 <td class="paramkey"></td>
2324 <td></td>
2325 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2326 <td class="paramname">, </td>
2327 </tr>
2328 <tr>
2329 <td class="paramkey"></td>
2330 <td></td>
2331 <td class="paramtype">framework::dataset::&#160;</td>
2332 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetNormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
2333 </tr>
2334 <tr>
2335 <td></td>
2336 <td>)</td>
2337 <td></td><td></td>
2338 </tr>
2339 </table>
2340</div><div class="memdoc">
2341
2342</div>
2343</div>
2344<a class="anchor" id="aef76c7b3cf7d1e3c6fc7ff96804a5753"></a>
2345<div class="memitem">
2346<div class="memproto">
2347 <table class="memname">
2348 <tr>
2349 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2350 <td>(</td>
2351 <td class="paramtype">MatrixMultiplyGEMM&#160;</td>
2352 <td class="paramname">, </td>
2353 </tr>
2354 <tr>
2355 <td class="paramkey"></td>
2356 <td></td>
2357 <td class="paramtype">CLGEMMFixture&#160;</td>
2358 <td class="paramname">, </td>
2359 </tr>
2360 <tr>
2361 <td class="paramkey"></td>
2362 <td></td>
2363 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2364 <td class="paramname">, </td>
2365 </tr>
2366 <tr>
2367 <td class="paramkey"></td>
2368 <td></td>
2369 <td class="paramtype">framework::dataset::&#160;</td>
2370 <td class="paramname"><em>combine</em>datasets::MatrixMultiplyGEMMDataset(), data_types&#160;</td>
2371 </tr>
2372 <tr>
2373 <td></td>
2374 <td>)</td>
2375 <td></td><td></td>
2376 </tr>
2377 </table>
2378</div><div class="memdoc">
2379
2380</div>
2381</div>
2382<a class="anchor" id="af935c08091163839aead6ac3023c2147"></a>
2383<div class="memitem">
2384<div class="memproto">
2385 <table class="memname">
2386 <tr>
2387 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2388 <td>(</td>
2389 <td class="paramtype">GoogleNetGEMM&#160;</td>
2390 <td class="paramname">, </td>
2391 </tr>
2392 <tr>
2393 <td class="paramkey"></td>
2394 <td></td>
2395 <td class="paramtype">CLGEMMFixture&#160;</td>
2396 <td class="paramname">, </td>
2397 </tr>
2398 <tr>
2399 <td class="paramkey"></td>
2400 <td></td>
2401 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
2402 <td class="paramname">, </td>
2403 </tr>
2404 <tr>
2405 <td class="paramkey"></td>
2406 <td></td>
2407 <td class="paramtype">framework::dataset::&#160;</td>
2408 <td class="paramname"><em>combine</em>datasets::GoogleNetGEMMDataset(), data_types&#160;</td>
2409 </tr>
2410 <tr>
2411 <td></td>
2412 <td>)</td>
2413 <td></td><td></td>
2414 </tr>
2415 </table>
2416</div><div class="memdoc">
2417
2418</div>
2419</div>
2420<a class="anchor" id="a3d815590d056717dde89027c469fba5a"></a>
2421<div class="memitem">
2422<div class="memproto">
2423 <table class="memname">
2424 <tr>
2425 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2426 <td>(</td>
2427 <td class="paramtype">AlexNetNormalizationLayer&#160;</td>
2428 <td class="paramname">, </td>
2429 </tr>
2430 <tr>
2431 <td class="paramkey"></td>
2432 <td></td>
2433 <td class="paramtype">NENormalizationLayerFixture&#160;</td>
2434 <td class="paramname">, </td>
2435 </tr>
2436 <tr>
2437 <td class="paramkey"></td>
2438 <td></td>
2439 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2440 <td class="paramname">, </td>
2441 </tr>
2442 <tr>
2443 <td class="paramkey"></td>
2444 <td></td>
2445 <td class="paramtype">framework::dataset::&#160;</td>
2446 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetNormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
2447 </tr>
2448 <tr>
2449 <td></td>
2450 <td>)</td>
2451 <td></td><td></td>
2452 </tr>
2453 </table>
2454</div><div class="memdoc">
2455
2456</div>
2457</div>
2458<a class="anchor" id="ae5411ce056673117b799d20c1c9484dd"></a>
2459<div class="memitem">
2460<div class="memproto">
2461 <table class="memname">
2462 <tr>
2463 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2464 <td>(</td>
2465 <td class="paramtype">AlexNetFullyConnectedLayer&#160;</td>
2466 <td class="paramname">, </td>
2467 </tr>
2468 <tr>
2469 <td class="paramkey"></td>
2470 <td></td>
2471 <td class="paramtype">CLFullyConnectedLayerFixture&#160;</td>
2472 <td class="paramname">, </td>
2473 </tr>
2474 <tr>
2475 <td class="paramkey"></td>
2476 <td></td>
2477 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2478 <td class="paramname">, </td>
2479 </tr>
2480 <tr>
2481 <td class="paramkey"></td>
2482 <td></td>
2483 <td class="paramtype">framework::dataset::&#160;</td>
2484 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetFullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
2485 </tr>
2486 <tr>
2487 <td></td>
2488 <td>)</td>
2489 <td></td><td></td>
2490 </tr>
2491 </table>
2492</div><div class="memdoc">
2493
2494</div>
2495</div>
2496<a class="anchor" id="a9ba464da0fc25dbd0cb96fe5c61494c4"></a>
2497<div class="memitem">
2498<div class="memproto">
2499 <table class="memname">
2500 <tr>
2501 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2502 <td>(</td>
2503 <td class="paramtype">LeNet5&#160;</td>
2504 <td class="paramname">, </td>
2505 </tr>
2506 <tr>
2507 <td class="paramkey"></td>
2508 <td></td>
2509 <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6a292ad5fedcc7dea6c6eb1be6d4c0d3">NELeNet5Fixture</a>&#160;</td>
2510 <td class="paramname">, </td>
2511 </tr>
2512 <tr>
2513 <td class="paramkey"></td>
2514 <td></td>
2515 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2516 <td class="paramname">, </td>
2517 </tr>
2518 <tr>
2519 <td class="paramkey"></td>
2520 <td></td>
2521 <td class="paramtype">framework::dataset::&#160;</td>
2522 <td class="paramname"><em>make</em>&quot;Batches&quot;,{1, 4, 8}&#160;</td>
2523 </tr>
2524 <tr>
2525 <td></td>
2526 <td>)</td>
2527 <td></td><td></td>
2528 </tr>
2529 </table>
2530</div><div class="memdoc">
2531
2532</div>
2533</div>
2534<a class="anchor" id="ad52c9735c67d5972016f143cd15ea874"></a>
2535<div class="memitem">
2536<div class="memproto">
2537 <table class="memname">
2538 <tr>
2539 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2540 <td>(</td>
2541 <td class="paramtype">AlexNetDirectConvolutionLayer&#160;</td>
2542 <td class="paramname">, </td>
2543 </tr>
2544 <tr>
2545 <td class="paramkey"></td>
2546 <td></td>
2547 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
2548 <td class="paramname">, </td>
2549 </tr>
2550 <tr>
2551 <td class="paramkey"></td>
2552 <td></td>
2553 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2554 <td class="paramname">, </td>
2555 </tr>
2556 <tr>
2557 <td class="paramkey"></td>
2558 <td></td>
2559 <td class="paramtype">framework::dataset::&#160;</td>
2560 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetDirectConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
2561 </tr>
2562 <tr>
2563 <td></td>
2564 <td>)</td>
2565 <td></td><td></td>
2566 </tr>
2567 </table>
2568</div><div class="memdoc">
2569
2570</div>
2571</div>
2572<a class="anchor" id="a485c6b6af55e2f12c1b7ef40546c08f7"></a>
2573<div class="memitem">
2574<div class="memproto">
2575 <table class="memname">
2576 <tr>
2577 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2578 <td>(</td>
2579 <td class="paramtype">LeNet5&#160;</td>
2580 <td class="paramname">, </td>
2581 </tr>
2582 <tr>
2583 <td class="paramkey"></td>
2584 <td></td>
2585 <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae3b678c8477dd5acc5e264eae37b562c">CLLeNet5Fixture</a>&#160;</td>
2586 <td class="paramname">, </td>
2587 </tr>
2588 <tr>
2589 <td class="paramkey"></td>
2590 <td></td>
2591 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2592 <td class="paramname">, </td>
2593 </tr>
2594 <tr>
2595 <td class="paramkey"></td>
2596 <td></td>
2597 <td class="paramtype">framework::dataset::&#160;</td>
2598 <td class="paramname"><em>make</em>&quot;Batches&quot;,{1, 4, 8}&#160;</td>
2599 </tr>
2600 <tr>
2601 <td></td>
2602 <td>)</td>
2603 <td></td><td></td>
2604 </tr>
2605 </table>
2606</div><div class="memdoc">
2607
2608</div>
2609</div>
2610<a class="anchor" id="a365d9325d2bba7fbf9983f80bfe8c796"></a>
2611<div class="memitem">
2612<div class="memproto">
2613 <table class="memname">
2614 <tr>
2615 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2616 <td>(</td>
2617 <td class="paramtype">GoogLeNetInceptionV4BatchNormalizationLayer&#160;</td>
2618 <td class="paramname">, </td>
2619 </tr>
2620 <tr>
2621 <td class="paramkey"></td>
2622 <td></td>
2623 <td class="paramtype">CLBatchNormalizationLayerFixture&#160;</td>
2624 <td class="paramname">, </td>
2625 </tr>
2626 <tr>
2627 <td class="paramkey"></td>
2628 <td></td>
2629 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2630 <td class="paramname">, </td>
2631 </tr>
2632 <tr>
2633 <td class="paramkey"></td>
2634 <td></td>
2635 <td class="paramtype">framework::dataset::&#160;</td>
2636 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
2637 </tr>
2638 <tr>
2639 <td></td>
2640 <td>)</td>
2641 <td></td><td></td>
2642 </tr>
2643 </table>
2644</div><div class="memdoc">
2645
2646</div>
2647</div>
2648<a class="anchor" id="a9e4dd8377091a877cf271bb34f2ed7da"></a>
2649<div class="memitem">
2650<div class="memproto">
2651 <table class="memname">
2652 <tr>
2653 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2654 <td>(</td>
2655 <td class="paramtype">YOLOV2BatchNormalizationLayer&#160;</td>
2656 <td class="paramname">, </td>
2657 </tr>
2658 <tr>
2659 <td class="paramkey"></td>
2660 <td></td>
2661 <td class="paramtype">NEBatchNormalizationLayerFixture&#160;</td>
2662 <td class="paramname">, </td>
2663 </tr>
2664 <tr>
2665 <td class="paramkey"></td>
2666 <td></td>
2667 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2668 <td class="paramname">, </td>
2669 </tr>
2670 <tr>
2671 <td class="paramkey"></td>
2672 <td></td>
2673 <td class="paramtype">framework::dataset::&#160;</td>
2674 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2BatchNormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
2675 </tr>
2676 <tr>
2677 <td></td>
2678 <td>)</td>
2679 <td></td><td></td>
2680 </tr>
2681 </table>
2682</div><div class="memdoc">
2683
2684</div>
2685</div>
2686<a class="anchor" id="a80d1181d85aefe33d6a8720152dba80b"></a>
2687<div class="memitem">
2688<div class="memproto">
2689 <table class="memname">
2690 <tr>
2691 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2692 <td>(</td>
2693 <td class="paramtype">AlexNetConvolutionLayer&#160;</td>
2694 <td class="paramname">, </td>
2695 </tr>
2696 <tr>
2697 <td class="paramkey"></td>
2698 <td></td>
2699 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
2700 <td class="paramname">, </td>
2701 </tr>
2702 <tr>
2703 <td class="paramkey"></td>
2704 <td></td>
2705 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2706 <td class="paramname">, </td>
2707 </tr>
2708 <tr>
2709 <td class="paramkey"></td>
2710 <td></td>
2711 <td class="paramtype">framework::dataset::&#160;</td>
2712 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
2713 </tr>
2714 <tr>
2715 <td></td>
2716 <td>)</td>
2717 <td></td><td></td>
2718 </tr>
2719 </table>
2720</div><div class="memdoc">
2721
2722</div>
2723</div>
2724<a class="anchor" id="afc6ba7f0f4b792e2df1270d8f83f138d"></a>
2725<div class="memitem">
2726<div class="memproto">
2727 <table class="memname">
2728 <tr>
2729 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2730 <td>(</td>
2731 <td class="paramtype">GoogLeNetInceptionV1NormalizationLayer&#160;</td>
2732 <td class="paramname">, </td>
2733 </tr>
2734 <tr>
2735 <td class="paramkey"></td>
2736 <td></td>
2737 <td class="paramtype">CLNormalizationLayerFixture&#160;</td>
2738 <td class="paramname">, </td>
2739 </tr>
2740 <tr>
2741 <td class="paramkey"></td>
2742 <td></td>
2743 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2744 <td class="paramname">, </td>
2745 </tr>
2746 <tr>
2747 <td class="paramkey"></td>
2748 <td></td>
2749 <td class="paramtype">framework::dataset::&#160;</td>
2750 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1NormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
2751 </tr>
2752 <tr>
2753 <td></td>
2754 <td>)</td>
2755 <td></td><td></td>
2756 </tr>
2757 </table>
2758</div><div class="memdoc">
2759
2760</div>
2761</div>
2762<a class="anchor" id="a0e999f1d9f9608da6fb4bbde4afc078e"></a>
2763<div class="memitem">
2764<div class="memproto">
2765 <table class="memname">
2766 <tr>
2767 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2768 <td>(</td>
2769 <td class="paramtype">AlexNetPoolingLayer&#160;</td>
2770 <td class="paramname">, </td>
2771 </tr>
2772 <tr>
2773 <td class="paramkey"></td>
2774 <td></td>
2775 <td class="paramtype">CLPoolingLayerFixture&#160;</td>
2776 <td class="paramname">, </td>
2777 </tr>
2778 <tr>
2779 <td class="paramkey"></td>
2780 <td></td>
2781 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2782 <td class="paramname">, </td>
2783 </tr>
2784 <tr>
2785 <td class="paramkey"></td>
2786 <td></td>
2787 <td class="paramtype">framework::dataset::&#160;</td>
2788 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetPoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
2789 </tr>
2790 <tr>
2791 <td></td>
2792 <td>)</td>
2793 <td></td><td></td>
2794 </tr>
2795 </table>
2796</div><div class="memdoc">
2797
2798</div>
2799</div>
2800<a class="anchor" id="a16176f104b13866fa9c0379d3fd9ef1f"></a>
2801<div class="memitem">
2802<div class="memproto">
2803 <table class="memname">
2804 <tr>
2805 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2806 <td>(</td>
2807 <td class="paramtype">AlexNetFullyConnectedLayer&#160;</td>
2808 <td class="paramname">, </td>
2809 </tr>
2810 <tr>
2811 <td class="paramkey"></td>
2812 <td></td>
2813 <td class="paramtype">NEFullyConnectedLayerFixture&#160;</td>
2814 <td class="paramname">, </td>
2815 </tr>
2816 <tr>
2817 <td class="paramkey"></td>
2818 <td></td>
2819 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2820 <td class="paramname">, </td>
2821 </tr>
2822 <tr>
2823 <td class="paramkey"></td>
2824 <td></td>
2825 <td class="paramtype">framework::dataset::&#160;</td>
2826 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetFullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
2827 </tr>
2828 <tr>
2829 <td></td>
2830 <td>)</td>
2831 <td></td><td></td>
2832 </tr>
2833 </table>
2834</div><div class="memdoc">
2835
2836</div>
2837</div>
2838<a class="anchor" id="a1d515029981b77ba7d02f20251013a3b"></a>
2839<div class="memitem">
2840<div class="memproto">
2841 <table class="memname">
2842 <tr>
2843 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2844 <td>(</td>
2845 <td class="paramtype">GoogLeNetInceptionV1GEMM&#160;</td>
2846 <td class="paramname">, </td>
2847 </tr>
2848 <tr>
2849 <td class="paramkey"></td>
2850 <td></td>
2851 <td class="paramtype">NEGEMMFixture&#160;</td>
2852 <td class="paramname">, </td>
2853 </tr>
2854 <tr>
2855 <td class="paramkey"></td>
2856 <td></td>
2857 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2858 <td class="paramname">, </td>
2859 </tr>
2860 <tr>
2861 <td class="paramkey"></td>
2862 <td></td>
2863 <td class="paramtype">framework::dataset::&#160;</td>
2864 <td class="paramname"><em>combine</em>datasets::GoogLeNetInceptionV1GEMMDataset(), data_types&#160;</td>
2865 </tr>
2866 <tr>
2867 <td></td>
2868 <td>)</td>
2869 <td></td><td></td>
2870 </tr>
2871 </table>
2872</div><div class="memdoc">
2873
2874</div>
2875</div>
2876<a class="anchor" id="a04a6f03a4f0b85f507735cd409a8b74d"></a>
2877<div class="memitem">
2878<div class="memproto">
2879 <table class="memname">
2880 <tr>
2881 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2882 <td>(</td>
2883 <td class="paramtype">GoogLeNetInceptionV1NormalizationLayer&#160;</td>
2884 <td class="paramname">, </td>
2885 </tr>
2886 <tr>
2887 <td class="paramkey"></td>
2888 <td></td>
2889 <td class="paramtype">NENormalizationLayerFixture&#160;</td>
2890 <td class="paramname">, </td>
2891 </tr>
2892 <tr>
2893 <td class="paramkey"></td>
2894 <td></td>
2895 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2896 <td class="paramname">, </td>
2897 </tr>
2898 <tr>
2899 <td class="paramkey"></td>
2900 <td></td>
2901 <td class="paramtype">framework::dataset::&#160;</td>
2902 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1NormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
2903 </tr>
2904 <tr>
2905 <td></td>
2906 <td>)</td>
2907 <td></td><td></td>
2908 </tr>
2909 </table>
2910</div><div class="memdoc">
2911
2912</div>
2913</div>
2914<a class="anchor" id="ae63877ff99387d51d4abc340a50f1093"></a>
2915<div class="memitem">
2916<div class="memproto">
2917 <table class="memname">
2918 <tr>
2919 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2920 <td>(</td>
2921 <td class="paramtype">LeNet5FullyConnectedLayer&#160;</td>
2922 <td class="paramname">, </td>
2923 </tr>
2924 <tr>
2925 <td class="paramkey"></td>
2926 <td></td>
2927 <td class="paramtype">CLFullyConnectedLayerFixture&#160;</td>
2928 <td class="paramname">, </td>
2929 </tr>
2930 <tr>
2931 <td class="paramkey"></td>
2932 <td></td>
2933 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2934 <td class="paramname">, </td>
2935 </tr>
2936 <tr>
2937 <td class="paramkey"></td>
2938 <td></td>
2939 <td class="paramtype">framework::dataset::&#160;</td>
2940 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
2941 </tr>
2942 <tr>
2943 <td></td>
2944 <td>)</td>
2945 <td></td><td></td>
2946 </tr>
2947 </table>
2948</div><div class="memdoc">
2949
2950</div>
2951</div>
2952<a class="anchor" id="abfd4fd028574ac46a9d056e7a1ead6f7"></a>
2953<div class="memitem">
2954<div class="memproto">
2955 <table class="memname">
2956 <tr>
2957 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2958 <td>(</td>
2959 <td class="paramtype">AlexNetActivationLayer&#160;</td>
2960 <td class="paramname">, </td>
2961 </tr>
2962 <tr>
2963 <td class="paramkey"></td>
2964 <td></td>
2965 <td class="paramtype">NEActivationLayerFixture&#160;</td>
2966 <td class="paramname">, </td>
2967 </tr>
2968 <tr>
2969 <td class="paramkey"></td>
2970 <td></td>
2971 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
2972 <td class="paramname">, </td>
2973 </tr>
2974 <tr>
2975 <td class="paramkey"></td>
2976 <td></td>
2977 <td class="paramtype">framework::dataset::&#160;</td>
2978 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetActivationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
2979 </tr>
2980 <tr>
2981 <td></td>
2982 <td>)</td>
2983 <td></td><td></td>
2984 </tr>
2985 </table>
2986</div><div class="memdoc">
2987
2988</div>
2989</div>
2990<a class="anchor" id="a09be4cd69df94f0929598f03b32001f0"></a>
2991<div class="memitem">
2992<div class="memproto">
2993 <table class="memname">
2994 <tr>
2995 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
2996 <td>(</td>
2997 <td class="paramtype">GoogLeNetInceptionV4BatchNormalizationLayer&#160;</td>
2998 <td class="paramname">, </td>
2999 </tr>
3000 <tr>
3001 <td class="paramkey"></td>
3002 <td></td>
3003 <td class="paramtype">NEBatchNormalizationLayerFixture&#160;</td>
3004 <td class="paramname">, </td>
3005 </tr>
3006 <tr>
3007 <td class="paramkey"></td>
3008 <td></td>
3009 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3010 <td class="paramname">, </td>
3011 </tr>
3012 <tr>
3013 <td class="paramkey"></td>
3014 <td></td>
3015 <td class="paramtype">framework::dataset::&#160;</td>
3016 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3017 </tr>
3018 <tr>
3019 <td></td>
3020 <td>)</td>
3021 <td></td><td></td>
3022 </tr>
3023 </table>
3024</div><div class="memdoc">
3025
3026</div>
3027</div>
3028<a class="anchor" id="aa971f54dfef950c44d8973db82b91e4e"></a>
3029<div class="memitem">
3030<div class="memproto">
3031 <table class="memname">
3032 <tr>
3033 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3034 <td>(</td>
3035 <td class="paramtype">GoogLeNetInceptionV1DirectConvolutionLayer&#160;</td>
3036 <td class="paramname">, </td>
3037 </tr>
3038 <tr>
3039 <td class="paramkey"></td>
3040 <td></td>
3041 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
3042 <td class="paramname">, </td>
3043 </tr>
3044 <tr>
3045 <td class="paramkey"></td>
3046 <td></td>
3047 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3048 <td class="paramname">, </td>
3049 </tr>
3050 <tr>
3051 <td class="paramkey"></td>
3052 <td></td>
3053 <td class="paramtype">framework::dataset::&#160;</td>
3054 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3055 </tr>
3056 <tr>
3057 <td></td>
3058 <td>)</td>
3059 <td></td><td></td>
3060 </tr>
3061 </table>
3062</div><div class="memdoc">
3063
3064</div>
3065</div>
3066<a class="anchor" id="a4fc639ce3410d3609337137d44a68ac9"></a>
3067<div class="memitem">
3068<div class="memproto">
3069 <table class="memname">
3070 <tr>
3071 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3072 <td>(</td>
3073 <td class="paramtype">AlexNetConvolutionLayer&#160;</td>
3074 <td class="paramname">, </td>
3075 </tr>
3076 <tr>
3077 <td class="paramkey"></td>
3078 <td></td>
3079 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
3080 <td class="paramname">, </td>
3081 </tr>
3082 <tr>
3083 <td class="paramkey"></td>
3084 <td></td>
3085 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3086 <td class="paramname">, </td>
3087 </tr>
3088 <tr>
3089 <td class="paramkey"></td>
3090 <td></td>
3091 <td class="paramtype">framework::dataset::&#160;</td>
3092 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3093 </tr>
3094 <tr>
3095 <td></td>
3096 <td>)</td>
3097 <td></td><td></td>
3098 </tr>
3099 </table>
3100</div><div class="memdoc">
3101
3102</div>
3103</div>
3104<a class="anchor" id="abe7167f9af260495f067dd8f36251a3b"></a>
3105<div class="memitem">
3106<div class="memproto">
3107 <table class="memname">
3108 <tr>
3109 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3110 <td>(</td>
3111 <td class="paramtype">AlexNetDirectConvolutionLayer&#160;</td>
3112 <td class="paramname">, </td>
3113 </tr>
3114 <tr>
3115 <td class="paramkey"></td>
3116 <td></td>
3117 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
3118 <td class="paramname">, </td>
3119 </tr>
3120 <tr>
3121 <td class="paramkey"></td>
3122 <td></td>
3123 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3124 <td class="paramname">, </td>
3125 </tr>
3126 <tr>
3127 <td class="paramkey"></td>
3128 <td></td>
3129 <td class="paramtype">framework::dataset::&#160;</td>
3130 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetDirectConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3131 </tr>
3132 <tr>
3133 <td></td>
3134 <td>)</td>
3135 <td></td><td></td>
3136 </tr>
3137 </table>
3138</div><div class="memdoc">
3139
3140</div>
3141</div>
3142<a class="anchor" id="a5dbda869f12c5e1ffa17a2dce7e82609"></a>
3143<div class="memitem">
3144<div class="memproto">
3145 <table class="memname">
3146 <tr>
3147 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3148 <td>(</td>
3149 <td class="paramtype">MatrixMultiplyGEMM&#160;</td>
3150 <td class="paramname">, </td>
3151 </tr>
3152 <tr>
3153 <td class="paramkey"></td>
3154 <td></td>
3155 <td class="paramtype">NEGEMMFixture&#160;</td>
3156 <td class="paramname">, </td>
3157 </tr>
3158 <tr>
3159 <td class="paramkey"></td>
3160 <td></td>
3161 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3162 <td class="paramname">, </td>
3163 </tr>
3164 <tr>
3165 <td class="paramkey"></td>
3166 <td></td>
3167 <td class="paramtype">framework::dataset::&#160;</td>
3168 <td class="paramname"><em>combine</em>datasets::MatrixMultiplyGEMMDataset(), data_types&#160;</td>
3169 </tr>
3170 <tr>
3171 <td></td>
3172 <td>)</td>
3173 <td></td><td></td>
3174 </tr>
3175 </table>
3176</div><div class="memdoc">
3177
3178</div>
3179</div>
3180<a class="anchor" id="af33a8fe45c20501be3c2fa7aaa32bf26"></a>
3181<div class="memitem">
3182<div class="memproto">
3183 <table class="memname">
3184 <tr>
3185 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3186 <td>(</td>
3187 <td class="paramtype">AlexNetPoolingLayer&#160;</td>
3188 <td class="paramname">, </td>
3189 </tr>
3190 <tr>
3191 <td class="paramkey"></td>
3192 <td></td>
3193 <td class="paramtype">NEPoolingLayerFixture&#160;</td>
3194 <td class="paramname">, </td>
3195 </tr>
3196 <tr>
3197 <td class="paramkey"></td>
3198 <td></td>
3199 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3200 <td class="paramname">, </td>
3201 </tr>
3202 <tr>
3203 <td class="paramkey"></td>
3204 <td></td>
3205 <td class="paramtype">framework::dataset::&#160;</td>
3206 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetPoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3207 </tr>
3208 <tr>
3209 <td></td>
3210 <td>)</td>
3211 <td></td><td></td>
3212 </tr>
3213 </table>
3214</div><div class="memdoc">
3215
3216</div>
3217</div>
3218<a class="anchor" id="a0889351f9ee837c8009925f17dd4688b"></a>
3219<div class="memitem">
3220<div class="memproto">
3221 <table class="memname">
3222 <tr>
3223 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3224 <td>(</td>
3225 <td class="paramtype">LeNet5PoolingLayer&#160;</td>
3226 <td class="paramname">, </td>
3227 </tr>
3228 <tr>
3229 <td class="paramkey"></td>
3230 <td></td>
3231 <td class="paramtype">CLPoolingLayerFixture&#160;</td>
3232 <td class="paramname">, </td>
3233 </tr>
3234 <tr>
3235 <td class="paramkey"></td>
3236 <td></td>
3237 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3238 <td class="paramname">, </td>
3239 </tr>
3240 <tr>
3241 <td class="paramkey"></td>
3242 <td></td>
3243 <td class="paramtype">framework::dataset::&#160;</td>
3244 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3245 </tr>
3246 <tr>
3247 <td></td>
3248 <td>)</td>
3249 <td></td><td></td>
3250 </tr>
3251 </table>
3252</div><div class="memdoc">
3253
3254</div>
3255</div>
3256<a class="anchor" id="ac9eaa20c5215f43c16202896b7ea9118"></a>
3257<div class="memitem">
3258<div class="memproto">
3259 <table class="memname">
3260 <tr>
3261 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3262 <td>(</td>
3263 <td class="paramtype">GoogleNetGEMM&#160;</td>
3264 <td class="paramname">, </td>
3265 </tr>
3266 <tr>
3267 <td class="paramkey"></td>
3268 <td></td>
3269 <td class="paramtype">NEGEMMFixture&#160;</td>
3270 <td class="paramname">, </td>
3271 </tr>
3272 <tr>
3273 <td class="paramkey"></td>
3274 <td></td>
3275 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
3276 <td class="paramname">, </td>
3277 </tr>
3278 <tr>
3279 <td class="paramkey"></td>
3280 <td></td>
3281 <td class="paramtype">framework::dataset::&#160;</td>
3282 <td class="paramname"><em>combine</em>datasets::GoogleNetGEMMDataset(), data_types&#160;</td>
3283 </tr>
3284 <tr>
3285 <td></td>
3286 <td>)</td>
3287 <td></td><td></td>
3288 </tr>
3289 </table>
3290</div><div class="memdoc">
3291
3292</div>
3293</div>
3294<a class="anchor" id="ac18e51057a61f7db456d1c8b9b03aa09"></a>
3295<div class="memitem">
3296<div class="memproto">
3297 <table class="memname">
3298 <tr>
3299 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3300 <td>(</td>
3301 <td class="paramtype">LeNet5ConvolutionLayer&#160;</td>
3302 <td class="paramname">, </td>
3303 </tr>
3304 <tr>
3305 <td class="paramkey"></td>
3306 <td></td>
3307 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
3308 <td class="paramname">, </td>
3309 </tr>
3310 <tr>
3311 <td class="paramkey"></td>
3312 <td></td>
3313 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3314 <td class="paramname">, </td>
3315 </tr>
3316 <tr>
3317 <td class="paramkey"></td>
3318 <td></td>
3319 <td class="paramtype">framework::dataset::&#160;</td>
3320 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3321 </tr>
3322 <tr>
3323 <td></td>
3324 <td>)</td>
3325 <td></td><td></td>
3326 </tr>
3327 </table>
3328</div><div class="memdoc">
3329
3330</div>
3331</div>
3332<a class="anchor" id="ae4dd72b2a2e5af0c89c5ce7d2443e115"></a>
3333<div class="memitem">
3334<div class="memproto">
3335 <table class="memname">
3336 <tr>
3337 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3338 <td>(</td>
3339 <td class="paramtype">AlexNetNormalizationLayer&#160;</td>
3340 <td class="paramname">, </td>
3341 </tr>
3342 <tr>
3343 <td class="paramkey"></td>
3344 <td></td>
3345 <td class="paramtype">CLNormalizationLayerFixture&#160;</td>
3346 <td class="paramname">, </td>
3347 </tr>
3348 <tr>
3349 <td class="paramkey"></td>
3350 <td></td>
3351 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
3352 <td class="paramname">, </td>
3353 </tr>
3354 <tr>
3355 <td class="paramkey"></td>
3356 <td></td>
3357 <td class="paramtype">framework::dataset::&#160;</td>
3358 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetNormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
3359 </tr>
3360 <tr>
3361 <td></td>
3362 <td>)</td>
3363 <td></td><td></td>
3364 </tr>
3365 </table>
3366</div><div class="memdoc">
3367
3368</div>
3369</div>
3370<a class="anchor" id="a2abd12df8c0c36eed83982ee073db2ff"></a>
3371<div class="memitem">
3372<div class="memproto">
3373 <table class="memname">
3374 <tr>
3375 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3376 <td>(</td>
3377 <td class="paramtype">YOLOV2BatchNormalizationLayer&#160;</td>
3378 <td class="paramname">, </td>
3379 </tr>
3380 <tr>
3381 <td class="paramkey"></td>
3382 <td></td>
3383 <td class="paramtype">CLBatchNormalizationLayerFixture&#160;</td>
3384 <td class="paramname">, </td>
3385 </tr>
3386 <tr>
3387 <td class="paramkey"></td>
3388 <td></td>
3389 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
3390 <td class="paramname">, </td>
3391 </tr>
3392 <tr>
3393 <td class="paramkey"></td>
3394 <td></td>
3395 <td class="paramtype">framework::dataset::&#160;</td>
3396 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2BatchNormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
3397 </tr>
3398 <tr>
3399 <td></td>
3400 <td>)</td>
3401 <td></td><td></td>
3402 </tr>
3403 </table>
3404</div><div class="memdoc">
3405
3406</div>
3407</div>
3408<a class="anchor" id="a69b2d4f81544c38878bd196d49d41360"></a>
3409<div class="memitem">
3410<div class="memproto">
3411 <table class="memname">
3412 <tr>
3413 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3414 <td>(</td>
3415 <td class="paramtype">AlexNet&#160;</td>
3416 <td class="paramname">, </td>
3417 </tr>
3418 <tr>
3419 <td class="paramkey"></td>
3420 <td></td>
3421 <td class="paramtype">CLAlexNetFixture&#160;</td>
3422 <td class="paramname">, </td>
3423 </tr>
3424 <tr>
3425 <td class="paramkey"></td>
3426 <td></td>
3427 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3428 <td class="paramname">, </td>
3429 </tr>
3430 <tr>
3431 <td class="paramkey"></td>
3432 <td></td>
3433 <td class="paramtype">framework::dataset::&#160;</td>
3434 <td class="paramname"><em>combine</em>framework::dataset::make(&quot;DataType&quot;,{DataType::F16, DataType::F32}), framework::dataset::make(&quot;Batches&quot;,{1, 4, 8})&#160;</td>
3435 </tr>
3436 <tr>
3437 <td></td>
3438 <td>)</td>
3439 <td></td><td></td>
3440 </tr>
3441 </table>
3442</div><div class="memdoc">
3443
3444</div>
3445</div>
3446<a class="anchor" id="ad83dbea09b27679e5c1d7950ae035f3a"></a>
3447<div class="memitem">
3448<div class="memproto">
3449 <table class="memname">
3450 <tr>
3451 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3452 <td>(</td>
3453 <td class="paramtype">LeNet5FullyConnectedLayer&#160;</td>
3454 <td class="paramname">, </td>
3455 </tr>
3456 <tr>
3457 <td class="paramkey"></td>
3458 <td></td>
3459 <td class="paramtype">NEFullyConnectedLayerFixture&#160;</td>
3460 <td class="paramname">, </td>
3461 </tr>
3462 <tr>
3463 <td class="paramkey"></td>
3464 <td></td>
3465 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3466 <td class="paramname">, </td>
3467 </tr>
3468 <tr>
3469 <td class="paramkey"></td>
3470 <td></td>
3471 <td class="paramtype">framework::dataset::&#160;</td>
3472 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3473 </tr>
3474 <tr>
3475 <td></td>
3476 <td>)</td>
3477 <td></td><td></td>
3478 </tr>
3479 </table>
3480</div><div class="memdoc">
3481
3482</div>
3483</div>
3484<a class="anchor" id="a7d7ea7b966b70d0931772f51a2cfcdb0"></a>
3485<div class="memitem">
3486<div class="memproto">
3487 <table class="memname">
3488 <tr>
3489 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3490 <td>(</td>
3491 <td class="paramtype">LeNet5PoolingLayer&#160;</td>
3492 <td class="paramname">, </td>
3493 </tr>
3494 <tr>
3495 <td class="paramkey"></td>
3496 <td></td>
3497 <td class="paramtype">NEPoolingLayerFixture&#160;</td>
3498 <td class="paramname">, </td>
3499 </tr>
3500 <tr>
3501 <td class="paramkey"></td>
3502 <td></td>
3503 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3504 <td class="paramname">, </td>
3505 </tr>
3506 <tr>
3507 <td class="paramkey"></td>
3508 <td></td>
3509 <td class="paramtype">framework::dataset::&#160;</td>
3510 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3511 </tr>
3512 <tr>
3513 <td></td>
3514 <td>)</td>
3515 <td></td><td></td>
3516 </tr>
3517 </table>
3518</div><div class="memdoc">
3519
3520</div>
3521</div>
3522<a class="anchor" id="a49ab3e510552d29b5698d55ef52674c3"></a>
3523<div class="memitem">
3524<div class="memproto">
3525 <table class="memname">
3526 <tr>
3527 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3528 <td>(</td>
3529 <td class="paramtype">VGG16FullyConnectedLayer&#160;</td>
3530 <td class="paramname">, </td>
3531 </tr>
3532 <tr>
3533 <td class="paramkey"></td>
3534 <td></td>
3535 <td class="paramtype">CLFullyConnectedLayerFixture&#160;</td>
3536 <td class="paramname">, </td>
3537 </tr>
3538 <tr>
3539 <td class="paramkey"></td>
3540 <td></td>
3541 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3542 <td class="paramname">, </td>
3543 </tr>
3544 <tr>
3545 <td class="paramkey"></td>
3546 <td></td>
3547 <td class="paramtype">framework::dataset::&#160;</td>
3548 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3549 </tr>
3550 <tr>
3551 <td></td>
3552 <td>)</td>
3553 <td></td><td></td>
3554 </tr>
3555 </table>
3556</div><div class="memdoc">
3557
3558</div>
3559</div>
3560<a class="anchor" id="a70381b263268259b4b6fbff88a0526c4"></a>
3561<div class="memitem">
3562<div class="memproto">
3563 <table class="memname">
3564 <tr>
3565 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3566 <td>(</td>
3567 <td class="paramtype">LeNet5ActivationLayer&#160;</td>
3568 <td class="paramname">, </td>
3569 </tr>
3570 <tr>
3571 <td class="paramkey"></td>
3572 <td></td>
3573 <td class="paramtype">NEActivationLayerFixture&#160;</td>
3574 <td class="paramname">, </td>
3575 </tr>
3576 <tr>
3577 <td class="paramkey"></td>
3578 <td></td>
3579 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3580 <td class="paramname">, </td>
3581 </tr>
3582 <tr>
3583 <td class="paramkey"></td>
3584 <td></td>
3585 <td class="paramtype">framework::dataset::&#160;</td>
3586 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5ActivationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3587 </tr>
3588 <tr>
3589 <td></td>
3590 <td>)</td>
3591 <td></td><td></td>
3592 </tr>
3593 </table>
3594</div><div class="memdoc">
3595
3596</div>
3597</div>
3598<a class="anchor" id="a7da7dbada8d8e076c78d1402743b7de9"></a>
3599<div class="memitem">
3600<div class="memproto">
3601 <table class="memname">
3602 <tr>
3603 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3604 <td>(</td>
3605 <td class="paramtype">LeNet5ConvolutionLayer&#160;</td>
3606 <td class="paramname">, </td>
3607 </tr>
3608 <tr>
3609 <td class="paramkey"></td>
3610 <td></td>
3611 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
3612 <td class="paramname">, </td>
3613 </tr>
3614 <tr>
3615 <td class="paramkey"></td>
3616 <td></td>
3617 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3618 <td class="paramname">, </td>
3619 </tr>
3620 <tr>
3621 <td class="paramkey"></td>
3622 <td></td>
3623 <td class="paramtype">framework::dataset::&#160;</td>
3624 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3625 </tr>
3626 <tr>
3627 <td></td>
3628 <td>)</td>
3629 <td></td><td></td>
3630 </tr>
3631 </table>
3632</div><div class="memdoc">
3633
3634</div>
3635</div>
3636<a class="anchor" id="adc3f7b3f1d06144af1980e8705253583"></a>
3637<div class="memitem">
3638<div class="memproto">
3639 <table class="memname">
3640 <tr>
3641 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3642 <td>(</td>
3643 <td class="paramtype">GoogLeNetInceptionV1DirectConvolutionLayer&#160;</td>
3644 <td class="paramname">, </td>
3645 </tr>
3646 <tr>
3647 <td class="paramkey"></td>
3648 <td></td>
3649 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
3650 <td class="paramname">, </td>
3651 </tr>
3652 <tr>
3653 <td class="paramkey"></td>
3654 <td></td>
3655 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3656 <td class="paramname">, </td>
3657 </tr>
3658 <tr>
3659 <td class="paramkey"></td>
3660 <td></td>
3661 <td class="paramtype">framework::dataset::&#160;</td>
3662 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3663 </tr>
3664 <tr>
3665 <td></td>
3666 <td>)</td>
3667 <td></td><td></td>
3668 </tr>
3669 </table>
3670</div><div class="memdoc">
3671
3672</div>
3673</div>
3674<a class="anchor" id="aa37f90a45822a6f45002ad5fd1e69560"></a>
3675<div class="memitem">
3676<div class="memproto">
3677 <table class="memname">
3678 <tr>
3679 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3680 <td>(</td>
3681 <td class="paramtype">YOLOV2BatchNormalizationLayer&#160;</td>
3682 <td class="paramname">, </td>
3683 </tr>
3684 <tr>
3685 <td class="paramkey"></td>
3686 <td></td>
3687 <td class="paramtype">NEBatchNormalizationLayerFixture&#160;</td>
3688 <td class="paramname">, </td>
3689 </tr>
3690 <tr>
3691 <td class="paramkey"></td>
3692 <td></td>
3693 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
3694 <td class="paramname">, </td>
3695 </tr>
3696 <tr>
3697 <td class="paramkey"></td>
3698 <td></td>
3699 <td class="paramtype">framework::dataset::&#160;</td>
3700 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2BatchNormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
3701 </tr>
3702 <tr>
3703 <td></td>
3704 <td>)</td>
3705 <td></td><td></td>
3706 </tr>
3707 </table>
3708</div><div class="memdoc">
3709
3710</div>
3711</div>
3712<a class="anchor" id="aa0a358cbff96894b77c9b3cfba3c2db4"></a>
3713<div class="memitem">
3714<div class="memproto">
3715 <table class="memname">
3716 <tr>
3717 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3718 <td>(</td>
3719 <td class="paramtype">GoogLeNetInceptionV4DirectConvolutionLayer&#160;</td>
3720 <td class="paramname">, </td>
3721 </tr>
3722 <tr>
3723 <td class="paramkey"></td>
3724 <td></td>
3725 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
3726 <td class="paramname">, </td>
3727 </tr>
3728 <tr>
3729 <td class="paramkey"></td>
3730 <td></td>
3731 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3732 <td class="paramname">, </td>
3733 </tr>
3734 <tr>
3735 <td class="paramkey"></td>
3736 <td></td>
3737 <td class="paramtype">framework::dataset::&#160;</td>
3738 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3739 </tr>
3740 <tr>
3741 <td></td>
3742 <td>)</td>
3743 <td></td><td></td>
3744 </tr>
3745 </table>
3746</div><div class="memdoc">
3747
3748</div>
3749</div>
3750<a class="anchor" id="a962c45074ad2b94899bc7003b3db0509"></a>
3751<div class="memitem">
3752<div class="memproto">
3753 <table class="memname">
3754 <tr>
3755 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3756 <td>(</td>
3757 <td class="paramtype">AlexNetNormalizationLayer&#160;</td>
3758 <td class="paramname">, </td>
3759 </tr>
3760 <tr>
3761 <td class="paramkey"></td>
3762 <td></td>
3763 <td class="paramtype">NENormalizationLayerFixture&#160;</td>
3764 <td class="paramname">, </td>
3765 </tr>
3766 <tr>
3767 <td class="paramkey"></td>
3768 <td></td>
3769 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
3770 <td class="paramname">, </td>
3771 </tr>
3772 <tr>
3773 <td class="paramkey"></td>
3774 <td></td>
3775 <td class="paramtype">framework::dataset::&#160;</td>
3776 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetNormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
3777 </tr>
3778 <tr>
3779 <td></td>
3780 <td>)</td>
3781 <td></td><td></td>
3782 </tr>
3783 </table>
3784</div><div class="memdoc">
3785
3786</div>
3787</div>
3788<a class="anchor" id="a903e3acaf54969c5d276058e979a753c"></a>
3789<div class="memitem">
3790<div class="memproto">
3791 <table class="memname">
3792 <tr>
3793 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3794 <td>(</td>
3795 <td class="paramtype">GoogLeNetInceptionV1PoolingLayer&#160;</td>
3796 <td class="paramname">, </td>
3797 </tr>
3798 <tr>
3799 <td class="paramkey"></td>
3800 <td></td>
3801 <td class="paramtype">CLPoolingLayerFixture&#160;</td>
3802 <td class="paramname">, </td>
3803 </tr>
3804 <tr>
3805 <td class="paramkey"></td>
3806 <td></td>
3807 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3808 <td class="paramname">, </td>
3809 </tr>
3810 <tr>
3811 <td class="paramkey"></td>
3812 <td></td>
3813 <td class="paramtype">framework::dataset::&#160;</td>
3814 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3815 </tr>
3816 <tr>
3817 <td></td>
3818 <td>)</td>
3819 <td></td><td></td>
3820 </tr>
3821 </table>
3822</div><div class="memdoc">
3823
3824</div>
3825</div>
3826<a class="anchor" id="a3e452462cb397897f476f6d83b468914"></a>
3827<div class="memitem">
3828<div class="memproto">
3829 <table class="memname">
3830 <tr>
3831 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3832 <td>(</td>
3833 <td class="paramtype">GoogLeNetInceptionV1ConvolutionLayer&#160;</td>
3834 <td class="paramname">, </td>
3835 </tr>
3836 <tr>
3837 <td class="paramkey"></td>
3838 <td></td>
3839 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
3840 <td class="paramname">, </td>
3841 </tr>
3842 <tr>
3843 <td class="paramkey"></td>
3844 <td></td>
3845 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3846 <td class="paramname">, </td>
3847 </tr>
3848 <tr>
3849 <td class="paramkey"></td>
3850 <td></td>
3851 <td class="paramtype">framework::dataset::&#160;</td>
3852 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3853 </tr>
3854 <tr>
3855 <td></td>
3856 <td>)</td>
3857 <td></td><td></td>
3858 </tr>
3859 </table>
3860</div><div class="memdoc">
3861
3862</div>
3863</div>
3864<a class="anchor" id="ac4a14a4ebd0a6067fa657e06d6e6d9ec"></a>
3865<div class="memitem">
3866<div class="memproto">
3867 <table class="memname">
3868 <tr>
3869 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3870 <td>(</td>
3871 <td class="paramtype">GoogLeNetInceptionV1PoolingLayer&#160;</td>
3872 <td class="paramname">, </td>
3873 </tr>
3874 <tr>
3875 <td class="paramkey"></td>
3876 <td></td>
3877 <td class="paramtype">NEPoolingLayerFixture&#160;</td>
3878 <td class="paramname">, </td>
3879 </tr>
3880 <tr>
3881 <td class="paramkey"></td>
3882 <td></td>
3883 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3884 <td class="paramname">, </td>
3885 </tr>
3886 <tr>
3887 <td class="paramkey"></td>
3888 <td></td>
3889 <td class="paramtype">framework::dataset::&#160;</td>
3890 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
3891 </tr>
3892 <tr>
3893 <td></td>
3894 <td>)</td>
3895 <td></td><td></td>
3896 </tr>
3897 </table>
3898</div><div class="memdoc">
3899
3900</div>
3901</div>
3902<a class="anchor" id="a8457ac77df7a142e86354ac08fd5ba30"></a>
3903<div class="memitem">
3904<div class="memproto">
3905 <table class="memname">
3906 <tr>
3907 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3908 <td>(</td>
3909 <td class="paramtype">GoogLeNetInceptionV4BatchNormalizationLayer&#160;</td>
3910 <td class="paramname">, </td>
3911 </tr>
3912 <tr>
3913 <td class="paramkey"></td>
3914 <td></td>
3915 <td class="paramtype">CLBatchNormalizationLayerFixture&#160;</td>
3916 <td class="paramname">, </td>
3917 </tr>
3918 <tr>
3919 <td class="paramkey"></td>
3920 <td></td>
3921 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
3922 <td class="paramname">, </td>
3923 </tr>
3924 <tr>
3925 <td class="paramkey"></td>
3926 <td></td>
3927 <td class="paramtype">framework::dataset::&#160;</td>
3928 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
3929 </tr>
3930 <tr>
3931 <td></td>
3932 <td>)</td>
3933 <td></td><td></td>
3934 </tr>
3935 </table>
3936</div><div class="memdoc">
3937
3938</div>
3939</div>
3940<a class="anchor" id="a62af6d63be834c648f251c0497e7b59f"></a>
3941<div class="memitem">
3942<div class="memproto">
3943 <table class="memname">
3944 <tr>
3945 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3946 <td>(</td>
3947 <td class="paramtype">GoogLeNetInceptionV1NormalizationLayer&#160;</td>
3948 <td class="paramname">, </td>
3949 </tr>
3950 <tr>
3951 <td class="paramkey"></td>
3952 <td></td>
3953 <td class="paramtype">CLNormalizationLayerFixture&#160;</td>
3954 <td class="paramname">, </td>
3955 </tr>
3956 <tr>
3957 <td class="paramkey"></td>
3958 <td></td>
3959 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
3960 <td class="paramname">, </td>
3961 </tr>
3962 <tr>
3963 <td class="paramkey"></td>
3964 <td></td>
3965 <td class="paramtype">framework::dataset::&#160;</td>
3966 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1NormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
3967 </tr>
3968 <tr>
3969 <td></td>
3970 <td>)</td>
3971 <td></td><td></td>
3972 </tr>
3973 </table>
3974</div><div class="memdoc">
3975
3976</div>
3977</div>
3978<a class="anchor" id="add697a0c19a1638874c37d5d15fc2d83"></a>
3979<div class="memitem">
3980<div class="memproto">
3981 <table class="memname">
3982 <tr>
3983 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
3984 <td>(</td>
3985 <td class="paramtype">GoogLeNetInceptionV1ActivationLayer&#160;</td>
3986 <td class="paramname">, </td>
3987 </tr>
3988 <tr>
3989 <td class="paramkey"></td>
3990 <td></td>
3991 <td class="paramtype">NEActivationLayerFixture&#160;</td>
3992 <td class="paramname">, </td>
3993 </tr>
3994 <tr>
3995 <td class="paramkey"></td>
3996 <td></td>
3997 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
3998 <td class="paramname">, </td>
3999 </tr>
4000 <tr>
4001 <td class="paramkey"></td>
4002 <td></td>
4003 <td class="paramtype">framework::dataset::&#160;</td>
4004 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1ActivationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4005 </tr>
4006 <tr>
4007 <td></td>
4008 <td>)</td>
4009 <td></td><td></td>
4010 </tr>
4011 </table>
4012</div><div class="memdoc">
4013
4014</div>
4015</div>
4016<a class="anchor" id="a9c30ac20d9eae69db3b004f36d8efaca"></a>
4017<div class="memitem">
4018<div class="memproto">
4019 <table class="memname">
4020 <tr>
4021 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4022 <td>(</td>
4023 <td class="paramtype">GoogLeNetInceptionV1ConvolutionLayer&#160;</td>
4024 <td class="paramname">, </td>
4025 </tr>
4026 <tr>
4027 <td class="paramkey"></td>
4028 <td></td>
4029 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
4030 <td class="paramname">, </td>
4031 </tr>
4032 <tr>
4033 <td class="paramkey"></td>
4034 <td></td>
4035 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4036 <td class="paramname">, </td>
4037 </tr>
4038 <tr>
4039 <td class="paramkey"></td>
4040 <td></td>
4041 <td class="paramtype">framework::dataset::&#160;</td>
4042 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4043 </tr>
4044 <tr>
4045 <td></td>
4046 <td>)</td>
4047 <td></td><td></td>
4048 </tr>
4049 </table>
4050</div><div class="memdoc">
4051
4052</div>
4053</div>
4054<a class="anchor" id="a9cc3e01ede750344f389191184d4682d"></a>
4055<div class="memitem">
4056<div class="memproto">
4057 <table class="memname">
4058 <tr>
4059 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4060 <td>(</td>
4061 <td class="paramtype">GoogLeNetInceptionV4DirectConvolutionLayer&#160;</td>
4062 <td class="paramname">, </td>
4063 </tr>
4064 <tr>
4065 <td class="paramkey"></td>
4066 <td></td>
4067 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
4068 <td class="paramname">, </td>
4069 </tr>
4070 <tr>
4071 <td class="paramkey"></td>
4072 <td></td>
4073 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4074 <td class="paramname">, </td>
4075 </tr>
4076 <tr>
4077 <td class="paramkey"></td>
4078 <td></td>
4079 <td class="paramtype">framework::dataset::&#160;</td>
4080 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4081 </tr>
4082 <tr>
4083 <td></td>
4084 <td>)</td>
4085 <td></td><td></td>
4086 </tr>
4087 </table>
4088</div><div class="memdoc">
4089
4090</div>
4091</div>
4092<a class="anchor" id="a597d20f8105ae670eccdc44b0486ad4e"></a>
4093<div class="memitem">
4094<div class="memproto">
4095 <table class="memname">
4096 <tr>
4097 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4098 <td>(</td>
4099 <td class="paramtype">VGG16FullyConnectedLayer&#160;</td>
4100 <td class="paramname">, </td>
4101 </tr>
4102 <tr>
4103 <td class="paramkey"></td>
4104 <td></td>
4105 <td class="paramtype">NEFullyConnectedLayerFixture&#160;</td>
4106 <td class="paramname">, </td>
4107 </tr>
4108 <tr>
4109 <td class="paramkey"></td>
4110 <td></td>
4111 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4112 <td class="paramname">, </td>
4113 </tr>
4114 <tr>
4115 <td class="paramkey"></td>
4116 <td></td>
4117 <td class="paramtype">framework::dataset::&#160;</td>
4118 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4119 </tr>
4120 <tr>
4121 <td></td>
4122 <td>)</td>
4123 <td></td><td></td>
4124 </tr>
4125 </table>
4126</div><div class="memdoc">
4127
4128</div>
4129</div>
4130<a class="anchor" id="a8cf1a9e06ce42b8ff57bf13aa2c2c047"></a>
4131<div class="memitem">
4132<div class="memproto">
4133 <table class="memname">
4134 <tr>
4135 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4136 <td>(</td>
4137 <td class="paramtype">GoogLeNetInceptionV1FullyConnectedLayer&#160;</td>
4138 <td class="paramname">, </td>
4139 </tr>
4140 <tr>
4141 <td class="paramkey"></td>
4142 <td></td>
4143 <td class="paramtype">CLFullyConnectedLayerFixture&#160;</td>
4144 <td class="paramname">, </td>
4145 </tr>
4146 <tr>
4147 <td class="paramkey"></td>
4148 <td></td>
4149 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4150 <td class="paramname">, </td>
4151 </tr>
4152 <tr>
4153 <td class="paramkey"></td>
4154 <td></td>
4155 <td class="paramtype">framework::dataset::&#160;</td>
4156 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4157 </tr>
4158 <tr>
4159 <td></td>
4160 <td>)</td>
4161 <td></td><td></td>
4162 </tr>
4163 </table>
4164</div><div class="memdoc">
4165
4166</div>
4167</div>
4168<a class="anchor" id="aa93e94a58a377d2493868e24d746531b"></a>
4169<div class="memitem">
4170<div class="memproto">
4171 <table class="memname">
4172 <tr>
4173 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4174 <td>(</td>
4175 <td class="paramtype">GoogLeNetInceptionV4BatchNormalizationLayer&#160;</td>
4176 <td class="paramname">, </td>
4177 </tr>
4178 <tr>
4179 <td class="paramkey"></td>
4180 <td></td>
4181 <td class="paramtype">NEBatchNormalizationLayerFixture&#160;</td>
4182 <td class="paramname">, </td>
4183 </tr>
4184 <tr>
4185 <td class="paramkey"></td>
4186 <td></td>
4187 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
4188 <td class="paramname">, </td>
4189 </tr>
4190 <tr>
4191 <td class="paramkey"></td>
4192 <td></td>
4193 <td class="paramtype">framework::dataset::&#160;</td>
4194 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
4195 </tr>
4196 <tr>
4197 <td></td>
4198 <td>)</td>
4199 <td></td><td></td>
4200 </tr>
4201 </table>
4202</div><div class="memdoc">
4203
4204</div>
4205</div>
4206<a class="anchor" id="a97400b4e200d00d86169b2afc584d2e3"></a>
4207<div class="memitem">
4208<div class="memproto">
4209 <table class="memname">
4210 <tr>
4211 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4212 <td>(</td>
4213 <td class="paramtype">GoogLeNetInceptionV4PoolingLayer&#160;</td>
4214 <td class="paramname">, </td>
4215 </tr>
4216 <tr>
4217 <td class="paramkey"></td>
4218 <td></td>
4219 <td class="paramtype">NEPoolingLayerFixture&#160;</td>
4220 <td class="paramname">, </td>
4221 </tr>
4222 <tr>
4223 <td class="paramkey"></td>
4224 <td></td>
4225 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4226 <td class="paramname">, </td>
4227 </tr>
4228 <tr>
4229 <td class="paramkey"></td>
4230 <td></td>
4231 <td class="paramtype">framework::dataset::&#160;</td>
4232 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4233 </tr>
4234 <tr>
4235 <td></td>
4236 <td>)</td>
4237 <td></td><td></td>
4238 </tr>
4239 </table>
4240</div><div class="memdoc">
4241
4242</div>
4243</div>
4244<a class="anchor" id="ab17878545b689878d626f8e2298d2b1b"></a>
4245<div class="memitem">
4246<div class="memproto">
4247 <table class="memname">
4248 <tr>
4249 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4250 <td>(</td>
4251 <td class="paramtype">GoogLeNetInceptionV1NormalizationLayer&#160;</td>
4252 <td class="paramname">, </td>
4253 </tr>
4254 <tr>
4255 <td class="paramkey"></td>
4256 <td></td>
4257 <td class="paramtype">NENormalizationLayerFixture&#160;</td>
4258 <td class="paramname">, </td>
4259 </tr>
4260 <tr>
4261 <td class="paramkey"></td>
4262 <td></td>
4263 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
4264 <td class="paramname">, </td>
4265 </tr>
4266 <tr>
4267 <td class="paramkey"></td>
4268 <td></td>
4269 <td class="paramtype">framework::dataset::&#160;</td>
4270 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1NormalizationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
4271 </tr>
4272 <tr>
4273 <td></td>
4274 <td>)</td>
4275 <td></td><td></td>
4276 </tr>
4277 </table>
4278</div><div class="memdoc">
4279
4280</div>
4281</div>
4282<a class="anchor" id="afd1574f92e2d5a179c3c7f0e8e438bba"></a>
4283<div class="memitem">
4284<div class="memproto">
4285 <table class="memname">
4286 <tr>
4287 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4288 <td>(</td>
4289 <td class="paramtype">SqueezeNetDirectConvolutionLayer&#160;</td>
4290 <td class="paramname">, </td>
4291 </tr>
4292 <tr>
4293 <td class="paramkey"></td>
4294 <td></td>
4295 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
4296 <td class="paramname">, </td>
4297 </tr>
4298 <tr>
4299 <td class="paramkey"></td>
4300 <td></td>
4301 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4302 <td class="paramname">, </td>
4303 </tr>
4304 <tr>
4305 <td class="paramkey"></td>
4306 <td></td>
4307 <td class="paramtype">framework::dataset::&#160;</td>
4308 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4309 </tr>
4310 <tr>
4311 <td></td>
4312 <td>)</td>
4313 <td></td><td></td>
4314 </tr>
4315 </table>
4316</div><div class="memdoc">
4317
4318</div>
4319</div>
4320<a class="anchor" id="a4fa3f7aa92292c25a9876a3b1cded7c9"></a>
4321<div class="memitem">
4322<div class="memproto">
4323 <table class="memname">
4324 <tr>
4325 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4326 <td>(</td>
4327 <td class="paramtype">AlexNet&#160;</td>
4328 <td class="paramname">, </td>
4329 </tr>
4330 <tr>
4331 <td class="paramkey"></td>
4332 <td></td>
4333 <td class="paramtype">NEAlexNetFixture&#160;</td>
4334 <td class="paramname">, </td>
4335 </tr>
4336 <tr>
4337 <td class="paramkey"></td>
4338 <td></td>
4339 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4340 <td class="paramname">, </td>
4341 </tr>
4342 <tr>
4343 <td class="paramkey"></td>
4344 <td></td>
4345 <td class="paramtype">framework::dataset::&#160;</td>
4346 <td class="paramname"><em>combine</em>alex_net_data_types, framework::dataset::make(&quot;Batches&quot;,{1, 4, 8})&#160;</td>
4347 </tr>
4348 <tr>
4349 <td></td>
4350 <td>)</td>
4351 <td></td><td></td>
4352 </tr>
4353 </table>
4354</div><div class="memdoc">
4355
4356</div>
4357</div>
4358<a class="anchor" id="aecd85eec5df288174be9b7e0fac6d1fe"></a>
4359<div class="memitem">
4360<div class="memproto">
4361 <table class="memname">
4362 <tr>
4363 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4364 <td>(</td>
4365 <td class="paramtype">GoogLeNetInceptionV4ConvolutionLayer&#160;</td>
4366 <td class="paramname">, </td>
4367 </tr>
4368 <tr>
4369 <td class="paramkey"></td>
4370 <td></td>
4371 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
4372 <td class="paramname">, </td>
4373 </tr>
4374 <tr>
4375 <td class="paramkey"></td>
4376 <td></td>
4377 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4378 <td class="paramname">, </td>
4379 </tr>
4380 <tr>
4381 <td class="paramkey"></td>
4382 <td></td>
4383 <td class="paramtype">framework::dataset::&#160;</td>
4384 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4385 </tr>
4386 <tr>
4387 <td></td>
4388 <td>)</td>
4389 <td></td><td></td>
4390 </tr>
4391 </table>
4392</div><div class="memdoc">
4393
4394</div>
4395</div>
4396<a class="anchor" id="a85078031088e419e7f928e5ad5bbafa9"></a>
4397<div class="memitem">
4398<div class="memproto">
4399 <table class="memname">
4400 <tr>
4401 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4402 <td>(</td>
4403 <td class="paramtype">GoogLeNetInceptionV4PoolingLayer&#160;</td>
4404 <td class="paramname">, </td>
4405 </tr>
4406 <tr>
4407 <td class="paramkey"></td>
4408 <td></td>
4409 <td class="paramtype">CLPoolingLayerFixture&#160;</td>
4410 <td class="paramname">, </td>
4411 </tr>
4412 <tr>
4413 <td class="paramkey"></td>
4414 <td></td>
4415 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4416 <td class="paramname">, </td>
4417 </tr>
4418 <tr>
4419 <td class="paramkey"></td>
4420 <td></td>
4421 <td class="paramtype">framework::dataset::&#160;</td>
4422 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4423 </tr>
4424 <tr>
4425 <td></td>
4426 <td>)</td>
4427 <td></td><td></td>
4428 </tr>
4429 </table>
4430</div><div class="memdoc">
4431
4432</div>
4433</div>
4434<a class="anchor" id="a117bc733390c845f7493e6dad0b75191"></a>
4435<div class="memitem">
4436<div class="memproto">
4437 <table class="memname">
4438 <tr>
4439 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4440 <td>(</td>
4441 <td class="paramtype">GoogLeNetInceptionV4ActivationLayer&#160;</td>
4442 <td class="paramname">, </td>
4443 </tr>
4444 <tr>
4445 <td class="paramkey"></td>
4446 <td></td>
4447 <td class="paramtype">NEActivationLayerFixture&#160;</td>
4448 <td class="paramname">, </td>
4449 </tr>
4450 <tr>
4451 <td class="paramkey"></td>
4452 <td></td>
4453 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4454 <td class="paramname">, </td>
4455 </tr>
4456 <tr>
4457 <td class="paramkey"></td>
4458 <td></td>
4459 <td class="paramtype">framework::dataset::&#160;</td>
4460 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4ActivationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4461 </tr>
4462 <tr>
4463 <td></td>
4464 <td>)</td>
4465 <td></td><td></td>
4466 </tr>
4467 </table>
4468</div><div class="memdoc">
4469
4470</div>
4471</div>
4472<a class="anchor" id="abe4e6a4ff5c68a5403ec4dc38149d097"></a>
4473<div class="memitem">
4474<div class="memproto">
4475 <table class="memname">
4476 <tr>
4477 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4478 <td>(</td>
4479 <td class="paramtype">GoogLeNetInceptionV4ConvolutionLayer&#160;</td>
4480 <td class="paramname">, </td>
4481 </tr>
4482 <tr>
4483 <td class="paramkey"></td>
4484 <td></td>
4485 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
4486 <td class="paramname">, </td>
4487 </tr>
4488 <tr>
4489 <td class="paramkey"></td>
4490 <td></td>
4491 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4492 <td class="paramname">, </td>
4493 </tr>
4494 <tr>
4495 <td class="paramkey"></td>
4496 <td></td>
4497 <td class="paramtype">framework::dataset::&#160;</td>
4498 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4499 </tr>
4500 <tr>
4501 <td></td>
4502 <td>)</td>
4503 <td></td><td></td>
4504 </tr>
4505 </table>
4506</div><div class="memdoc">
4507
4508</div>
4509</div>
4510<a class="anchor" id="a9c7a41c764eb85334c2d75df71d40cc4"></a>
4511<div class="memitem">
4512<div class="memproto">
4513 <table class="memname">
4514 <tr>
4515 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4516 <td>(</td>
4517 <td class="paramtype">SqueezeNetDirectConvolutionLayer&#160;</td>
4518 <td class="paramname">, </td>
4519 </tr>
4520 <tr>
4521 <td class="paramkey"></td>
4522 <td></td>
4523 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
4524 <td class="paramname">, </td>
4525 </tr>
4526 <tr>
4527 <td class="paramkey"></td>
4528 <td></td>
4529 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4530 <td class="paramname">, </td>
4531 </tr>
4532 <tr>
4533 <td class="paramkey"></td>
4534 <td></td>
4535 <td class="paramtype">framework::dataset::&#160;</td>
4536 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4537 </tr>
4538 <tr>
4539 <td></td>
4540 <td>)</td>
4541 <td></td><td></td>
4542 </tr>
4543 </table>
4544</div><div class="memdoc">
4545
4546</div>
4547</div>
4548<a class="anchor" id="aa7edcfdce59bb3cb0f1ed784a28fb6d2"></a>
4549<div class="memitem">
4550<div class="memproto">
4551 <table class="memname">
4552 <tr>
4553 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4554 <td>(</td>
4555 <td class="paramtype">SqueezeNetPoolingLayer&#160;</td>
4556 <td class="paramname">, </td>
4557 </tr>
4558 <tr>
4559 <td class="paramkey"></td>
4560 <td></td>
4561 <td class="paramtype">NEPoolingLayerFixture&#160;</td>
4562 <td class="paramname">, </td>
4563 </tr>
4564 <tr>
4565 <td class="paramkey"></td>
4566 <td></td>
4567 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4568 <td class="paramname">, </td>
4569 </tr>
4570 <tr>
4571 <td class="paramkey"></td>
4572 <td></td>
4573 <td class="paramtype">framework::dataset::&#160;</td>
4574 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetPoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4575 </tr>
4576 <tr>
4577 <td></td>
4578 <td>)</td>
4579 <td></td><td></td>
4580 </tr>
4581 </table>
4582</div><div class="memdoc">
4583
4584</div>
4585</div>
4586<a class="anchor" id="a033a42b308036c4e46a8bef7536d88f9"></a>
4587<div class="memitem">
4588<div class="memproto">
4589 <table class="memname">
4590 <tr>
4591 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4592 <td>(</td>
4593 <td class="paramtype">GoogLeNetInceptionV1FullyConnectedLayer&#160;</td>
4594 <td class="paramname">, </td>
4595 </tr>
4596 <tr>
4597 <td class="paramkey"></td>
4598 <td></td>
4599 <td class="paramtype">NEFullyConnectedLayerFixture&#160;</td>
4600 <td class="paramname">, </td>
4601 </tr>
4602 <tr>
4603 <td class="paramkey"></td>
4604 <td></td>
4605 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4606 <td class="paramname">, </td>
4607 </tr>
4608 <tr>
4609 <td class="paramkey"></td>
4610 <td></td>
4611 <td class="paramtype">framework::dataset::&#160;</td>
4612 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4613 </tr>
4614 <tr>
4615 <td></td>
4616 <td>)</td>
4617 <td></td><td></td>
4618 </tr>
4619 </table>
4620</div><div class="memdoc">
4621
4622</div>
4623</div>
4624<a class="anchor" id="a8388dbd479dceaffb21c8fc564c5c420"></a>
4625<div class="memitem">
4626<div class="memproto">
4627 <table class="memname">
4628 <tr>
4629 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4630 <td>(</td>
4631 <td class="paramtype">GoogLeNetInceptionV4FullyConnectedLayer&#160;</td>
4632 <td class="paramname">, </td>
4633 </tr>
4634 <tr>
4635 <td class="paramkey"></td>
4636 <td></td>
4637 <td class="paramtype">CLFullyConnectedLayerFixture&#160;</td>
4638 <td class="paramname">, </td>
4639 </tr>
4640 <tr>
4641 <td class="paramkey"></td>
4642 <td></td>
4643 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4644 <td class="paramname">, </td>
4645 </tr>
4646 <tr>
4647 <td class="paramkey"></td>
4648 <td></td>
4649 <td class="paramtype">framework::dataset::&#160;</td>
4650 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4651 </tr>
4652 <tr>
4653 <td></td>
4654 <td>)</td>
4655 <td></td><td></td>
4656 </tr>
4657 </table>
4658</div><div class="memdoc">
4659
4660</div>
4661</div>
4662<a class="anchor" id="ab644feafdb4a10f39c7e4acca32744eb"></a>
4663<div class="memitem">
4664<div class="memproto">
4665 <table class="memname">
4666 <tr>
4667 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4668 <td>(</td>
4669 <td class="paramtype">VGG16PoolingLayer&#160;</td>
4670 <td class="paramname">, </td>
4671 </tr>
4672 <tr>
4673 <td class="paramkey"></td>
4674 <td></td>
4675 <td class="paramtype">NEPoolingLayerFixture&#160;</td>
4676 <td class="paramname">, </td>
4677 </tr>
4678 <tr>
4679 <td class="paramkey"></td>
4680 <td></td>
4681 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4682 <td class="paramname">, </td>
4683 </tr>
4684 <tr>
4685 <td class="paramkey"></td>
4686 <td></td>
4687 <td class="paramtype">framework::dataset::&#160;</td>
4688 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4689 </tr>
4690 <tr>
4691 <td></td>
4692 <td>)</td>
4693 <td></td><td></td>
4694 </tr>
4695 </table>
4696</div><div class="memdoc">
4697
4698</div>
4699</div>
4700<a class="anchor" id="aea25c6951a5d4bcfeb95750105154506"></a>
4701<div class="memitem">
4702<div class="memproto">
4703 <table class="memname">
4704 <tr>
4705 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4706 <td>(</td>
4707 <td class="paramtype">SqueezeNetConvolutionLayer&#160;</td>
4708 <td class="paramname">, </td>
4709 </tr>
4710 <tr>
4711 <td class="paramkey"></td>
4712 <td></td>
4713 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
4714 <td class="paramname">, </td>
4715 </tr>
4716 <tr>
4717 <td class="paramkey"></td>
4718 <td></td>
4719 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4720 <td class="paramname">, </td>
4721 </tr>
4722 <tr>
4723 <td class="paramkey"></td>
4724 <td></td>
4725 <td class="paramtype">framework::dataset::&#160;</td>
4726 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4727 </tr>
4728 <tr>
4729 <td></td>
4730 <td>)</td>
4731 <td></td><td></td>
4732 </tr>
4733 </table>
4734</div><div class="memdoc">
4735
4736</div>
4737</div>
4738<a class="anchor" id="a70f04129817692e0b5727fb542f9153c"></a>
4739<div class="memitem">
4740<div class="memproto">
4741 <table class="memname">
4742 <tr>
4743 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4744 <td>(</td>
4745 <td class="paramtype">SqueezeNetActivationLayer&#160;</td>
4746 <td class="paramname">, </td>
4747 </tr>
4748 <tr>
4749 <td class="paramkey"></td>
4750 <td></td>
4751 <td class="paramtype">NEActivationLayerFixture&#160;</td>
4752 <td class="paramname">, </td>
4753 </tr>
4754 <tr>
4755 <td class="paramkey"></td>
4756 <td></td>
4757 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4758 <td class="paramname">, </td>
4759 </tr>
4760 <tr>
4761 <td class="paramkey"></td>
4762 <td></td>
4763 <td class="paramtype">framework::dataset::&#160;</td>
4764 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetActivationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4765 </tr>
4766 <tr>
4767 <td></td>
4768 <td>)</td>
4769 <td></td><td></td>
4770 </tr>
4771 </table>
4772</div><div class="memdoc">
4773
4774</div>
4775</div>
4776<a class="anchor" id="a2a91a938df2a246bb92811fe90bf5ee0"></a>
4777<div class="memitem">
4778<div class="memproto">
4779 <table class="memname">
4780 <tr>
4781 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4782 <td>(</td>
4783 <td class="paramtype">SqueezeNetConvolutionLayer&#160;</td>
4784 <td class="paramname">, </td>
4785 </tr>
4786 <tr>
4787 <td class="paramkey"></td>
4788 <td></td>
4789 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
4790 <td class="paramname">, </td>
4791 </tr>
4792 <tr>
4793 <td class="paramkey"></td>
4794 <td></td>
4795 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4796 <td class="paramname">, </td>
4797 </tr>
4798 <tr>
4799 <td class="paramkey"></td>
4800 <td></td>
4801 <td class="paramtype">framework::dataset::&#160;</td>
4802 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4803 </tr>
4804 <tr>
4805 <td></td>
4806 <td>)</td>
4807 <td></td><td></td>
4808 </tr>
4809 </table>
4810</div><div class="memdoc">
4811
4812</div>
4813</div>
4814<a class="anchor" id="a91a53a55f1c814837ea5374d1c2095e8"></a>
4815<div class="memitem">
4816<div class="memproto">
4817 <table class="memname">
4818 <tr>
4819 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4820 <td>(</td>
4821 <td class="paramtype">AlexNetDirectConvolutionLayer&#160;</td>
4822 <td class="paramname">, </td>
4823 </tr>
4824 <tr>
4825 <td class="paramkey"></td>
4826 <td></td>
4827 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
4828 <td class="paramname">, </td>
4829 </tr>
4830 <tr>
4831 <td class="paramkey"></td>
4832 <td></td>
4833 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
4834 <td class="paramname">, </td>
4835 </tr>
4836 <tr>
4837 <td class="paramkey"></td>
4838 <td></td>
4839 <td class="paramtype">framework::dataset::&#160;</td>
4840 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetDirectConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
4841 </tr>
4842 <tr>
4843 <td></td>
4844 <td>)</td>
4845 <td></td><td></td>
4846 </tr>
4847 </table>
4848</div><div class="memdoc">
4849
4850</div>
4851</div>
4852<a class="anchor" id="a27cf9c407e83adbf0c837240a6bc3534"></a>
4853<div class="memitem">
4854<div class="memproto">
4855 <table class="memname">
4856 <tr>
4857 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4858 <td>(</td>
4859 <td class="paramtype">SqueezeNetPoolingLayer&#160;</td>
4860 <td class="paramname">, </td>
4861 </tr>
4862 <tr>
4863 <td class="paramkey"></td>
4864 <td></td>
4865 <td class="paramtype">CLPoolingLayerFixture&#160;</td>
4866 <td class="paramname">, </td>
4867 </tr>
4868 <tr>
4869 <td class="paramkey"></td>
4870 <td></td>
4871 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4872 <td class="paramname">, </td>
4873 </tr>
4874 <tr>
4875 <td class="paramkey"></td>
4876 <td></td>
4877 <td class="paramtype">framework::dataset::&#160;</td>
4878 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetPoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4879 </tr>
4880 <tr>
4881 <td></td>
4882 <td>)</td>
4883 <td></td><td></td>
4884 </tr>
4885 </table>
4886</div><div class="memdoc">
4887
4888</div>
4889</div>
4890<a class="anchor" id="ad8c07298bae2d7cd7ace3ad869371b0b"></a>
4891<div class="memitem">
4892<div class="memproto">
4893 <table class="memname">
4894 <tr>
4895 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4896 <td>(</td>
4897 <td class="paramtype">AlexNetDirectConvolutionLayer&#160;</td>
4898 <td class="paramname">, </td>
4899 </tr>
4900 <tr>
4901 <td class="paramkey"></td>
4902 <td></td>
4903 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
4904 <td class="paramname">, </td>
4905 </tr>
4906 <tr>
4907 <td class="paramkey"></td>
4908 <td></td>
4909 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
4910 <td class="paramname">, </td>
4911 </tr>
4912 <tr>
4913 <td class="paramkey"></td>
4914 <td></td>
4915 <td class="paramtype">framework::dataset::&#160;</td>
4916 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetDirectConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
4917 </tr>
4918 <tr>
4919 <td></td>
4920 <td>)</td>
4921 <td></td><td></td>
4922 </tr>
4923 </table>
4924</div><div class="memdoc">
4925
4926</div>
4927</div>
4928<a class="anchor" id="a49f6de6126e559d77c77ec1252ead9e1"></a>
4929<div class="memitem">
4930<div class="memproto">
4931 <table class="memname">
4932 <tr>
4933 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4934 <td>(</td>
4935 <td class="paramtype">YOLOV2PoolingLayer&#160;</td>
4936 <td class="paramname">, </td>
4937 </tr>
4938 <tr>
4939 <td class="paramkey"></td>
4940 <td></td>
4941 <td class="paramtype">NEPoolingLayerFixture&#160;</td>
4942 <td class="paramname">, </td>
4943 </tr>
4944 <tr>
4945 <td class="paramkey"></td>
4946 <td></td>
4947 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4948 <td class="paramname">, </td>
4949 </tr>
4950 <tr>
4951 <td class="paramkey"></td>
4952 <td></td>
4953 <td class="paramtype">framework::dataset::&#160;</td>
4954 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4955 </tr>
4956 <tr>
4957 <td></td>
4958 <td>)</td>
4959 <td></td><td></td>
4960 </tr>
4961 </table>
4962</div><div class="memdoc">
4963
4964</div>
4965</div>
4966<a class="anchor" id="a4b45a5a8afe0c81a4aafef1ba2ba96e8"></a>
4967<div class="memitem">
4968<div class="memproto">
4969 <table class="memname">
4970 <tr>
4971 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
4972 <td>(</td>
4973 <td class="paramtype">GoogLeNetInceptionV4FullyConnectedLayer&#160;</td>
4974 <td class="paramname">, </td>
4975 </tr>
4976 <tr>
4977 <td class="paramkey"></td>
4978 <td></td>
4979 <td class="paramtype">NEFullyConnectedLayerFixture&#160;</td>
4980 <td class="paramname">, </td>
4981 </tr>
4982 <tr>
4983 <td class="paramkey"></td>
4984 <td></td>
4985 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
4986 <td class="paramname">, </td>
4987 </tr>
4988 <tr>
4989 <td class="paramkey"></td>
4990 <td></td>
4991 <td class="paramtype">framework::dataset::&#160;</td>
4992 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
4993 </tr>
4994 <tr>
4995 <td></td>
4996 <td>)</td>
4997 <td></td><td></td>
4998 </tr>
4999 </table>
5000</div><div class="memdoc">
5001
5002</div>
5003</div>
5004<a class="anchor" id="ab10eddd065a1bdb9c6b09cb1e1382f5a"></a>
5005<div class="memitem">
5006<div class="memproto">
5007 <table class="memname">
5008 <tr>
5009 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5010 <td>(</td>
5011 <td class="paramtype">VGG16ActivationLayer&#160;</td>
5012 <td class="paramname">, </td>
5013 </tr>
5014 <tr>
5015 <td class="paramkey"></td>
5016 <td></td>
5017 <td class="paramtype">NEActivationLayerFixture&#160;</td>
5018 <td class="paramname">, </td>
5019 </tr>
5020 <tr>
5021 <td class="paramkey"></td>
5022 <td></td>
5023 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
5024 <td class="paramname">, </td>
5025 </tr>
5026 <tr>
5027 <td class="paramkey"></td>
5028 <td></td>
5029 <td class="paramtype">framework::dataset::&#160;</td>
5030 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16ActivationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
5031 </tr>
5032 <tr>
5033 <td></td>
5034 <td>)</td>
5035 <td></td><td></td>
5036 </tr>
5037 </table>
5038</div><div class="memdoc">
5039
5040</div>
5041</div>
5042<a class="anchor" id="ab8549a72a0983f5281a5612979669e2d"></a>
5043<div class="memitem">
5044<div class="memproto">
5045 <table class="memname">
5046 <tr>
5047 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5048 <td>(</td>
5049 <td class="paramtype">AlexNetFullyConnectedLayer&#160;</td>
5050 <td class="paramname">, </td>
5051 </tr>
5052 <tr>
5053 <td class="paramkey"></td>
5054 <td></td>
5055 <td class="paramtype">CLFullyConnectedLayerFixture&#160;</td>
5056 <td class="paramname">, </td>
5057 </tr>
5058 <tr>
5059 <td class="paramkey"></td>
5060 <td></td>
5061 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5062 <td class="paramname">, </td>
5063 </tr>
5064 <tr>
5065 <td class="paramkey"></td>
5066 <td></td>
5067 <td class="paramtype">framework::dataset::&#160;</td>
5068 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetFullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5069 </tr>
5070 <tr>
5071 <td></td>
5072 <td>)</td>
5073 <td></td><td></td>
5074 </tr>
5075 </table>
5076</div><div class="memdoc">
5077
5078</div>
5079</div>
5080<a class="anchor" id="a8c86e43926d24040dbbc73e5ad638dea"></a>
5081<div class="memitem">
5082<div class="memproto">
5083 <table class="memname">
5084 <tr>
5085 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5086 <td>(</td>
5087 <td class="paramtype">AlexNetConvolutionLayer&#160;</td>
5088 <td class="paramname">, </td>
5089 </tr>
5090 <tr>
5091 <td class="paramkey"></td>
5092 <td></td>
5093 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
5094 <td class="paramname">, </td>
5095 </tr>
5096 <tr>
5097 <td class="paramkey"></td>
5098 <td></td>
5099 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5100 <td class="paramname">, </td>
5101 </tr>
5102 <tr>
5103 <td class="paramkey"></td>
5104 <td></td>
5105 <td class="paramtype">framework::dataset::&#160;</td>
5106 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5107 </tr>
5108 <tr>
5109 <td></td>
5110 <td>)</td>
5111 <td></td><td></td>
5112 </tr>
5113 </table>
5114</div><div class="memdoc">
5115
5116</div>
5117</div>
5118<a class="anchor" id="afd017468a129b6650b73cb65ecc40516"></a>
5119<div class="memitem">
5120<div class="memproto">
5121 <table class="memname">
5122 <tr>
5123 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5124 <td>(</td>
5125 <td class="paramtype">VGG16PoolingLayer&#160;</td>
5126 <td class="paramname">, </td>
5127 </tr>
5128 <tr>
5129 <td class="paramkey"></td>
5130 <td></td>
5131 <td class="paramtype">CLPoolingLayerFixture&#160;</td>
5132 <td class="paramname">, </td>
5133 </tr>
5134 <tr>
5135 <td class="paramkey"></td>
5136 <td></td>
5137 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
5138 <td class="paramname">, </td>
5139 </tr>
5140 <tr>
5141 <td class="paramkey"></td>
5142 <td></td>
5143 <td class="paramtype">framework::dataset::&#160;</td>
5144 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
5145 </tr>
5146 <tr>
5147 <td></td>
5148 <td>)</td>
5149 <td></td><td></td>
5150 </tr>
5151 </table>
5152</div><div class="memdoc">
5153
5154</div>
5155</div>
5156<a class="anchor" id="a959373f15eeea41ce740f0bc0ce2244a"></a>
5157<div class="memitem">
5158<div class="memproto">
5159 <table class="memname">
5160 <tr>
5161 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5162 <td>(</td>
5163 <td class="paramtype">GoogLeNetInceptionV1DirectConvolutionLayer&#160;</td>
5164 <td class="paramname">, </td>
5165 </tr>
5166 <tr>
5167 <td class="paramkey"></td>
5168 <td></td>
5169 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
5170 <td class="paramname">, </td>
5171 </tr>
5172 <tr>
5173 <td class="paramkey"></td>
5174 <td></td>
5175 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5176 <td class="paramname">, </td>
5177 </tr>
5178 <tr>
5179 <td class="paramkey"></td>
5180 <td></td>
5181 <td class="paramtype">framework::dataset::&#160;</td>
5182 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5183 </tr>
5184 <tr>
5185 <td></td>
5186 <td>)</td>
5187 <td></td><td></td>
5188 </tr>
5189 </table>
5190</div><div class="memdoc">
5191
5192</div>
5193</div>
5194<a class="anchor" id="a981537b01124fe1025ab51dfe0dde1ee"></a>
5195<div class="memitem">
5196<div class="memproto">
5197 <table class="memname">
5198 <tr>
5199 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5200 <td>(</td>
5201 <td class="paramtype">GoogLeNetInceptionV1DirectConvolutionLayer&#160;</td>
5202 <td class="paramname">, </td>
5203 </tr>
5204 <tr>
5205 <td class="paramkey"></td>
5206 <td></td>
5207 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
5208 <td class="paramname">, </td>
5209 </tr>
5210 <tr>
5211 <td class="paramkey"></td>
5212 <td></td>
5213 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5214 <td class="paramname">, </td>
5215 </tr>
5216 <tr>
5217 <td class="paramkey"></td>
5218 <td></td>
5219 <td class="paramtype">framework::dataset::&#160;</td>
5220 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5221 </tr>
5222 <tr>
5223 <td></td>
5224 <td>)</td>
5225 <td></td><td></td>
5226 </tr>
5227 </table>
5228</div><div class="memdoc">
5229
5230</div>
5231</div>
5232<a class="anchor" id="ac62a5389a4a60e89fabb6bb2153adfc5"></a>
5233<div class="memitem">
5234<div class="memproto">
5235 <table class="memname">
5236 <tr>
5237 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5238 <td>(</td>
5239 <td class="paramtype">AlexNetConvolutionLayer&#160;</td>
5240 <td class="paramname">, </td>
5241 </tr>
5242 <tr>
5243 <td class="paramkey"></td>
5244 <td></td>
5245 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
5246 <td class="paramname">, </td>
5247 </tr>
5248 <tr>
5249 <td class="paramkey"></td>
5250 <td></td>
5251 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5252 <td class="paramname">, </td>
5253 </tr>
5254 <tr>
5255 <td class="paramkey"></td>
5256 <td></td>
5257 <td class="paramtype">framework::dataset::&#160;</td>
5258 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5259 </tr>
5260 <tr>
5261 <td></td>
5262 <td>)</td>
5263 <td></td><td></td>
5264 </tr>
5265 </table>
5266</div><div class="memdoc">
5267
5268</div>
5269</div>
5270<a class="anchor" id="a8050efac909e6e8fce5791d2205fe0a8"></a>
5271<div class="memitem">
5272<div class="memproto">
5273 <table class="memname">
5274 <tr>
5275 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5276 <td>(</td>
5277 <td class="paramtype">AlexNetPoolingLayer&#160;</td>
5278 <td class="paramname">, </td>
5279 </tr>
5280 <tr>
5281 <td class="paramkey"></td>
5282 <td></td>
5283 <td class="paramtype">NEPoolingLayerFixture&#160;</td>
5284 <td class="paramname">, </td>
5285 </tr>
5286 <tr>
5287 <td class="paramkey"></td>
5288 <td></td>
5289 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5290 <td class="paramname">, </td>
5291 </tr>
5292 <tr>
5293 <td class="paramkey"></td>
5294 <td></td>
5295 <td class="paramtype">framework::dataset::&#160;</td>
5296 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetPoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5297 </tr>
5298 <tr>
5299 <td></td>
5300 <td>)</td>
5301 <td></td><td></td>
5302 </tr>
5303 </table>
5304</div><div class="memdoc">
5305
5306</div>
5307</div>
5308<a class="anchor" id="a572b94c09ce496eda95d8d544dc1c4d1"></a>
5309<div class="memitem">
5310<div class="memproto">
5311 <table class="memname">
5312 <tr>
5313 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5314 <td>(</td>
5315 <td class="paramtype">YOLOV2ActivationLayer&#160;</td>
5316 <td class="paramname">, </td>
5317 </tr>
5318 <tr>
5319 <td class="paramkey"></td>
5320 <td></td>
5321 <td class="paramtype">NEActivationLayerFixture&#160;</td>
5322 <td class="paramname">, </td>
5323 </tr>
5324 <tr>
5325 <td class="paramkey"></td>
5326 <td></td>
5327 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
5328 <td class="paramname">, </td>
5329 </tr>
5330 <tr>
5331 <td class="paramkey"></td>
5332 <td></td>
5333 <td class="paramtype">framework::dataset::&#160;</td>
5334 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2ActivationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
5335 </tr>
5336 <tr>
5337 <td></td>
5338 <td>)</td>
5339 <td></td><td></td>
5340 </tr>
5341 </table>
5342</div><div class="memdoc">
5343
5344</div>
5345</div>
5346<a class="anchor" id="a4325316dca63988d0c63c8e761143557"></a>
5347<div class="memitem">
5348<div class="memproto">
5349 <table class="memname">
5350 <tr>
5351 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5352 <td>(</td>
5353 <td class="paramtype">AlexNetFullyConnectedLayer&#160;</td>
5354 <td class="paramname">, </td>
5355 </tr>
5356 <tr>
5357 <td class="paramkey"></td>
5358 <td></td>
5359 <td class="paramtype">NEFullyConnectedLayerFixture&#160;</td>
5360 <td class="paramname">, </td>
5361 </tr>
5362 <tr>
5363 <td class="paramkey"></td>
5364 <td></td>
5365 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5366 <td class="paramname">, </td>
5367 </tr>
5368 <tr>
5369 <td class="paramkey"></td>
5370 <td></td>
5371 <td class="paramtype">framework::dataset::&#160;</td>
5372 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetFullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5373 </tr>
5374 <tr>
5375 <td></td>
5376 <td>)</td>
5377 <td></td><td></td>
5378 </tr>
5379 </table>
5380</div><div class="memdoc">
5381
5382</div>
5383</div>
5384<a class="anchor" id="a0a1da94fb11977ec74784861c2c56246"></a>
5385<div class="memitem">
5386<div class="memproto">
5387 <table class="memname">
5388 <tr>
5389 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5390 <td>(</td>
5391 <td class="paramtype">LeNet5PoolingLayer&#160;</td>
5392 <td class="paramname">, </td>
5393 </tr>
5394 <tr>
5395 <td class="paramkey"></td>
5396 <td></td>
5397 <td class="paramtype">NEPoolingLayerFixture&#160;</td>
5398 <td class="paramname">, </td>
5399 </tr>
5400 <tr>
5401 <td class="paramkey"></td>
5402 <td></td>
5403 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5404 <td class="paramname">, </td>
5405 </tr>
5406 <tr>
5407 <td class="paramkey"></td>
5408 <td></td>
5409 <td class="paramtype">framework::dataset::&#160;</td>
5410 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5411 </tr>
5412 <tr>
5413 <td></td>
5414 <td>)</td>
5415 <td></td><td></td>
5416 </tr>
5417 </table>
5418</div><div class="memdoc">
5419
5420</div>
5421</div>
5422<a class="anchor" id="adb9a698039f2f9414f3296a4d9070893"></a>
5423<div class="memitem">
5424<div class="memproto">
5425 <table class="memname">
5426 <tr>
5427 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5428 <td>(</td>
5429 <td class="paramtype">LeNet5FullyConnectedLayer&#160;</td>
5430 <td class="paramname">, </td>
5431 </tr>
5432 <tr>
5433 <td class="paramkey"></td>
5434 <td></td>
5435 <td class="paramtype">CLFullyConnectedLayerFixture&#160;</td>
5436 <td class="paramname">, </td>
5437 </tr>
5438 <tr>
5439 <td class="paramkey"></td>
5440 <td></td>
5441 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5442 <td class="paramname">, </td>
5443 </tr>
5444 <tr>
5445 <td class="paramkey"></td>
5446 <td></td>
5447 <td class="paramtype">framework::dataset::&#160;</td>
5448 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5449 </tr>
5450 <tr>
5451 <td></td>
5452 <td>)</td>
5453 <td></td><td></td>
5454 </tr>
5455 </table>
5456</div><div class="memdoc">
5457
5458</div>
5459</div>
5460<a class="anchor" id="a11c4e187683f0687472d48d8f279c8fc"></a>
5461<div class="memitem">
5462<div class="memproto">
5463 <table class="memname">
5464 <tr>
5465 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5466 <td>(</td>
5467 <td class="paramtype">LeNet5ConvolutionLayer&#160;</td>
5468 <td class="paramname">, </td>
5469 </tr>
5470 <tr>
5471 <td class="paramkey"></td>
5472 <td></td>
5473 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
5474 <td class="paramname">, </td>
5475 </tr>
5476 <tr>
5477 <td class="paramkey"></td>
5478 <td></td>
5479 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5480 <td class="paramname">, </td>
5481 </tr>
5482 <tr>
5483 <td class="paramkey"></td>
5484 <td></td>
5485 <td class="paramtype">framework::dataset::&#160;</td>
5486 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5487 </tr>
5488 <tr>
5489 <td></td>
5490 <td>)</td>
5491 <td></td><td></td>
5492 </tr>
5493 </table>
5494</div><div class="memdoc">
5495
5496</div>
5497</div>
5498<a class="anchor" id="a27446bd5b343d26d6028cd2ab34065a6"></a>
5499<div class="memitem">
5500<div class="memproto">
5501 <table class="memname">
5502 <tr>
5503 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5504 <td>(</td>
5505 <td class="paramtype">GoogLeNetInceptionV4DirectConvolutionLayer&#160;</td>
5506 <td class="paramname">, </td>
5507 </tr>
5508 <tr>
5509 <td class="paramkey"></td>
5510 <td></td>
5511 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
5512 <td class="paramname">, </td>
5513 </tr>
5514 <tr>
5515 <td class="paramkey"></td>
5516 <td></td>
5517 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5518 <td class="paramname">, </td>
5519 </tr>
5520 <tr>
5521 <td class="paramkey"></td>
5522 <td></td>
5523 <td class="paramtype">framework::dataset::&#160;</td>
5524 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5525 </tr>
5526 <tr>
5527 <td></td>
5528 <td>)</td>
5529 <td></td><td></td>
5530 </tr>
5531 </table>
5532</div><div class="memdoc">
5533
5534</div>
5535</div>
5536<a class="anchor" id="abb38304d29f99717ecc5c528962972a5"></a>
5537<div class="memitem">
5538<div class="memproto">
5539 <table class="memname">
5540 <tr>
5541 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5542 <td>(</td>
5543 <td class="paramtype">GoogLeNetInceptionV4DirectConvolutionLayer&#160;</td>
5544 <td class="paramname">, </td>
5545 </tr>
5546 <tr>
5547 <td class="paramkey"></td>
5548 <td></td>
5549 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
5550 <td class="paramname">, </td>
5551 </tr>
5552 <tr>
5553 <td class="paramkey"></td>
5554 <td></td>
5555 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5556 <td class="paramname">, </td>
5557 </tr>
5558 <tr>
5559 <td class="paramkey"></td>
5560 <td></td>
5561 <td class="paramtype">framework::dataset::&#160;</td>
5562 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5563 </tr>
5564 <tr>
5565 <td></td>
5566 <td>)</td>
5567 <td></td><td></td>
5568 </tr>
5569 </table>
5570</div><div class="memdoc">
5571
5572</div>
5573</div>
5574<a class="anchor" id="a36cad137a713f8be3263a1a6466c6bd7"></a>
5575<div class="memitem">
5576<div class="memproto">
5577 <table class="memname">
5578 <tr>
5579 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5580 <td>(</td>
5581 <td class="paramtype">YOLOV2PoolingLayer&#160;</td>
5582 <td class="paramname">, </td>
5583 </tr>
5584 <tr>
5585 <td class="paramkey"></td>
5586 <td></td>
5587 <td class="paramtype">CLPoolingLayerFixture&#160;</td>
5588 <td class="paramname">, </td>
5589 </tr>
5590 <tr>
5591 <td class="paramkey"></td>
5592 <td></td>
5593 <td class="paramtype">framework::DatasetMode::ALL&#160;</td>
5594 <td class="paramname">, </td>
5595 </tr>
5596 <tr>
5597 <td class="paramkey"></td>
5598 <td></td>
5599 <td class="paramtype">framework::dataset::&#160;</td>
5600 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;, 1)&#160;</td>
5601 </tr>
5602 <tr>
5603 <td></td>
5604 <td>)</td>
5605 <td></td><td></td>
5606 </tr>
5607 </table>
5608</div><div class="memdoc">
5609
5610</div>
5611</div>
5612<a class="anchor" id="a65a028ab7f8ba81db43d5963ea5343a4"></a>
5613<div class="memitem">
5614<div class="memproto">
5615 <table class="memname">
5616 <tr>
5617 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5618 <td>(</td>
5619 <td class="paramtype">LeNet5ConvolutionLayer&#160;</td>
5620 <td class="paramname">, </td>
5621 </tr>
5622 <tr>
5623 <td class="paramkey"></td>
5624 <td></td>
5625 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
5626 <td class="paramname">, </td>
5627 </tr>
5628 <tr>
5629 <td class="paramkey"></td>
5630 <td></td>
5631 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5632 <td class="paramname">, </td>
5633 </tr>
5634 <tr>
5635 <td class="paramkey"></td>
5636 <td></td>
5637 <td class="paramtype">framework::dataset::&#160;</td>
5638 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5639 </tr>
5640 <tr>
5641 <td></td>
5642 <td>)</td>
5643 <td></td><td></td>
5644 </tr>
5645 </table>
5646</div><div class="memdoc">
5647
5648</div>
5649</div>
5650<a class="anchor" id="ad5101e30d9b5306231c7ed2ce71f350b"></a>
5651<div class="memitem">
5652<div class="memproto">
5653 <table class="memname">
5654 <tr>
5655 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5656 <td>(</td>
5657 <td class="paramtype">GoogLeNetInceptionV1PoolingLayer&#160;</td>
5658 <td class="paramname">, </td>
5659 </tr>
5660 <tr>
5661 <td class="paramkey"></td>
5662 <td></td>
5663 <td class="paramtype">NEPoolingLayerFixture&#160;</td>
5664 <td class="paramname">, </td>
5665 </tr>
5666 <tr>
5667 <td class="paramkey"></td>
5668 <td></td>
5669 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5670 <td class="paramname">, </td>
5671 </tr>
5672 <tr>
5673 <td class="paramkey"></td>
5674 <td></td>
5675 <td class="paramtype">framework::dataset::&#160;</td>
5676 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5677 </tr>
5678 <tr>
5679 <td></td>
5680 <td>)</td>
5681 <td></td><td></td>
5682 </tr>
5683 </table>
5684</div><div class="memdoc">
5685
5686</div>
5687</div>
5688<a class="anchor" id="a13170587db62e123a041d2b8cab82ef8"></a>
5689<div class="memitem">
5690<div class="memproto">
5691 <table class="memname">
5692 <tr>
5693 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5694 <td>(</td>
5695 <td class="paramtype">SqueezeNetDirectConvolutionLayer&#160;</td>
5696 <td class="paramname">, </td>
5697 </tr>
5698 <tr>
5699 <td class="paramkey"></td>
5700 <td></td>
5701 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
5702 <td class="paramname">, </td>
5703 </tr>
5704 <tr>
5705 <td class="paramkey"></td>
5706 <td></td>
5707 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5708 <td class="paramname">, </td>
5709 </tr>
5710 <tr>
5711 <td class="paramkey"></td>
5712 <td></td>
5713 <td class="paramtype">framework::dataset::&#160;</td>
5714 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5715 </tr>
5716 <tr>
5717 <td></td>
5718 <td>)</td>
5719 <td></td><td></td>
5720 </tr>
5721 </table>
5722</div><div class="memdoc">
5723
5724</div>
5725</div>
5726<a class="anchor" id="a4ecb06077e2a789221648d0479e61809"></a>
5727<div class="memitem">
5728<div class="memproto">
5729 <table class="memname">
5730 <tr>
5731 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5732 <td>(</td>
5733 <td class="paramtype">LeNet5FullyConnectedLayer&#160;</td>
5734 <td class="paramname">, </td>
5735 </tr>
5736 <tr>
5737 <td class="paramkey"></td>
5738 <td></td>
5739 <td class="paramtype">NEFullyConnectedLayerFixture&#160;</td>
5740 <td class="paramname">, </td>
5741 </tr>
5742 <tr>
5743 <td class="paramkey"></td>
5744 <td></td>
5745 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5746 <td class="paramname">, </td>
5747 </tr>
5748 <tr>
5749 <td class="paramkey"></td>
5750 <td></td>
5751 <td class="paramtype">framework::dataset::&#160;</td>
5752 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5753 </tr>
5754 <tr>
5755 <td></td>
5756 <td>)</td>
5757 <td></td><td></td>
5758 </tr>
5759 </table>
5760</div><div class="memdoc">
5761
5762</div>
5763</div>
5764<a class="anchor" id="a3df552423cbf598c725b9dc615f06315"></a>
5765<div class="memitem">
5766<div class="memproto">
5767 <table class="memname">
5768 <tr>
5769 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5770 <td>(</td>
5771 <td class="paramtype">GoogLeNetInceptionV1ConvolutionLayer&#160;</td>
5772 <td class="paramname">, </td>
5773 </tr>
5774 <tr>
5775 <td class="paramkey"></td>
5776 <td></td>
5777 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
5778 <td class="paramname">, </td>
5779 </tr>
5780 <tr>
5781 <td class="paramkey"></td>
5782 <td></td>
5783 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5784 <td class="paramname">, </td>
5785 </tr>
5786 <tr>
5787 <td class="paramkey"></td>
5788 <td></td>
5789 <td class="paramtype">framework::dataset::&#160;</td>
5790 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5791 </tr>
5792 <tr>
5793 <td></td>
5794 <td>)</td>
5795 <td></td><td></td>
5796 </tr>
5797 </table>
5798</div><div class="memdoc">
5799
5800</div>
5801</div>
5802<a class="anchor" id="a7677396611ac11166c6f7344f9e0ef12"></a>
5803<div class="memitem">
5804<div class="memproto">
5805 <table class="memname">
5806 <tr>
5807 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5808 <td>(</td>
5809 <td class="paramtype">AlexNetActivationLayer&#160;</td>
5810 <td class="paramname">, </td>
5811 </tr>
5812 <tr>
5813 <td class="paramkey"></td>
5814 <td></td>
5815 <td class="paramtype">NEActivationLayerFixture&#160;</td>
5816 <td class="paramname">, </td>
5817 </tr>
5818 <tr>
5819 <td class="paramkey"></td>
5820 <td></td>
5821 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5822 <td class="paramname">, </td>
5823 </tr>
5824 <tr>
5825 <td class="paramkey"></td>
5826 <td></td>
5827 <td class="paramtype">framework::dataset::&#160;</td>
5828 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetActivationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5829 </tr>
5830 <tr>
5831 <td></td>
5832 <td>)</td>
5833 <td></td><td></td>
5834 </tr>
5835 </table>
5836</div><div class="memdoc">
5837
5838</div>
5839</div>
5840<a class="anchor" id="a6fef2cd462f91f3b071ee7d02322dbb6"></a>
5841<div class="memitem">
5842<div class="memproto">
5843 <table class="memname">
5844 <tr>
5845 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5846 <td>(</td>
5847 <td class="paramtype">VGG16FullyConnectedLayer&#160;</td>
5848 <td class="paramname">, </td>
5849 </tr>
5850 <tr>
5851 <td class="paramkey"></td>
5852 <td></td>
5853 <td class="paramtype">CLFullyConnectedLayerFixture&#160;</td>
5854 <td class="paramname">, </td>
5855 </tr>
5856 <tr>
5857 <td class="paramkey"></td>
5858 <td></td>
5859 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5860 <td class="paramname">, </td>
5861 </tr>
5862 <tr>
5863 <td class="paramkey"></td>
5864 <td></td>
5865 <td class="paramtype">framework::dataset::&#160;</td>
5866 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5867 </tr>
5868 <tr>
5869 <td></td>
5870 <td>)</td>
5871 <td></td><td></td>
5872 </tr>
5873 </table>
5874</div><div class="memdoc">
5875
5876</div>
5877</div>
5878<a class="anchor" id="ae88c882e06dad040d2bb6278ef8c4c84"></a>
5879<div class="memitem">
5880<div class="memproto">
5881 <table class="memname">
5882 <tr>
5883 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5884 <td>(</td>
5885 <td class="paramtype">SqueezeNetDirectConvolutionLayer&#160;</td>
5886 <td class="paramname">, </td>
5887 </tr>
5888 <tr>
5889 <td class="paramkey"></td>
5890 <td></td>
5891 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
5892 <td class="paramname">, </td>
5893 </tr>
5894 <tr>
5895 <td class="paramkey"></td>
5896 <td></td>
5897 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5898 <td class="paramname">, </td>
5899 </tr>
5900 <tr>
5901 <td class="paramkey"></td>
5902 <td></td>
5903 <td class="paramtype">framework::dataset::&#160;</td>
5904 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5905 </tr>
5906 <tr>
5907 <td></td>
5908 <td>)</td>
5909 <td></td><td></td>
5910 </tr>
5911 </table>
5912</div><div class="memdoc">
5913
5914</div>
5915</div>
5916<a class="anchor" id="ad0b2b0d1564cc6c5ac951a7b8e59bda8"></a>
5917<div class="memitem">
5918<div class="memproto">
5919 <table class="memname">
5920 <tr>
5921 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5922 <td>(</td>
5923 <td class="paramtype">GoogLeNetInceptionV4PoolingLayer&#160;</td>
5924 <td class="paramname">, </td>
5925 </tr>
5926 <tr>
5927 <td class="paramkey"></td>
5928 <td></td>
5929 <td class="paramtype">NEPoolingLayerFixture&#160;</td>
5930 <td class="paramname">, </td>
5931 </tr>
5932 <tr>
5933 <td class="paramkey"></td>
5934 <td></td>
5935 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5936 <td class="paramname">, </td>
5937 </tr>
5938 <tr>
5939 <td class="paramkey"></td>
5940 <td></td>
5941 <td class="paramtype">framework::dataset::&#160;</td>
5942 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5943 </tr>
5944 <tr>
5945 <td></td>
5946 <td>)</td>
5947 <td></td><td></td>
5948 </tr>
5949 </table>
5950</div><div class="memdoc">
5951
5952</div>
5953</div>
5954<a class="anchor" id="a6773bc983eece85b34d67c4ba3c09554"></a>
5955<div class="memitem">
5956<div class="memproto">
5957 <table class="memname">
5958 <tr>
5959 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5960 <td>(</td>
5961 <td class="paramtype">GoogLeNetInceptionV1ConvolutionLayer&#160;</td>
5962 <td class="paramname">, </td>
5963 </tr>
5964 <tr>
5965 <td class="paramkey"></td>
5966 <td></td>
5967 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
5968 <td class="paramname">, </td>
5969 </tr>
5970 <tr>
5971 <td class="paramkey"></td>
5972 <td></td>
5973 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
5974 <td class="paramname">, </td>
5975 </tr>
5976 <tr>
5977 <td class="paramkey"></td>
5978 <td></td>
5979 <td class="paramtype">framework::dataset::&#160;</td>
5980 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
5981 </tr>
5982 <tr>
5983 <td></td>
5984 <td>)</td>
5985 <td></td><td></td>
5986 </tr>
5987 </table>
5988</div><div class="memdoc">
5989
5990</div>
5991</div>
5992<a class="anchor" id="a4558b577be27af2ceffffd986b1aab7f"></a>
5993<div class="memitem">
5994<div class="memproto">
5995 <table class="memname">
5996 <tr>
5997 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
5998 <td>(</td>
5999 <td class="paramtype">AlexNetPoolingLayer&#160;</td>
6000 <td class="paramname">, </td>
6001 </tr>
6002 <tr>
6003 <td class="paramkey"></td>
6004 <td></td>
6005 <td class="paramtype">CLPoolingLayerFixture&#160;</td>
6006 <td class="paramname">, </td>
6007 </tr>
6008 <tr>
6009 <td class="paramkey"></td>
6010 <td></td>
6011 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6012 <td class="paramname">, </td>
6013 </tr>
6014 <tr>
6015 <td class="paramkey"></td>
6016 <td></td>
6017 <td class="paramtype">framework::dataset::&#160;</td>
6018 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetPoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6019 </tr>
6020 <tr>
6021 <td></td>
6022 <td>)</td>
6023 <td></td><td></td>
6024 </tr>
6025 </table>
6026</div><div class="memdoc">
6027
6028</div>
6029</div>
6030<a class="anchor" id="a1afabd3008ddf541288b01fe746ab284"></a>
6031<div class="memitem">
6032<div class="memproto">
6033 <table class="memname">
6034 <tr>
6035 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6036 <td>(</td>
6037 <td class="paramtype">LeNet5ActivationLayer&#160;</td>
6038 <td class="paramname">, </td>
6039 </tr>
6040 <tr>
6041 <td class="paramkey"></td>
6042 <td></td>
6043 <td class="paramtype">NEActivationLayerFixture&#160;</td>
6044 <td class="paramname">, </td>
6045 </tr>
6046 <tr>
6047 <td class="paramkey"></td>
6048 <td></td>
6049 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6050 <td class="paramname">, </td>
6051 </tr>
6052 <tr>
6053 <td class="paramkey"></td>
6054 <td></td>
6055 <td class="paramtype">framework::dataset::&#160;</td>
6056 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5ActivationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6057 </tr>
6058 <tr>
6059 <td></td>
6060 <td>)</td>
6061 <td></td><td></td>
6062 </tr>
6063 </table>
6064</div><div class="memdoc">
6065
6066</div>
6067</div>
6068<a class="anchor" id="a4470fc8180788f756fccdb77f9a25886"></a>
6069<div class="memitem">
6070<div class="memproto">
6071 <table class="memname">
6072 <tr>
6073 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6074 <td>(</td>
6075 <td class="paramtype">GoogLeNetInceptionV4ConvolutionLayer&#160;</td>
6076 <td class="paramname">, </td>
6077 </tr>
6078 <tr>
6079 <td class="paramkey"></td>
6080 <td></td>
6081 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
6082 <td class="paramname">, </td>
6083 </tr>
6084 <tr>
6085 <td class="paramkey"></td>
6086 <td></td>
6087 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6088 <td class="paramname">, </td>
6089 </tr>
6090 <tr>
6091 <td class="paramkey"></td>
6092 <td></td>
6093 <td class="paramtype">framework::dataset::&#160;</td>
6094 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6095 </tr>
6096 <tr>
6097 <td></td>
6098 <td>)</td>
6099 <td></td><td></td>
6100 </tr>
6101 </table>
6102</div><div class="memdoc">
6103
6104</div>
6105</div>
6106<a class="anchor" id="a1f92978c7363135053baa95b94501676"></a>
6107<div class="memitem">
6108<div class="memproto">
6109 <table class="memname">
6110 <tr>
6111 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6112 <td>(</td>
6113 <td class="paramtype">VGG16DirectConvolutionLayer&#160;</td>
6114 <td class="paramname">, </td>
6115 </tr>
6116 <tr>
6117 <td class="paramkey"></td>
6118 <td></td>
6119 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
6120 <td class="paramname">, </td>
6121 </tr>
6122 <tr>
6123 <td class="paramkey"></td>
6124 <td></td>
6125 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6126 <td class="paramname">, </td>
6127 </tr>
6128 <tr>
6129 <td class="paramkey"></td>
6130 <td></td>
6131 <td class="paramtype">framework::dataset::&#160;</td>
6132 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{1, 4, 8})&#160;</td>
6133 </tr>
6134 <tr>
6135 <td></td>
6136 <td>)</td>
6137 <td></td><td></td>
6138 </tr>
6139 </table>
6140</div><div class="memdoc">
6141
6142</div>
6143</div>
6144<a class="anchor" id="aa973f66482fdadbd2ab72cdb6face4b5"></a>
6145<div class="memitem">
6146<div class="memproto">
6147 <table class="memname">
6148 <tr>
6149 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6150 <td>(</td>
6151 <td class="paramtype">SqueezeNetPoolingLayer&#160;</td>
6152 <td class="paramname">, </td>
6153 </tr>
6154 <tr>
6155 <td class="paramkey"></td>
6156 <td></td>
6157 <td class="paramtype">NEPoolingLayerFixture&#160;</td>
6158 <td class="paramname">, </td>
6159 </tr>
6160 <tr>
6161 <td class="paramkey"></td>
6162 <td></td>
6163 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6164 <td class="paramname">, </td>
6165 </tr>
6166 <tr>
6167 <td class="paramkey"></td>
6168 <td></td>
6169 <td class="paramtype">framework::dataset::&#160;</td>
6170 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetPoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6171 </tr>
6172 <tr>
6173 <td></td>
6174 <td>)</td>
6175 <td></td><td></td>
6176 </tr>
6177 </table>
6178</div><div class="memdoc">
6179
6180</div>
6181</div>
6182<a class="anchor" id="adeee41f0a436718ca296fc99f2e2a151"></a>
6183<div class="memitem">
6184<div class="memproto">
6185 <table class="memname">
6186 <tr>
6187 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6188 <td>(</td>
6189 <td class="paramtype">VGG16FullyConnectedLayer&#160;</td>
6190 <td class="paramname">, </td>
6191 </tr>
6192 <tr>
6193 <td class="paramkey"></td>
6194 <td></td>
6195 <td class="paramtype">NEFullyConnectedLayerFixture&#160;</td>
6196 <td class="paramname">, </td>
6197 </tr>
6198 <tr>
6199 <td class="paramkey"></td>
6200 <td></td>
6201 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6202 <td class="paramname">, </td>
6203 </tr>
6204 <tr>
6205 <td class="paramkey"></td>
6206 <td></td>
6207 <td class="paramtype">framework::dataset::&#160;</td>
6208 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6209 </tr>
6210 <tr>
6211 <td></td>
6212 <td>)</td>
6213 <td></td><td></td>
6214 </tr>
6215 </table>
6216</div><div class="memdoc">
6217
6218</div>
6219</div>
6220<a class="anchor" id="a463d7f372ea5c6217b8ee151b47f596e"></a>
6221<div class="memitem">
6222<div class="memproto">
6223 <table class="memname">
6224 <tr>
6225 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6226 <td>(</td>
6227 <td class="paramtype">GoogLeNetInceptionV1FullyConnectedLayer&#160;</td>
6228 <td class="paramname">, </td>
6229 </tr>
6230 <tr>
6231 <td class="paramkey"></td>
6232 <td></td>
6233 <td class="paramtype">CLFullyConnectedLayerFixture&#160;</td>
6234 <td class="paramname">, </td>
6235 </tr>
6236 <tr>
6237 <td class="paramkey"></td>
6238 <td></td>
6239 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6240 <td class="paramname">, </td>
6241 </tr>
6242 <tr>
6243 <td class="paramkey"></td>
6244 <td></td>
6245 <td class="paramtype">framework::dataset::&#160;</td>
6246 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6247 </tr>
6248 <tr>
6249 <td></td>
6250 <td>)</td>
6251 <td></td><td></td>
6252 </tr>
6253 </table>
6254</div><div class="memdoc">
6255
6256</div>
6257</div>
6258<a class="anchor" id="ab0595cda883cec6b1b3a5389fd786e9f"></a>
6259<div class="memitem">
6260<div class="memproto">
6261 <table class="memname">
6262 <tr>
6263 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6264 <td>(</td>
6265 <td class="paramtype">VGG16DirectConvolutionLayer&#160;</td>
6266 <td class="paramname">, </td>
6267 </tr>
6268 <tr>
6269 <td class="paramkey"></td>
6270 <td></td>
6271 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
6272 <td class="paramname">, </td>
6273 </tr>
6274 <tr>
6275 <td class="paramkey"></td>
6276 <td></td>
6277 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6278 <td class="paramname">, </td>
6279 </tr>
6280 <tr>
6281 <td class="paramkey"></td>
6282 <td></td>
6283 <td class="paramtype">framework::dataset::&#160;</td>
6284 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{1, 4, 8})&#160;</td>
6285 </tr>
6286 <tr>
6287 <td></td>
6288 <td>)</td>
6289 <td></td><td></td>
6290 </tr>
6291 </table>
6292</div><div class="memdoc">
6293
6294</div>
6295</div>
6296<a class="anchor" id="a4bdfdac4318cf7e4b09cc13a553363a7"></a>
6297<div class="memitem">
6298<div class="memproto">
6299 <table class="memname">
6300 <tr>
6301 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6302 <td>(</td>
6303 <td class="paramtype">GoogLeNetInceptionV4ConvolutionLayer&#160;</td>
6304 <td class="paramname">, </td>
6305 </tr>
6306 <tr>
6307 <td class="paramkey"></td>
6308 <td></td>
6309 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
6310 <td class="paramname">, </td>
6311 </tr>
6312 <tr>
6313 <td class="paramkey"></td>
6314 <td></td>
6315 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6316 <td class="paramname">, </td>
6317 </tr>
6318 <tr>
6319 <td class="paramkey"></td>
6320 <td></td>
6321 <td class="paramtype">framework::dataset::&#160;</td>
6322 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6323 </tr>
6324 <tr>
6325 <td></td>
6326 <td>)</td>
6327 <td></td><td></td>
6328 </tr>
6329 </table>
6330</div><div class="memdoc">
6331
6332</div>
6333</div>
6334<a class="anchor" id="a164c7e1e8e2e4de0ce6282d2b0835dd0"></a>
6335<div class="memitem">
6336<div class="memproto">
6337 <table class="memname">
6338 <tr>
6339 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6340 <td>(</td>
6341 <td class="paramtype">GoogLeNetInceptionV1ActivationLayer&#160;</td>
6342 <td class="paramname">, </td>
6343 </tr>
6344 <tr>
6345 <td class="paramkey"></td>
6346 <td></td>
6347 <td class="paramtype">NEActivationLayerFixture&#160;</td>
6348 <td class="paramname">, </td>
6349 </tr>
6350 <tr>
6351 <td class="paramkey"></td>
6352 <td></td>
6353 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6354 <td class="paramname">, </td>
6355 </tr>
6356 <tr>
6357 <td class="paramkey"></td>
6358 <td></td>
6359 <td class="paramtype">framework::dataset::&#160;</td>
6360 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1ActivationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6361 </tr>
6362 <tr>
6363 <td></td>
6364 <td>)</td>
6365 <td></td><td></td>
6366 </tr>
6367 </table>
6368</div><div class="memdoc">
6369
6370</div>
6371</div>
6372<a class="anchor" id="af3310a6693b1d28b4d474e2a025b8777"></a>
6373<div class="memitem">
6374<div class="memproto">
6375 <table class="memname">
6376 <tr>
6377 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6378 <td>(</td>
6379 <td class="paramtype">YOLOV2DirectConvolutionLayer&#160;</td>
6380 <td class="paramname">, </td>
6381 </tr>
6382 <tr>
6383 <td class="paramkey"></td>
6384 <td></td>
6385 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
6386 <td class="paramname">, </td>
6387 </tr>
6388 <tr>
6389 <td class="paramkey"></td>
6390 <td></td>
6391 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6392 <td class="paramname">, </td>
6393 </tr>
6394 <tr>
6395 <td class="paramkey"></td>
6396 <td></td>
6397 <td class="paramtype">framework::dataset::&#160;</td>
6398 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{1, 4, 8})&#160;</td>
6399 </tr>
6400 <tr>
6401 <td></td>
6402 <td>)</td>
6403 <td></td><td></td>
6404 </tr>
6405 </table>
6406</div><div class="memdoc">
6407
6408</div>
6409</div>
6410<a class="anchor" id="a9adba78f24e5c87b2c95a1c5e23883e9"></a>
6411<div class="memitem">
6412<div class="memproto">
6413 <table class="memname">
6414 <tr>
6415 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6416 <td>(</td>
6417 <td class="paramtype">VGG16PoolingLayer&#160;</td>
6418 <td class="paramname">, </td>
6419 </tr>
6420 <tr>
6421 <td class="paramkey"></td>
6422 <td></td>
6423 <td class="paramtype">NEPoolingLayerFixture&#160;</td>
6424 <td class="paramname">, </td>
6425 </tr>
6426 <tr>
6427 <td class="paramkey"></td>
6428 <td></td>
6429 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6430 <td class="paramname">, </td>
6431 </tr>
6432 <tr>
6433 <td class="paramkey"></td>
6434 <td></td>
6435 <td class="paramtype">framework::dataset::&#160;</td>
6436 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6437 </tr>
6438 <tr>
6439 <td></td>
6440 <td>)</td>
6441 <td></td><td></td>
6442 </tr>
6443 </table>
6444</div><div class="memdoc">
6445
6446</div>
6447</div>
6448<a class="anchor" id="a731977f1de2e0d6dd1512818540ab608"></a>
6449<div class="memitem">
6450<div class="memproto">
6451 <table class="memname">
6452 <tr>
6453 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6454 <td>(</td>
6455 <td class="paramtype">LeNet5PoolingLayer&#160;</td>
6456 <td class="paramname">, </td>
6457 </tr>
6458 <tr>
6459 <td class="paramkey"></td>
6460 <td></td>
6461 <td class="paramtype">CLPoolingLayerFixture&#160;</td>
6462 <td class="paramname">, </td>
6463 </tr>
6464 <tr>
6465 <td class="paramkey"></td>
6466 <td></td>
6467 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6468 <td class="paramname">, </td>
6469 </tr>
6470 <tr>
6471 <td class="paramkey"></td>
6472 <td></td>
6473 <td class="paramtype">framework::dataset::&#160;</td>
6474 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6475 </tr>
6476 <tr>
6477 <td></td>
6478 <td>)</td>
6479 <td></td><td></td>
6480 </tr>
6481 </table>
6482</div><div class="memdoc">
6483
6484</div>
6485</div>
6486<a class="anchor" id="a029d80ad64be335749e827cc64efd88c"></a>
6487<div class="memitem">
6488<div class="memproto">
6489 <table class="memname">
6490 <tr>
6491 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6492 <td>(</td>
6493 <td class="paramtype">SqueezeNetConvolutionLayer&#160;</td>
6494 <td class="paramname">, </td>
6495 </tr>
6496 <tr>
6497 <td class="paramkey"></td>
6498 <td></td>
6499 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
6500 <td class="paramname">, </td>
6501 </tr>
6502 <tr>
6503 <td class="paramkey"></td>
6504 <td></td>
6505 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6506 <td class="paramname">, </td>
6507 </tr>
6508 <tr>
6509 <td class="paramkey"></td>
6510 <td></td>
6511 <td class="paramtype">framework::dataset::&#160;</td>
6512 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6513 </tr>
6514 <tr>
6515 <td></td>
6516 <td>)</td>
6517 <td></td><td></td>
6518 </tr>
6519 </table>
6520</div><div class="memdoc">
6521
6522</div>
6523</div>
6524<a class="anchor" id="af5e14e7ca5ce517a75fb019b02108797"></a>
6525<div class="memitem">
6526<div class="memproto">
6527 <table class="memname">
6528 <tr>
6529 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6530 <td>(</td>
6531 <td class="paramtype">GoogLeNetInceptionV1FullyConnectedLayer&#160;</td>
6532 <td class="paramname">, </td>
6533 </tr>
6534 <tr>
6535 <td class="paramkey"></td>
6536 <td></td>
6537 <td class="paramtype">NEFullyConnectedLayerFixture&#160;</td>
6538 <td class="paramname">, </td>
6539 </tr>
6540 <tr>
6541 <td class="paramkey"></td>
6542 <td></td>
6543 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6544 <td class="paramname">, </td>
6545 </tr>
6546 <tr>
6547 <td class="paramkey"></td>
6548 <td></td>
6549 <td class="paramtype">framework::dataset::&#160;</td>
6550 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6551 </tr>
6552 <tr>
6553 <td></td>
6554 <td>)</td>
6555 <td></td><td></td>
6556 </tr>
6557 </table>
6558</div><div class="memdoc">
6559
6560</div>
6561</div>
6562<a class="anchor" id="ad5d101b25bb35a8d9b1efc70102bb3a4"></a>
6563<div class="memitem">
6564<div class="memproto">
6565 <table class="memname">
6566 <tr>
6567 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6568 <td>(</td>
6569 <td class="paramtype">GoogLeNetInceptionV4FullyConnectedLayer&#160;</td>
6570 <td class="paramname">, </td>
6571 </tr>
6572 <tr>
6573 <td class="paramkey"></td>
6574 <td></td>
6575 <td class="paramtype">CLFullyConnectedLayerFixture&#160;</td>
6576 <td class="paramname">, </td>
6577 </tr>
6578 <tr>
6579 <td class="paramkey"></td>
6580 <td></td>
6581 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6582 <td class="paramname">, </td>
6583 </tr>
6584 <tr>
6585 <td class="paramkey"></td>
6586 <td></td>
6587 <td class="paramtype">framework::dataset::&#160;</td>
6588 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6589 </tr>
6590 <tr>
6591 <td></td>
6592 <td>)</td>
6593 <td></td><td></td>
6594 </tr>
6595 </table>
6596</div><div class="memdoc">
6597
6598</div>
6599</div>
6600<a class="anchor" id="a03474ce6764bea95de0edb583d281017"></a>
6601<div class="memitem">
6602<div class="memproto">
6603 <table class="memname">
6604 <tr>
6605 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6606 <td>(</td>
6607 <td class="paramtype">YOLOV2PoolingLayer&#160;</td>
6608 <td class="paramname">, </td>
6609 </tr>
6610 <tr>
6611 <td class="paramkey"></td>
6612 <td></td>
6613 <td class="paramtype">NEPoolingLayerFixture&#160;</td>
6614 <td class="paramname">, </td>
6615 </tr>
6616 <tr>
6617 <td class="paramkey"></td>
6618 <td></td>
6619 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6620 <td class="paramname">, </td>
6621 </tr>
6622 <tr>
6623 <td class="paramkey"></td>
6624 <td></td>
6625 <td class="paramtype">framework::dataset::&#160;</td>
6626 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6627 </tr>
6628 <tr>
6629 <td></td>
6630 <td>)</td>
6631 <td></td><td></td>
6632 </tr>
6633 </table>
6634</div><div class="memdoc">
6635
6636</div>
6637</div>
6638<a class="anchor" id="aabdb95f3f541376f38e03d63957cd0af"></a>
6639<div class="memitem">
6640<div class="memproto">
6641 <table class="memname">
6642 <tr>
6643 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6644 <td>(</td>
6645 <td class="paramtype">YOLOV2DirectConvolutionLayer&#160;</td>
6646 <td class="paramname">, </td>
6647 </tr>
6648 <tr>
6649 <td class="paramkey"></td>
6650 <td></td>
6651 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
6652 <td class="paramname">, </td>
6653 </tr>
6654 <tr>
6655 <td class="paramkey"></td>
6656 <td></td>
6657 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6658 <td class="paramname">, </td>
6659 </tr>
6660 <tr>
6661 <td class="paramkey"></td>
6662 <td></td>
6663 <td class="paramtype">framework::dataset::&#160;</td>
6664 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{1, 4, 8})&#160;</td>
6665 </tr>
6666 <tr>
6667 <td></td>
6668 <td>)</td>
6669 <td></td><td></td>
6670 </tr>
6671 </table>
6672</div><div class="memdoc">
6673
6674</div>
6675</div>
6676<a class="anchor" id="a6ada452bc1053385b8574f38d341ffc9"></a>
6677<div class="memitem">
6678<div class="memproto">
6679 <table class="memname">
6680 <tr>
6681 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6682 <td>(</td>
6683 <td class="paramtype">GoogLeNetInceptionV4ActivationLayer&#160;</td>
6684 <td class="paramname">, </td>
6685 </tr>
6686 <tr>
6687 <td class="paramkey"></td>
6688 <td></td>
6689 <td class="paramtype">NEActivationLayerFixture&#160;</td>
6690 <td class="paramname">, </td>
6691 </tr>
6692 <tr>
6693 <td class="paramkey"></td>
6694 <td></td>
6695 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6696 <td class="paramname">, </td>
6697 </tr>
6698 <tr>
6699 <td class="paramkey"></td>
6700 <td></td>
6701 <td class="paramtype">framework::dataset::&#160;</td>
6702 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4ActivationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6703 </tr>
6704 <tr>
6705 <td></td>
6706 <td>)</td>
6707 <td></td><td></td>
6708 </tr>
6709 </table>
6710</div><div class="memdoc">
6711
6712</div>
6713</div>
6714<a class="anchor" id="a34df6fb97233366fc9083d79c13a5737"></a>
6715<div class="memitem">
6716<div class="memproto">
6717 <table class="memname">
6718 <tr>
6719 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6720 <td>(</td>
6721 <td class="paramtype">SqueezeNetConvolutionLayer&#160;</td>
6722 <td class="paramname">, </td>
6723 </tr>
6724 <tr>
6725 <td class="paramkey"></td>
6726 <td></td>
6727 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
6728 <td class="paramname">, </td>
6729 </tr>
6730 <tr>
6731 <td class="paramkey"></td>
6732 <td></td>
6733 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6734 <td class="paramname">, </td>
6735 </tr>
6736 <tr>
6737 <td class="paramkey"></td>
6738 <td></td>
6739 <td class="paramtype">framework::dataset::&#160;</td>
6740 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6741 </tr>
6742 <tr>
6743 <td></td>
6744 <td>)</td>
6745 <td></td><td></td>
6746 </tr>
6747 </table>
6748</div><div class="memdoc">
6749
6750</div>
6751</div>
6752<a class="anchor" id="a967825a64c529b573ca62e74179ee921"></a>
6753<div class="memitem">
6754<div class="memproto">
6755 <table class="memname">
6756 <tr>
6757 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6758 <td>(</td>
6759 <td class="paramtype">GoogLeNetInceptionV1PoolingLayer&#160;</td>
6760 <td class="paramname">, </td>
6761 </tr>
6762 <tr>
6763 <td class="paramkey"></td>
6764 <td></td>
6765 <td class="paramtype">CLPoolingLayerFixture&#160;</td>
6766 <td class="paramname">, </td>
6767 </tr>
6768 <tr>
6769 <td class="paramkey"></td>
6770 <td></td>
6771 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6772 <td class="paramname">, </td>
6773 </tr>
6774 <tr>
6775 <td class="paramkey"></td>
6776 <td></td>
6777 <td class="paramtype">framework::dataset::&#160;</td>
6778 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6779 </tr>
6780 <tr>
6781 <td></td>
6782 <td>)</td>
6783 <td></td><td></td>
6784 </tr>
6785 </table>
6786</div><div class="memdoc">
6787
6788</div>
6789</div>
6790<a class="anchor" id="a68166bcb788035f5a6c17fe0c68ae730"></a>
6791<div class="memitem">
6792<div class="memproto">
6793 <table class="memname">
6794 <tr>
6795 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6796 <td>(</td>
6797 <td class="paramtype">VGG16ConvolutionLayer&#160;</td>
6798 <td class="paramname">, </td>
6799 </tr>
6800 <tr>
6801 <td class="paramkey"></td>
6802 <td></td>
6803 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
6804 <td class="paramname">, </td>
6805 </tr>
6806 <tr>
6807 <td class="paramkey"></td>
6808 <td></td>
6809 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6810 <td class="paramname">, </td>
6811 </tr>
6812 <tr>
6813 <td class="paramkey"></td>
6814 <td></td>
6815 <td class="paramtype">framework::dataset::&#160;</td>
6816 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{1, 4})&#160;</td>
6817 </tr>
6818 <tr>
6819 <td></td>
6820 <td>)</td>
6821 <td></td><td></td>
6822 </tr>
6823 </table>
6824</div><div class="memdoc">
6825
6826</div>
6827</div>
6828<a class="anchor" id="a1d77d86fcdca1b8578756eae70fcac85"></a>
6829<div class="memitem">
6830<div class="memproto">
6831 <table class="memname">
6832 <tr>
6833 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6834 <td>(</td>
6835 <td class="paramtype">GoogLeNetInceptionV4FullyConnectedLayer&#160;</td>
6836 <td class="paramname">, </td>
6837 </tr>
6838 <tr>
6839 <td class="paramkey"></td>
6840 <td></td>
6841 <td class="paramtype">NEFullyConnectedLayerFixture&#160;</td>
6842 <td class="paramname">, </td>
6843 </tr>
6844 <tr>
6845 <td class="paramkey"></td>
6846 <td></td>
6847 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6848 <td class="paramname">, </td>
6849 </tr>
6850 <tr>
6851 <td class="paramkey"></td>
6852 <td></td>
6853 <td class="paramtype">framework::dataset::&#160;</td>
6854 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6855 </tr>
6856 <tr>
6857 <td></td>
6858 <td>)</td>
6859 <td></td><td></td>
6860 </tr>
6861 </table>
6862</div><div class="memdoc">
6863
6864</div>
6865</div>
6866<a class="anchor" id="a6692a58c12e2eff315715e6c971d0230"></a>
6867<div class="memitem">
6868<div class="memproto">
6869 <table class="memname">
6870 <tr>
6871 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6872 <td>(</td>
6873 <td class="paramtype">SqueezeNetActivationLayer&#160;</td>
6874 <td class="paramname">, </td>
6875 </tr>
6876 <tr>
6877 <td class="paramkey"></td>
6878 <td></td>
6879 <td class="paramtype">NEActivationLayerFixture&#160;</td>
6880 <td class="paramname">, </td>
6881 </tr>
6882 <tr>
6883 <td class="paramkey"></td>
6884 <td></td>
6885 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6886 <td class="paramname">, </td>
6887 </tr>
6888 <tr>
6889 <td class="paramkey"></td>
6890 <td></td>
6891 <td class="paramtype">framework::dataset::&#160;</td>
6892 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetActivationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6893 </tr>
6894 <tr>
6895 <td></td>
6896 <td>)</td>
6897 <td></td><td></td>
6898 </tr>
6899 </table>
6900</div><div class="memdoc">
6901
6902</div>
6903</div>
6904<a class="anchor" id="a0ca04d4de125be45c16b579b43d53835"></a>
6905<div class="memitem">
6906<div class="memproto">
6907 <table class="memname">
6908 <tr>
6909 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6910 <td>(</td>
6911 <td class="paramtype">YOLOV2ConvolutionLayer&#160;</td>
6912 <td class="paramname">, </td>
6913 </tr>
6914 <tr>
6915 <td class="paramkey"></td>
6916 <td></td>
6917 <td class="paramtype">NEConvolutionLayerFixture&#160;</td>
6918 <td class="paramname">, </td>
6919 </tr>
6920 <tr>
6921 <td class="paramkey"></td>
6922 <td></td>
6923 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6924 <td class="paramname">, </td>
6925 </tr>
6926 <tr>
6927 <td class="paramkey"></td>
6928 <td></td>
6929 <td class="paramtype">framework::dataset::&#160;</td>
6930 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{1, 4, 8})&#160;</td>
6931 </tr>
6932 <tr>
6933 <td></td>
6934 <td>)</td>
6935 <td></td><td></td>
6936 </tr>
6937 </table>
6938</div><div class="memdoc">
6939
6940</div>
6941</div>
6942<a class="anchor" id="ac06bd6612edf1bbb0c0f4b0d4aa86b32"></a>
6943<div class="memitem">
6944<div class="memproto">
6945 <table class="memname">
6946 <tr>
6947 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6948 <td>(</td>
6949 <td class="paramtype">GoogLeNetInceptionV4PoolingLayer&#160;</td>
6950 <td class="paramname">, </td>
6951 </tr>
6952 <tr>
6953 <td class="paramkey"></td>
6954 <td></td>
6955 <td class="paramtype">CLPoolingLayerFixture&#160;</td>
6956 <td class="paramname">, </td>
6957 </tr>
6958 <tr>
6959 <td class="paramkey"></td>
6960 <td></td>
6961 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
6962 <td class="paramname">, </td>
6963 </tr>
6964 <tr>
6965 <td class="paramkey"></td>
6966 <td></td>
6967 <td class="paramtype">framework::dataset::&#160;</td>
6968 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
6969 </tr>
6970 <tr>
6971 <td></td>
6972 <td>)</td>
6973 <td></td><td></td>
6974 </tr>
6975 </table>
6976</div><div class="memdoc">
6977
6978</div>
6979</div>
6980<a class="anchor" id="a5a371e1a37be130dc9e8c905cd5efc29"></a>
6981<div class="memitem">
6982<div class="memproto">
6983 <table class="memname">
6984 <tr>
6985 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
6986 <td>(</td>
6987 <td class="paramtype">VGG16ConvolutionLayer&#160;</td>
6988 <td class="paramname">, </td>
6989 </tr>
6990 <tr>
6991 <td class="paramkey"></td>
6992 <td></td>
6993 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
6994 <td class="paramname">, </td>
6995 </tr>
6996 <tr>
6997 <td class="paramkey"></td>
6998 <td></td>
6999 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
7000 <td class="paramname">, </td>
7001 </tr>
7002 <tr>
7003 <td class="paramkey"></td>
7004 <td></td>
7005 <td class="paramtype">framework::dataset::&#160;</td>
7006 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{1, 4})&#160;</td>
7007 </tr>
7008 <tr>
7009 <td></td>
7010 <td>)</td>
7011 <td></td><td></td>
7012 </tr>
7013 </table>
7014</div><div class="memdoc">
7015
7016</div>
7017</div>
7018<a class="anchor" id="a26e3678291b5f879d82808eda0d39bc2"></a>
7019<div class="memitem">
7020<div class="memproto">
7021 <table class="memname">
7022 <tr>
7023 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
7024 <td>(</td>
7025 <td class="paramtype">VGG16ActivationLayer&#160;</td>
7026 <td class="paramname">, </td>
7027 </tr>
7028 <tr>
7029 <td class="paramkey"></td>
7030 <td></td>
7031 <td class="paramtype">NEActivationLayerFixture&#160;</td>
7032 <td class="paramname">, </td>
7033 </tr>
7034 <tr>
7035 <td class="paramkey"></td>
7036 <td></td>
7037 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
7038 <td class="paramname">, </td>
7039 </tr>
7040 <tr>
7041 <td class="paramkey"></td>
7042 <td></td>
7043 <td class="paramtype">framework::dataset::&#160;</td>
7044 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16ActivationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
7045 </tr>
7046 <tr>
7047 <td></td>
7048 <td>)</td>
7049 <td></td><td></td>
7050 </tr>
7051 </table>
7052</div><div class="memdoc">
7053
7054</div>
7055</div>
7056<a class="anchor" id="a5f97a3f0575116d348f47489487d4214"></a>
7057<div class="memitem">
7058<div class="memproto">
7059 <table class="memname">
7060 <tr>
7061 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
7062 <td>(</td>
7063 <td class="paramtype">SqueezeNetPoolingLayer&#160;</td>
7064 <td class="paramname">, </td>
7065 </tr>
7066 <tr>
7067 <td class="paramkey"></td>
7068 <td></td>
7069 <td class="paramtype">CLPoolingLayerFixture&#160;</td>
7070 <td class="paramname">, </td>
7071 </tr>
7072 <tr>
7073 <td class="paramkey"></td>
7074 <td></td>
7075 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
7076 <td class="paramname">, </td>
7077 </tr>
7078 <tr>
7079 <td class="paramkey"></td>
7080 <td></td>
7081 <td class="paramtype">framework::dataset::&#160;</td>
7082 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetPoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
7083 </tr>
7084 <tr>
7085 <td></td>
7086 <td>)</td>
7087 <td></td><td></td>
7088 </tr>
7089 </table>
7090</div><div class="memdoc">
7091
7092</div>
7093</div>
7094<a class="anchor" id="a7473924d4fdf2b5dec0d8ee9aa11e25d"></a>
7095<div class="memitem">
7096<div class="memproto">
7097 <table class="memname">
7098 <tr>
7099 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
7100 <td>(</td>
7101 <td class="paramtype">YOLOV2ConvolutionLayer&#160;</td>
7102 <td class="paramname">, </td>
7103 </tr>
7104 <tr>
7105 <td class="paramkey"></td>
7106 <td></td>
7107 <td class="paramtype">CLConvolutionLayerFixture&#160;</td>
7108 <td class="paramname">, </td>
7109 </tr>
7110 <tr>
7111 <td class="paramkey"></td>
7112 <td></td>
7113 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
7114 <td class="paramname">, </td>
7115 </tr>
7116 <tr>
7117 <td class="paramkey"></td>
7118 <td></td>
7119 <td class="paramtype">framework::dataset::&#160;</td>
7120 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2ConvolutionLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{1, 4, 8})&#160;</td>
7121 </tr>
7122 <tr>
7123 <td></td>
7124 <td>)</td>
7125 <td></td><td></td>
7126 </tr>
7127 </table>
7128</div><div class="memdoc">
7129
7130</div>
7131</div>
7132<a class="anchor" id="ab77581768cf2f7433ba92c2b42c4617e"></a>
7133<div class="memitem">
7134<div class="memproto">
7135 <table class="memname">
7136 <tr>
7137 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
7138 <td>(</td>
7139 <td class="paramtype">YOLOV2ActivationLayer&#160;</td>
7140 <td class="paramname">, </td>
7141 </tr>
7142 <tr>
7143 <td class="paramkey"></td>
7144 <td></td>
7145 <td class="paramtype">NEActivationLayerFixture&#160;</td>
7146 <td class="paramname">, </td>
7147 </tr>
7148 <tr>
7149 <td class="paramkey"></td>
7150 <td></td>
7151 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
7152 <td class="paramname">, </td>
7153 </tr>
7154 <tr>
7155 <td class="paramkey"></td>
7156 <td></td>
7157 <td class="paramtype">framework::dataset::&#160;</td>
7158 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2ActivationLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
7159 </tr>
7160 <tr>
7161 <td></td>
7162 <td>)</td>
7163 <td></td><td></td>
7164 </tr>
7165 </table>
7166</div><div class="memdoc">
7167
7168</div>
7169</div>
7170<a class="anchor" id="a6a51ef57457c994f04d0b54e76387add"></a>
7171<div class="memitem">
7172<div class="memproto">
7173 <table class="memname">
7174 <tr>
7175 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
7176 <td>(</td>
7177 <td class="paramtype">VGG16PoolingLayer&#160;</td>
7178 <td class="paramname">, </td>
7179 </tr>
7180 <tr>
7181 <td class="paramkey"></td>
7182 <td></td>
7183 <td class="paramtype">CLPoolingLayerFixture&#160;</td>
7184 <td class="paramname">, </td>
7185 </tr>
7186 <tr>
7187 <td class="paramkey"></td>
7188 <td></td>
7189 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
7190 <td class="paramname">, </td>
7191 </tr>
7192 <tr>
7193 <td class="paramkey"></td>
7194 <td></td>
7195 <td class="paramtype">framework::dataset::&#160;</td>
7196 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
7197 </tr>
7198 <tr>
7199 <td></td>
7200 <td>)</td>
7201 <td></td><td></td>
7202 </tr>
7203 </table>
7204</div><div class="memdoc">
7205
7206</div>
7207</div>
7208<a class="anchor" id="a7d579c9d463693975486ea2248adc966"></a>
7209<div class="memitem">
7210<div class="memproto">
7211 <table class="memname">
7212 <tr>
7213 <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
7214 <td>(</td>
7215 <td class="paramtype">YOLOV2PoolingLayer&#160;</td>
7216 <td class="paramname">, </td>
7217 </tr>
7218 <tr>
7219 <td class="paramkey"></td>
7220 <td></td>
7221 <td class="paramtype">CLPoolingLayerFixture&#160;</td>
7222 <td class="paramname">, </td>
7223 </tr>
7224 <tr>
7225 <td class="paramkey"></td>
7226 <td></td>
7227 <td class="paramtype">framework::DatasetMode::NIGHTLY&#160;</td>
7228 <td class="paramname">, </td>
7229 </tr>
7230 <tr>
7231 <td class="paramkey"></td>
7232 <td></td>
7233 <td class="paramtype">framework::dataset::&#160;</td>
7234 <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2PoolingLayerDataset(), data_types), framework::dataset::make(&quot;Batches&quot;,{4, 8})&#160;</td>
7235 </tr>
7236 <tr>
7237 <td></td>
7238 <td>)</td>
7239 <td></td><td></td>
7240 </tr>
7241 </table>
7242</div><div class="memdoc">
7243
7244</div>
7245</div>
7246<a class="anchor" id="ad93bb148a873f19ad7692756e59617f4"></a>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007247<div class="memitem">
7248<div class="memproto">
7249<table class="mlabels">
7250 <tr>
7251 <td class="mlabels-left">
7252 <table class="memname">
7253 <tr>
Kaizen8938bd32017-09-28 14:38:23 +01007254 <td class="memname">T arm_compute::test::round_half_even </td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007255 <td>(</td>
Kaizen8938bd32017-09-28 14:38:23 +01007256 <td class="paramtype">T&#160;</td>
7257 <td class="paramname"><em>value</em>, </td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007258 </tr>
7259 <tr>
7260 <td class="paramkey"></td>
7261 <td></td>
Kaizen8938bd32017-09-28 14:38:23 +01007262 <td class="paramtype">T&#160;</td>
7263 <td class="paramname"><em>epsilon</em> = <code>std::numeric_limits&lt;T&gt;::epsilon()</code>&#160;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007264 </tr>
7265 <tr>
7266 <td></td>
7267 <td>)</td>
7268 <td></td><td></td>
7269 </tr>
7270 </table>
7271 </td>
7272 <td class="mlabels-right">
7273<span class="mlabels"><span class="mlabel">inline</span></span> </td>
7274 </tr>
7275</table>
7276</div><div class="memdoc">
7277
Kaizen8938bd32017-09-28 14:38:23 +01007278<p>Round floating-point value with half value rounding to nearest even. </p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007279<dl class="params"><dt>Parameters</dt><dd>
7280 <table class="params">
Kaizen8938bd32017-09-28 14:38:23 +01007281 <tr><td class="paramdir">[in]</td><td class="paramname">value</td><td>floating-point value to be rounded. </td></tr>
7282 <tr><td class="paramdir">[in]</td><td class="paramname">epsilon</td><td>precision.</td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007283 </table>
7284 </dd>
7285</dl>
Kaizen8938bd32017-09-28 14:38:23 +01007286<dl class="section return"><dt>Returns</dt><dd>Floating-point value of rounded <code>value</code>. </dd></dl>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007287
Kaizen8938bd32017-09-28 14:38:23 +01007288<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00069">69</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007289
Kaizen8938bd32017-09-28 14:38:23 +01007290<p>References <a class="el" href="tests_2validation_2_fixed_point_8h_source.xhtml#l00914">arm_compute::test::fixed_point_arithmetic::detail::abs()</a>, <a class="el" href="_toolchain_support_8h_source.xhtml#l00259">arm_compute::support::cpp11::copysign()</a>, and <a class="el" href="_toolchain_support_8h_source.xhtml#l00228">arm_compute::support::cpp11::round()</a>.</p>
7291<div class="fragment"><div class="line"><a name="l00070"></a><span class="lineno"> 70</span>&#160;{</div>
7292<div class="line"><a name="l00071"></a><span class="lineno"> 71</span>&#160; T positive_value = <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ae115fc750a92fb6a5e094998b56fcc56">std::abs</a>(<a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>);</div>
7293<div class="line"><a name="l00072"></a><span class="lineno"> 72</span>&#160; T ipart = 0;</div>
7294<div class="line"><a name="l00073"></a><span class="lineno"> 73</span>&#160; std::modf(positive_value, &amp;ipart);</div>
7295<div class="line"><a name="l00074"></a><span class="lineno"> 74</span>&#160; <span class="comment">// If &#39;value&#39; is exactly halfway between two integers</span></div>
7296<div class="line"><a name="l00075"></a><span class="lineno"> 75</span>&#160; <span class="keywordflow">if</span>(<a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ae115fc750a92fb6a5e094998b56fcc56">std::abs</a>(positive_value - (ipart + 0.5f)) &lt; epsilon)</div>
7297<div class="line"><a name="l00076"></a><span class="lineno"> 76</span>&#160; {</div>
7298<div class="line"><a name="l00077"></a><span class="lineno"> 77</span>&#160; <span class="comment">// If &#39;ipart&#39; is even then return &#39;ipart&#39;</span></div>
7299<div class="line"><a name="l00078"></a><span class="lineno"> 78</span>&#160; <span class="keywordflow">if</span>(std::fmod(ipart, 2.f) &lt; epsilon)</div>
7300<div class="line"><a name="l00079"></a><span class="lineno"> 79</span>&#160; {</div>
7301<div class="line"><a name="l00080"></a><span class="lineno"> 80</span>&#160; <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1support_1_1cpp11.xhtml#a28096f8372c0ad762864c790917375e2">support::cpp11::copysign</a>(ipart, <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>);</div>
7302<div class="line"><a name="l00081"></a><span class="lineno"> 81</span>&#160; }</div>
7303<div class="line"><a name="l00082"></a><span class="lineno"> 82</span>&#160; <span class="comment">// Else return the nearest even integer</span></div>
7304<div class="line"><a name="l00083"></a><span class="lineno"> 83</span>&#160; <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1support_1_1cpp11.xhtml#a28096f8372c0ad762864c790917375e2">support::cpp11::copysign</a>(std::ceil(ipart + 0.5f), <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>);</div>
7305<div class="line"><a name="l00084"></a><span class="lineno"> 84</span>&#160; }</div>
7306<div class="line"><a name="l00085"></a><span class="lineno"> 85</span>&#160; <span class="comment">// Otherwise use the usual round to closest</span></div>
7307<div class="line"><a name="l00086"></a><span class="lineno"> 86</span>&#160; <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1support_1_1cpp11.xhtml#a28096f8372c0ad762864c790917375e2">support::cpp11::copysign</a>(<a class="code" href="namespacearm__compute_1_1support_1_1cpp11.xhtml#ab71c35ca207b916a9f8b0336ab88484e">support::cpp11::round</a>(positive_value), <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>);</div>
7308<div class="line"><a name="l00087"></a><span class="lineno"> 87</span>&#160;}</div>
7309<div class="ttc" id="namespacearm__compute_1_1support_1_1cpp11_xhtml_a28096f8372c0ad762864c790917375e2"><div class="ttname"><a href="namespacearm__compute_1_1support_1_1cpp11.xhtml#a28096f8372c0ad762864c790917375e2">arm_compute::support::cpp11::copysign</a></div><div class="ttdeci">T copysign(T x, T y)</div><div class="ttdoc">Composes a floating point value with the magnitude of x and the sign of y. </div><div class="ttdef"><b>Definition:</b> <a href="_toolchain_support_8h_source.xhtml#l00259">ToolchainSupport.h:259</a></div></div>
7310<div class="ttc" id="hwc_8hpp_xhtml_a0f61d63b009d0880a89c843bd50d8d76"><div class="ttname"><a href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a></div><div class="ttdeci">void * value</div><div class="ttdef"><b>Definition:</b> <a href="hwc_8hpp_source.xhtml#l00269">hwc.hpp:269</a></div></div>
7311<div class="ttc" id="namespacearm__compute_1_1support_1_1cpp11_xhtml_ab71c35ca207b916a9f8b0336ab88484e"><div class="ttname"><a href="namespacearm__compute_1_1support_1_1cpp11.xhtml#ab71c35ca207b916a9f8b0336ab88484e">arm_compute::support::cpp11::round</a></div><div class="ttdeci">T round(T value)</div><div class="ttdoc">Round floating-point value with half value rounding away from zero. </div><div class="ttdef"><b>Definition:</b> <a href="_toolchain_support_8h_source.xhtml#l00228">ToolchainSupport.h:228</a></div></div>
7312<div class="ttc" id="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail_xhtml_ae115fc750a92fb6a5e094998b56fcc56"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ae115fc750a92fb6a5e094998b56fcc56">arm_compute::test::fixed_point_arithmetic::detail::abs</a></div><div class="ttdeci">fixed_point&lt; T &gt; abs(fixed_point&lt; T &gt; x)</div><div class="ttdef"><b>Definition:</b> <a href="tests_2validation_2_fixed_point_8h_source.xhtml#l00914">FixedPoint.h:914</a></div></div>
7313</div><!-- fragment -->
7314</div>
7315</div>
7316<a class="anchor" id="af4bcf30f8c56f547f66d61c7c5ae01db"></a>
7317<div class="memitem">
7318<div class="memproto">
7319<table class="mlabels">
7320 <tr>
7321 <td class="mlabels-left">
7322 <table class="memname">
7323 <tr>
7324 <td class="memname">T arm_compute::test::round_half_up </td>
7325 <td>(</td>
7326 <td class="paramtype">T&#160;</td>
7327 <td class="paramname"><em>value</em></td><td>)</td>
7328 <td></td>
7329 </tr>
7330 </table>
7331 </td>
7332 <td class="mlabels-right">
7333<span class="mlabels"><span class="mlabel">inline</span></span> </td>
7334 </tr>
7335</table>
7336</div><div class="memdoc">
7337
7338<p>Round floating-point value with half value rounding to positive infinity. </p>
7339<dl class="params"><dt>Parameters</dt><dd>
7340 <table class="params">
7341 <tr><td class="paramdir">[in]</td><td class="paramname">value</td><td>floating-point value to be rounded.</td></tr>
7342 </table>
7343 </dd>
7344</dl>
7345<dl class="section return"><dt>Returns</dt><dd>Floating-point value of rounded <code>value</code>. </dd></dl>
7346
7347<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00056">56</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
7348<div class="fragment"><div class="line"><a name="l00057"></a><span class="lineno"> 57</span>&#160;{</div>
7349<div class="line"><a name="l00058"></a><span class="lineno"> 58</span>&#160; <span class="keywordflow">return</span> std::floor(<a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a> + 0.5f);</div>
7350<div class="line"><a name="l00059"></a><span class="lineno"> 59</span>&#160;}</div>
7351<div class="ttc" id="hwc_8hpp_xhtml_a0f61d63b009d0880a89c843bd50d8d76"><div class="ttname"><a href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a></div><div class="ttdeci">void * value</div><div class="ttdef"><b>Definition:</b> <a href="hwc_8hpp_source.xhtml#l00269">hwc.hpp:269</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007352</div><!-- fragment -->
7353</div>
7354</div>
7355<a class="anchor" id="a4965b2f6821e0cf0afee738158bd8377"></a>
7356<div class="memitem">
7357<div class="memproto">
7358 <table class="memname">
7359 <tr>
7360 <td class="memname">T arm_compute::test::saturate_cast </td>
7361 <td>(</td>
7362 <td class="paramtype">T&#160;</td>
7363 <td class="paramname"><em>val</em></td><td>)</td>
7364 <td></td>
7365 </tr>
7366 </table>
7367</div><div class="memdoc">
7368
7369<p>Saturate a value of type T against the numeric limits of type U. </p>
7370<dl class="params"><dt>Parameters</dt><dd>
7371 <table class="params">
7372 <tr><td class="paramdir">[in]</td><td class="paramname">val</td><td>Value to be saturated.</td></tr>
7373 </table>
7374 </dd>
7375</dl>
7376<dl class="section return"><dt>Returns</dt><dd>saturated value. </dd></dl>
7377
Kaizen8938bd32017-09-28 14:38:23 +01007378<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00278">278</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007379
Kaizen8938bd32017-09-28 14:38:23 +01007380<p>References <a class="el" href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">arm_compute::test::fixed_point_arithmetic::detail::max()</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007381
Kaizen8938bd32017-09-28 14:38:23 +01007382<p>Referenced by <a class="el" href="validation_2_c_p_p_2_depthwise_convolution_8cpp_source.xhtml#l00048">arm_compute::test::validation::reference::depthwise_convolution()</a>, and <a class="el" href="_c_p_p_2_non_linear_filter_8cpp_source.xhtml#l00036">arm_compute::test::validation::reference::non_linear_filter()</a>.</p>
7383<div class="fragment"><div class="line"><a name="l00279"></a><span class="lineno"> 279</span>&#160;{</div>
7384<div class="line"><a name="l00280"></a><span class="lineno"> 280</span>&#160; <span class="keywordflow">if</span>(val &gt; static_cast&lt;T&gt;(<a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::numeric_limits&lt;U&gt;::max</a>()))</div>
7385<div class="line"><a name="l00281"></a><span class="lineno"> 281</span>&#160; {</div>
7386<div class="line"><a name="l00282"></a><span class="lineno"> 282</span>&#160; val = <span class="keyword">static_cast&lt;</span>T<span class="keyword">&gt;</span>(<a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::numeric_limits&lt;U&gt;::max</a>());</div>
7387<div class="line"><a name="l00283"></a><span class="lineno"> 283</span>&#160; }</div>
7388<div class="line"><a name="l00284"></a><span class="lineno"> 284</span>&#160; <span class="keywordflow">if</span>(val &lt; static_cast&lt;T&gt;(std::numeric_limits&lt;U&gt;::lowest()))</div>
7389<div class="line"><a name="l00285"></a><span class="lineno"> 285</span>&#160; {</div>
7390<div class="line"><a name="l00286"></a><span class="lineno"> 286</span>&#160; val = <span class="keyword">static_cast&lt;</span>T<span class="keyword">&gt;</span>(std::numeric_limits&lt;U&gt;::lowest());</div>
7391<div class="line"><a name="l00287"></a><span class="lineno"> 287</span>&#160; }</div>
7392<div class="line"><a name="l00288"></a><span class="lineno"> 288</span>&#160; <span class="keywordflow">return</span> val;</div>
7393<div class="line"><a name="l00289"></a><span class="lineno"> 289</span>&#160;}</div>
7394<div class="ttc" id="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail_xhtml_ad91bb73431b4de1f4946ed949d444849"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">arm_compute::test::fixed_point_arithmetic::detail::max</a></div><div class="ttdeci">fixed_point&lt; T &gt; max(fixed_point&lt; T &gt; x, fixed_point&lt; T &gt; y)</div><div class="ttdef"><b>Definition:</b> <a href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">FixedPoint.h:889</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007395</div><!-- fragment -->
7396</div>
7397</div>
Kaizen8938bd32017-09-28 14:38:23 +01007398<a class="anchor" id="a4c9ad143c34306817986409ffb1dbd40"></a>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007399<div class="memitem">
7400<div class="memproto">
7401<table class="mlabels">
7402 <tr>
7403 <td class="mlabels-left">
7404 <table class="memname">
7405 <tr>
7406 <td class="memname"><a class="el" href="structarm__compute_1_1_valid_region.xhtml">ValidRegion</a> arm_compute::test::shape_to_valid_region </td>
7407 <td>(</td>
Kaizen8938bd32017-09-28 14:38:23 +01007408 <td class="paramtype">TensorShape&#160;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007409 <td class="paramname"><em>shape</em>, </td>
7410 </tr>
7411 <tr>
7412 <td class="paramkey"></td>
7413 <td></td>
Kaizen8938bd32017-09-28 14:38:23 +01007414 <td class="paramtype">bool&#160;</td>
7415 <td class="paramname"><em>border_undefined</em> = <code>false</code>, </td>
7416 </tr>
7417 <tr>
7418 <td class="paramkey"></td>
7419 <td></td>
7420 <td class="paramtype">BorderSize&#160;</td>
7421 <td class="paramname"><em>border_size</em> = <code>BorderSize(0)</code>&#160;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007422 </tr>
7423 <tr>
7424 <td></td>
7425 <td>)</td>
7426 <td></td><td></td>
7427 </tr>
7428 </table>
7429 </td>
7430 <td class="mlabels-right">
7431<span class="mlabels"><span class="mlabel">inline</span></span> </td>
7432 </tr>
7433</table>
7434</div><div class="memdoc">
7435
Kaizen8938bd32017-09-28 14:38:23 +01007436<p>Create a valid region based on tensor shape, border mode and border size. </p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007437<dl class="params"><dt>Parameters</dt><dd>
7438 <table class="params">
7439 <tr><td class="paramdir">[in]</td><td class="paramname">shape</td><td>Shape used as size of the valid region. </td></tr>
Kaizen8938bd32017-09-28 14:38:23 +01007440 <tr><td class="paramdir">[in]</td><td class="paramname">border_undefined</td><td>(Optional) Boolean indicating if the border mode is undefined. </td></tr>
7441 <tr><td class="paramdir">[in]</td><td class="paramname">border_size</td><td>(Optional) Border size used to specify the region to exclude.</td></tr>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007442 </table>
7443 </dd>
7444</dl>
Kaizen8938bd32017-09-28 14:38:23 +01007445<dl class="section return"><dt>Returns</dt><dd>A valid region starting at (0, 0, ...) with size of <code>shape</code> if <code>border_undefined</code> is false; otherwise return A valid region starting at (<code>border_size.left</code>, <code>border_size.top</code>, ...) with reduced size of <code>shape</code>. </dd></dl>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007446
Kaizen8938bd32017-09-28 14:38:23 +01007447<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00193">193</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007448
Kaizen8938bd32017-09-28 14:38:23 +01007449<p>References <a class="el" href="_error_8h_source.xhtml#l00124">ARM_COMPUTE_ERROR_ON</a>, <a class="el" href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">arm_compute::test::fixed_point_arithmetic::detail::max()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00109">Dimensions&lt; T &gt;::num_dimensions()</a>, <a class="el" href="_tensor_shape_8h_source.xhtml#l00074">TensorShape::set()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00074">Dimensions&lt; T &gt;::set()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00115">Dimensions&lt; T &gt;::set_num_dimensions()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00081">Dimensions&lt; T &gt;::x()</a>, and <a class="el" href="_dimensions_8h_source.xhtml#l00086">Dimensions&lt; T &gt;::y()</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007450
Kaizen8938bd32017-09-28 14:38:23 +01007451<p>Referenced by <a class="el" href="validation_2_c_l_2_convolution_layer_8cpp_source.xhtml#l00064">arm_compute::test::validation::DATA_TEST_CASE()</a>, <a class="el" href="_c_l_2_box3x3_8cpp_source.xhtml#l00091">arm_compute::test::validation::FIXTURE_DATA_TEST_CASE()</a>, <a class="el" href="_c_p_p_2_non_linear_filter_8cpp_source.xhtml#l00036">arm_compute::test::validation::reference::non_linear_filter()</a>, <a class="el" href="_non_maxima_suppression_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::non_maxima_suppression()</a>, <a class="el" href="_c_p_p_2_sobel_8cpp_source.xhtml#l00106">arm_compute::test::validation::reference::sobel()</a>, and <a class="el" href="_validation_8h_source.xhtml#l00299">arm_compute::test::validation::validate()</a>.</p>
7452<div class="fragment"><div class="line"><a name="l00194"></a><span class="lineno"> 194</span>&#160;{</div>
7453<div class="line"><a name="l00195"></a><span class="lineno"> 195</span>&#160; Coordinates anchor;</div>
7454<div class="line"><a name="l00196"></a><span class="lineno"> 196</span>&#160; anchor.set_num_dimensions(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.num_dimensions());</div>
7455<div class="line"><a name="l00197"></a><span class="lineno"> 197</span>&#160;</div>
7456<div class="line"><a name="l00198"></a><span class="lineno"> 198</span>&#160; <span class="keywordflow">if</span>(border_undefined)</div>
7457<div class="line"><a name="l00199"></a><span class="lineno"> 199</span>&#160; {</div>
7458<div class="line"><a name="l00200"></a><span class="lineno"> 200</span>&#160; <a class="code" href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.num_dimensions() &lt; 2);</div>
7459<div class="line"><a name="l00201"></a><span class="lineno"> 201</span>&#160;</div>
7460<div class="line"><a name="l00202"></a><span class="lineno"> 202</span>&#160; anchor.set(0, border_size.left);</div>
7461<div class="line"><a name="l00203"></a><span class="lineno"> 203</span>&#160; anchor.set(1, border_size.top);</div>
7462<div class="line"><a name="l00204"></a><span class="lineno"> 204</span>&#160;</div>
7463<div class="line"><a name="l00205"></a><span class="lineno"> 205</span>&#160; <span class="keyword">const</span> <span class="keywordtype">int</span> valid_shape_x = <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::max</a>(0, static_cast&lt;int&gt;(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.x()) - static_cast&lt;int&gt;(border_size.left) - <span class="keyword">static_cast&lt;</span><span class="keywordtype">int</span><span class="keyword">&gt;</span>(border_size.right));</div>
7464<div class="line"><a name="l00206"></a><span class="lineno"> 206</span>&#160; <span class="keyword">const</span> <span class="keywordtype">int</span> valid_shape_y = <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::max</a>(0, static_cast&lt;int&gt;(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.y()) - static_cast&lt;int&gt;(border_size.top) - <span class="keyword">static_cast&lt;</span><span class="keywordtype">int</span><span class="keyword">&gt;</span>(border_size.bottom));</div>
7465<div class="line"><a name="l00207"></a><span class="lineno"> 207</span>&#160;</div>
7466<div class="line"><a name="l00208"></a><span class="lineno"> 208</span>&#160; <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.set(0, valid_shape_x);</div>
7467<div class="line"><a name="l00209"></a><span class="lineno"> 209</span>&#160; <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.set(1, valid_shape_y);</div>
7468<div class="line"><a name="l00210"></a><span class="lineno"> 210</span>&#160; }</div>
7469<div class="line"><a name="l00211"></a><span class="lineno"> 211</span>&#160;</div>
7470<div class="line"><a name="l00212"></a><span class="lineno"> 212</span>&#160; <span class="keywordflow">return</span> ValidRegion(std::move(anchor), std::move(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>));</div>
7471<div class="line"><a name="l00213"></a><span class="lineno"> 213</span>&#160;}</div>
7472<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
7473<div class="ttc" id="_error_8h_xhtml_a54a6080c9f4df1f908e57a9bbb46f5da"><div class="ttname"><a href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON(cond)</div><div class="ttdoc">If the condition is true then an error message is printed and an exception thrown. </div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00124">Error.h:124</a></div></div>
7474<div class="ttc" id="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail_xhtml_ad91bb73431b4de1f4946ed949d444849"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">arm_compute::test::fixed_point_arithmetic::detail::max</a></div><div class="ttdeci">fixed_point&lt; T &gt; max(fixed_point&lt; T &gt; x, fixed_point&lt; T &gt; y)</div><div class="ttdef"><b>Definition:</b> <a href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">FixedPoint.h:889</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007475</div><!-- fragment -->
7476</div>
7477</div>
7478<a class="anchor" id="a1e6934e95738573214c2ce1d6648d116"></a>
7479<div class="memitem">
7480<div class="memproto">
7481 <table class="memname">
7482 <tr>
7483 <td class="memname">void arm_compute::test::store_value_with_data_type </td>
7484 <td>(</td>
7485 <td class="paramtype">void *&#160;</td>
7486 <td class="paramname"><em>ptr</em>, </td>
7487 </tr>
7488 <tr>
7489 <td class="paramkey"></td>
7490 <td></td>
7491 <td class="paramtype">T&#160;</td>
7492 <td class="paramname"><em>value</em>, </td>
7493 </tr>
7494 <tr>
7495 <td class="paramkey"></td>
7496 <td></td>
Kaizen8938bd32017-09-28 14:38:23 +01007497 <td class="paramtype">DataType&#160;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007498 <td class="paramname"><em>data_type</em>&#160;</td>
7499 </tr>
7500 <tr>
7501 <td></td>
7502 <td>)</td>
7503 <td></td><td></td>
7504 </tr>
7505 </table>
7506</div><div class="memdoc">
7507
7508<p>Write the value after casting the pointer according to <code>data_type</code>. </p>
7509<dl class="section warning"><dt>Warning</dt><dd>The type of the value must match the specified data type.</dd></dl>
7510<dl class="params"><dt>Parameters</dt><dd>
7511 <table class="params">
7512 <tr><td class="paramdir">[out]</td><td class="paramname">ptr</td><td>Pointer to memory where the <code>value</code> will be written. </td></tr>
7513 <tr><td class="paramdir">[in]</td><td class="paramname">value</td><td>Value that will be written. </td></tr>
7514 <tr><td class="paramdir">[in]</td><td class="paramname">data_type</td><td>Data type that will be written. </td></tr>
7515 </table>
7516 </dd>
7517</dl>
7518
Kaizen8938bd32017-09-28 14:38:23 +01007519<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00224">224</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007520
Kaizen8938bd32017-09-28 14:38:23 +01007521<p>References <a class="el" href="_error_8h_source.xhtml#l00031">ARM_COMPUTE_ERROR</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a56d8353718e6fdc78b8d69078a2cdb94">arm_compute::F16</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">arm_compute::F32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a1ad5f6f3069070ec4cbbdc94d5e61e0e">arm_compute::F64</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a48d877702a2957f5a932c43a357866f9">arm_compute::QS16</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a11cde4d3551db3f9498d339a67189543">arm_compute::QS8</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6e0b0886efb94aec797f6b830329b72c">arm_compute::S16</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58aa1e28eee0339658d39a8b4d325b56e9c">arm_compute::S32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a115dca124dc6423c7a400b8a8a0270cc">arm_compute::S64</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6aafb0fced528eaac5fe170b763cda5975">arm_compute::S8</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6abd7ef6d4f35bc7d05c559b65032f15d1">arm_compute::SIZET</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58aef9ef3ebca4d2b64b6ec83808bafa5f2">arm_compute::U16</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58ac8bd5bedff8ef192d39a962afc0e19ee">arm_compute::U32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a31d65cccd6593e4101db93fb878abcaa">arm_compute::U64</a>, and <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6669348b484e3008dca2bfa8e85e40b5">arm_compute::U8</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007522
Kaizen8938bd32017-09-28 14:38:23 +01007523<p>Referenced by <a class="el" href="_assets_library_8h_source.xhtml#l00400">AssetsLibrary::fill()</a>, and <a class="el" href="_assets_library_8h_source.xhtml#l00374">AssetsLibrary::fill_borders_with_garbage()</a>.</p>
7524<div class="fragment"><div class="line"><a name="l00225"></a><span class="lineno"> 225</span>&#160;{</div>
7525<div class="line"><a name="l00226"></a><span class="lineno"> 226</span>&#160; <span class="keywordflow">switch</span>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">data_type</a>)</div>
7526<div class="line"><a name="l00227"></a><span class="lineno"> 227</span>&#160; {</div>
7527<div class="line"><a name="l00228"></a><span class="lineno"> 228</span>&#160; <span class="keywordflow">case</span> DataType::U8:</div>
7528<div class="line"><a name="l00229"></a><span class="lineno"> 229</span>&#160; *<span class="keyword">reinterpret_cast&lt;</span>uint8_t *<span class="keyword">&gt;</span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
7529<div class="line"><a name="l00230"></a><span class="lineno"> 230</span>&#160; <span class="keywordflow">break</span>;</div>
7530<div class="line"><a name="l00231"></a><span class="lineno"> 231</span>&#160; <span class="keywordflow">case</span> DataType::S8:</div>
7531<div class="line"><a name="l00232"></a><span class="lineno"> 232</span>&#160; <span class="keywordflow">case</span> DataType::QS8:</div>
7532<div class="line"><a name="l00233"></a><span class="lineno"> 233</span>&#160; *<span class="keyword">reinterpret_cast&lt;</span>int8_t *<span class="keyword">&gt;</span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
7533<div class="line"><a name="l00234"></a><span class="lineno"> 234</span>&#160; <span class="keywordflow">break</span>;</div>
7534<div class="line"><a name="l00235"></a><span class="lineno"> 235</span>&#160; <span class="keywordflow">case</span> DataType::U16:</div>
7535<div class="line"><a name="l00236"></a><span class="lineno"> 236</span>&#160; *<span class="keyword">reinterpret_cast&lt;</span>uint16_t *<span class="keyword">&gt;</span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
7536<div class="line"><a name="l00237"></a><span class="lineno"> 237</span>&#160; <span class="keywordflow">break</span>;</div>
7537<div class="line"><a name="l00238"></a><span class="lineno"> 238</span>&#160; <span class="keywordflow">case</span> DataType::S16:</div>
7538<div class="line"><a name="l00239"></a><span class="lineno"> 239</span>&#160; <span class="keywordflow">case</span> DataType::QS16:</div>
7539<div class="line"><a name="l00240"></a><span class="lineno"> 240</span>&#160; *<span class="keyword">reinterpret_cast&lt;</span>int16_t *<span class="keyword">&gt;</span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
7540<div class="line"><a name="l00241"></a><span class="lineno"> 241</span>&#160; <span class="keywordflow">break</span>;</div>
7541<div class="line"><a name="l00242"></a><span class="lineno"> 242</span>&#160; <span class="keywordflow">case</span> DataType::U32:</div>
7542<div class="line"><a name="l00243"></a><span class="lineno"> 243</span>&#160; *<span class="keyword">reinterpret_cast&lt;</span>uint32_t *<span class="keyword">&gt;</span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
7543<div class="line"><a name="l00244"></a><span class="lineno"> 244</span>&#160; <span class="keywordflow">break</span>;</div>
7544<div class="line"><a name="l00245"></a><span class="lineno"> 245</span>&#160; <span class="keywordflow">case</span> DataType::S32:</div>
7545<div class="line"><a name="l00246"></a><span class="lineno"> 246</span>&#160; *<span class="keyword">reinterpret_cast&lt;</span>int32_t *<span class="keyword">&gt;</span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
7546<div class="line"><a name="l00247"></a><span class="lineno"> 247</span>&#160; <span class="keywordflow">break</span>;</div>
7547<div class="line"><a name="l00248"></a><span class="lineno"> 248</span>&#160; <span class="keywordflow">case</span> DataType::U64:</div>
7548<div class="line"><a name="l00249"></a><span class="lineno"> 249</span>&#160; *<span class="keyword">reinterpret_cast&lt;</span>uint64_t *<span class="keyword">&gt;</span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
7549<div class="line"><a name="l00250"></a><span class="lineno"> 250</span>&#160; <span class="keywordflow">break</span>;</div>
7550<div class="line"><a name="l00251"></a><span class="lineno"> 251</span>&#160; <span class="keywordflow">case</span> DataType::S64:</div>
7551<div class="line"><a name="l00252"></a><span class="lineno"> 252</span>&#160; *<span class="keyword">reinterpret_cast&lt;</span>int64_t *<span class="keyword">&gt;</span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
7552<div class="line"><a name="l00253"></a><span class="lineno"> 253</span>&#160; <span class="keywordflow">break</span>;</div>
7553<div class="line"><a name="l00254"></a><span class="lineno"> 254</span>&#160; <span class="keywordflow">case</span> DataType::F16:</div>
7554<div class="line"><a name="l00255"></a><span class="lineno"> 255</span>&#160; *<span class="keyword">reinterpret_cast&lt;</span><a class="code" href="namespacearm__compute.xhtml#a73e2825fd61d349c5ca2f5313e3c8ea1">half</a> *<span class="keyword">&gt;</span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
7555<div class="line"><a name="l00256"></a><span class="lineno"> 256</span>&#160; <span class="keywordflow">break</span>;</div>
7556<div class="line"><a name="l00257"></a><span class="lineno"> 257</span>&#160; <span class="keywordflow">case</span> DataType::F32:</div>
7557<div class="line"><a name="l00258"></a><span class="lineno"> 258</span>&#160; *<span class="keyword">reinterpret_cast&lt;</span><span class="keywordtype">float</span> *<span class="keyword">&gt;</span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
7558<div class="line"><a name="l00259"></a><span class="lineno"> 259</span>&#160; <span class="keywordflow">break</span>;</div>
7559<div class="line"><a name="l00260"></a><span class="lineno"> 260</span>&#160; <span class="keywordflow">case</span> DataType::F64:</div>
7560<div class="line"><a name="l00261"></a><span class="lineno"> 261</span>&#160; *<span class="keyword">reinterpret_cast&lt;</span><span class="keywordtype">double</span> *<span class="keyword">&gt;</span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
7561<div class="line"><a name="l00262"></a><span class="lineno"> 262</span>&#160; <span class="keywordflow">break</span>;</div>
7562<div class="line"><a name="l00263"></a><span class="lineno"> 263</span>&#160; <span class="keywordflow">case</span> DataType::SIZET:</div>
7563<div class="line"><a name="l00264"></a><span class="lineno"> 264</span>&#160; *<span class="keyword">reinterpret_cast&lt;</span><span class="keywordtype">size_t</span> *<span class="keyword">&gt;</span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
7564<div class="line"><a name="l00265"></a><span class="lineno"> 265</span>&#160; <span class="keywordflow">break</span>;</div>
7565<div class="line"><a name="l00266"></a><span class="lineno"> 266</span>&#160; <span class="keywordflow">default</span>:</div>
7566<div class="line"><a name="l00267"></a><span class="lineno"> 267</span>&#160; <a class="code" href="_error_8h.xhtml#a05b19c75afe9c24200a62b9724734bbd">ARM_COMPUTE_ERROR</a>(<span class="stringliteral">&quot;NOT SUPPORTED!&quot;</span>);</div>
7567<div class="line"><a name="l00268"></a><span class="lineno"> 268</span>&#160; }</div>
7568<div class="line"><a name="l00269"></a><span class="lineno"> 269</span>&#160;}</div>
7569<div class="ttc" id="_error_8h_xhtml_a05b19c75afe9c24200a62b9724734bbd"><div class="ttname"><a href="_error_8h.xhtml#a05b19c75afe9c24200a62b9724734bbd">ARM_COMPUTE_ERROR</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR(...)</div><div class="ttdoc">Print the given message then throw an std::runtime_error. </div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00031">Error.h:31</a></div></div>
7570<div class="ttc" id="namespacearm__compute_xhtml_a73e2825fd61d349c5ca2f5313e3c8ea1"><div class="ttname"><a href="namespacearm__compute.xhtml#a73e2825fd61d349c5ca2f5313e3c8ea1">arm_compute::half</a></div><div class="ttdeci">half_float::half half</div><div class="ttdoc">16-bit floating point type </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00039">Types.h:39</a></div></div>
7571<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_ac2ad7f431e3446fddcd9b6b9f93c4c14"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">arm_compute::test::validation::data_type</a></div><div class="ttdeci">data_type</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00090">MinMaxLocation.cpp:90</a></div></div>
7572<div class="ttc" id="hwc_8hpp_xhtml_a0f61d63b009d0880a89c843bd50d8d76"><div class="ttname"><a href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a></div><div class="ttdeci">void * value</div><div class="ttdef"><b>Definition:</b> <a href="hwc_8hpp_source.xhtml#l00269">hwc.hpp:269</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007573</div><!-- fragment -->
7574</div>
7575</div>
Kaizen8938bd32017-09-28 14:38:23 +01007576<a class="anchor" id="a28edc8880596d14c099f3c2509efc8b3"></a>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007577<div class="memitem">
7578<div class="memproto">
7579 <table class="memname">
7580 <tr>
7581 <td class="memname">void arm_compute::test::swap </td>
7582 <td>(</td>
Kaizen8938bd32017-09-28 14:38:23 +01007583 <td class="paramtype">SimpleTensor&lt; U &gt; &amp;&#160;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007584 <td class="paramname"><em>tensor1</em>, </td>
7585 </tr>
7586 <tr>
7587 <td class="paramkey"></td>
7588 <td></td>
Kaizen8938bd32017-09-28 14:38:23 +01007589 <td class="paramtype">SimpleTensor&lt; U &gt; &amp;&#160;</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007590 <td class="paramname"><em>tensor2</em>&#160;</td>
7591 </tr>
7592 <tr>
7593 <td></td>
7594 <td>)</td>
7595 <td></td><td></td>
7596 </tr>
7597 </table>
7598</div><div class="memdoc">
7599<dl class="params"><dt>Parameters</dt><dd>
7600 <table class="params">
7601 <tr><td class="paramdir">[in,out]</td><td class="paramname">tensor1</td><td><a class="el" href="classarm__compute_1_1_tensor.xhtml" title="Basic implementation of the tensor interface. ">Tensor</a> to be swapped. </td></tr>
7602 <tr><td class="paramdir">[in,out]</td><td class="paramname">tensor2</td><td><a class="el" href="classarm__compute_1_1_tensor.xhtml" title="Basic implementation of the tensor interface. ">Tensor</a> to be swapped. </td></tr>
7603 </table>
7604 </dd>
7605</dl>
7606
Kaizen8938bd32017-09-28 14:38:23 +01007607<p>Definition at line <a class="el" href="_simple_tensor_8h_source.xhtml#l00335">335</a> of file <a class="el" href="_simple_tensor_8h_source.xhtml">SimpleTensor.h</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007608
Kaizen8938bd32017-09-28 14:38:23 +01007609<p>Referenced by <a class="el" href="_simple_tensor_8h_source.xhtml#l00214">SimpleTensor&lt; T &gt;::operator=()</a>.</p>
7610<div class="fragment"><div class="line"><a name="l00336"></a><span class="lineno"> 336</span>&#160;{</div>
7611<div class="line"><a name="l00337"></a><span class="lineno"> 337</span>&#160; <span class="comment">// Use unqualified call to swap to enable ADL. But make std::swap available</span></div>
7612<div class="line"><a name="l00338"></a><span class="lineno"> 338</span>&#160; <span class="comment">// as backup.</span></div>
7613<div class="line"><a name="l00339"></a><span class="lineno"> 339</span>&#160; <span class="keyword">using</span> <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">std::swap</a>;</div>
7614<div class="line"><a name="l00340"></a><span class="lineno"> 340</span>&#160; <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a>(tensor1._shape, tensor2._shape);</div>
7615<div class="line"><a name="l00341"></a><span class="lineno"> 341</span>&#160; <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a>(tensor1._format, tensor2._format);</div>
7616<div class="line"><a name="l00342"></a><span class="lineno"> 342</span>&#160; <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a>(tensor1._data_type, tensor2._data_type);</div>
7617<div class="line"><a name="l00343"></a><span class="lineno"> 343</span>&#160; <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a>(tensor1._num_channels, tensor2._num_channels);</div>
7618<div class="line"><a name="l00344"></a><span class="lineno"> 344</span>&#160; <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a>(tensor1._buffer, tensor2._buffer);</div>
7619<div class="line"><a name="l00345"></a><span class="lineno"> 345</span>&#160;}</div>
7620<div class="ttc" id="namespacearm__compute_1_1test_xhtml_a28edc8880596d14c099f3c2509efc8b3"><div class="ttname"><a href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">arm_compute::test::swap</a></div><div class="ttdeci">void swap(SimpleTensor&lt; U &gt; &amp;tensor1, SimpleTensor&lt; U &gt; &amp;tensor2)</div><div class="ttdef"><b>Definition:</b> <a href="_simple_tensor_8h_source.xhtml#l00335">SimpleTensor.h:335</a></div></div>
7621</div><!-- fragment -->
7622</div>
7623</div>
7624<a class="anchor" id="a5b67cbf475b1e1d3bec9b0b937fdafac"></a>
7625<div class="memitem">
7626<div class="memproto">
7627<table class="mlabels">
7628 <tr>
7629 <td class="mlabels-left">
7630 <table class="memname">
7631 <tr>
7632 <td class="memname">std::string arm_compute::test::tolower </td>
7633 <td>(</td>
7634 <td class="paramtype">std::string&#160;</td>
7635 <td class="paramname"><em>string</em></td><td>)</td>
7636 <td></td>
7637 </tr>
7638 </table>
7639 </td>
7640 <td class="mlabels-right">
7641<span class="mlabels"><span class="mlabel">inline</span></span> </td>
7642 </tr>
7643</table>
7644</div><div class="memdoc">
7645
7646<p>Convert string to lower case. </p>
7647<dl class="params"><dt>Parameters</dt><dd>
7648 <table class="params">
7649 <tr><td class="paramdir">[in]</td><td class="paramname">string</td><td>To be converted string.</td></tr>
7650 </table>
7651 </dd>
7652</dl>
7653<dl class="section return"><dt>Returns</dt><dd>Lower case string. </dd></dl>
7654
7655<p>Definition at line <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00147">147</a> of file <a class="el" href="tests_2framework_2_utils_8h_source.xhtml">Utils.h</a>.</p>
7656
7657<p>Referenced by <a class="el" href="_dataset_modes_8cpp_source.xhtml#l00036">arm_compute::test::framework::dataset_mode_from_name()</a>, <a class="el" href="_instruments_8cpp_source.xhtml#l00037">arm_compute::test::framework::instrument_type_from_name()</a>, <a class="el" href="_printers_8cpp_source.xhtml#l00037">arm_compute::test::framework::log_format_from_name()</a>, and <a class="el" href="_exceptions_8cpp_source.xhtml#l00037">arm_compute::test::framework::log_level_from_name()</a>.</p>
7658<div class="fragment"><div class="line"><a name="l00148"></a><span class="lineno"> 148</span>&#160;{</div>
7659<div class="line"><a name="l00149"></a><span class="lineno"> 149</span>&#160; std::transform(<span class="keywordtype">string</span>.begin(), <span class="keywordtype">string</span>.end(), <span class="keywordtype">string</span>.begin(), [](<span class="keywordtype">unsigned</span> <span class="keywordtype">char</span> c)</div>
7660<div class="line"><a name="l00150"></a><span class="lineno"> 150</span>&#160; {</div>
7661<div class="line"><a name="l00151"></a><span class="lineno"> 151</span>&#160; <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1test.xhtml#a5b67cbf475b1e1d3bec9b0b937fdafac">std::tolower</a>(c);</div>
7662<div class="line"><a name="l00152"></a><span class="lineno"> 152</span>&#160; });</div>
7663<div class="line"><a name="l00153"></a><span class="lineno"> 153</span>&#160; <span class="keywordflow">return</span> string;</div>
7664<div class="line"><a name="l00154"></a><span class="lineno"> 154</span>&#160;}</div>
7665<div class="ttc" id="namespacearm__compute_1_1test_xhtml_a5b67cbf475b1e1d3bec9b0b937fdafac"><div class="ttname"><a href="namespacearm__compute_1_1test.xhtml#a5b67cbf475b1e1d3bec9b0b937fdafac">arm_compute::test::tolower</a></div><div class="ttdeci">std::string tolower(std::string string)</div><div class="ttdoc">Convert string to lower case. </div><div class="ttdef"><b>Definition:</b> <a href="tests_2framework_2_utils_8h_source.xhtml#l00147">Utils.h:147</a></div></div>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007666</div><!-- fragment -->
7667</div>
7668</div>
7669<h2 class="groupheader">Variable Documentation</h2>
Kaizen8938bd32017-09-28 14:38:23 +01007670<a class="anchor" id="aab9a2ff74a27ae837d32a79a38952228"></a>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007671<div class="memitem">
7672<div class="memproto">
7673 <table class="memname">
7674 <tr>
Kaizen8938bd32017-09-28 14:38:23 +01007675 <td class="memname">const auto data_types = <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>(&quot;DataType&quot;, { DataType::F32 })</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007676 </tr>
7677 </table>
7678</div><div class="memdoc">
7679
Kaizen8938bd32017-09-28 14:38:23 +01007680<p>Definition at line <a class="el" href="benchmark_2_c_l_2_depthwise_convolution_8cpp_source.xhtml#l00040">40</a> of file <a class="el" href="benchmark_2_c_l_2_depthwise_convolution_8cpp_source.xhtml">DepthwiseConvolution.cpp</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007681
7682</div>
7683</div>
Kaizen8938bd32017-09-28 14:38:23 +01007684<a class="anchor" id="a71326f0909d77386e29b511e1990a11f"></a>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007685<div class="memitem">
7686<div class="memproto">
7687 <table class="memname">
7688 <tr>
Kaizen8938bd32017-09-28 14:38:23 +01007689 <td class="memname">std::unique_ptr&lt; <a class="el" href="classarm__compute_1_1test_1_1_assets_library.xhtml">AssetsLibrary</a> &gt; library</td>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007690 </tr>
7691 </table>
7692</div><div class="memdoc">
7693
Kaizen8938bd32017-09-28 14:38:23 +01007694<p>Definition at line <a class="el" href="main_8cpp_source.xhtml#l00054">54</a> of file <a class="el" href="main_8cpp_source.xhtml">main.cpp</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007695
Kaizen8938bd32017-09-28 14:38:23 +01007696<p>Referenced by <a class="el" href="_c_l_2_harris_corners_8cpp_source.xhtml#l00057">arm_compute::test::validation::DATA_TEST_CASE()</a>, <a class="el" href="_le_net5_network_8h_source.xhtml#l00152">LeNet5Network&lt; TensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, FullyConnectedLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction &gt;::feed()</a>, <a class="el" href="_alex_net_network_8h_source.xhtml#l00413">AlexNetNetwork&lt; ITensorType, TensorType, SubTensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, DirectConvolutionLayerFunction, FullyConnectedLayerFunction, NormalizationLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction &gt;::feed()</a>, <a class="el" href="_le_net5_network_8h_source.xhtml#l00136">LeNet5Network&lt; TensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, FullyConnectedLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction &gt;::fill()</a>, <a class="el" href="_alex_net_network_8h_source.xhtml#l00396">AlexNetNetwork&lt; ITensorType, TensorType, SubTensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, DirectConvolutionLayerFunction, FullyConnectedLayerFunction, NormalizationLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction &gt;::fill()</a>, <a class="el" href="tests_2validation_2_helpers_8h_source.xhtml#l00169">arm_compute::test::validation::fill_lookuptable()</a>, <a class="el" href="_helpers_8cpp_source.xhtml#l00032">arm_compute::test::validation::fill_mask_from_pattern()</a>, <a class="el" href="_le_net5_network_8h_source.xhtml#l00120">LeNet5Network&lt; TensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, FullyConnectedLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction &gt;::fill_random()</a>, <a class="el" href="_alex_net_network_8h_source.xhtml#l00346">AlexNetNetwork&lt; ITensorType, TensorType, SubTensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, DirectConvolutionLayerFunction, FullyConnectedLayerFunction, NormalizationLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction &gt;::fill_random()</a>, <a class="el" href="_helper_8h_source.xhtml#l00039">fill_tensors()</a>, <a class="el" href="_helpers_8cpp_source.xhtml#l00098">arm_compute::test::validation::harris_corners_parameters()</a>, <a class="el" href="main_8cpp_source.xhtml#l00058">main()</a>, <a class="el" href="benchmark_2fixtures_2_activation_layer_fixture_8h_source.xhtml#l00043">ActivationLayerFixture&lt; TensorType, Function, Accessor &gt;::setup()</a>, <a class="el" href="benchmark_2fixtures_2_fully_connected_layer_fixture_8h_source.xhtml#l00043">FullyConnectedLayerFixture&lt; TensorType, Function, Accessor &gt;::setup()</a>, <a class="el" href="benchmark_2fixtures_2_convolution_layer_fixture_8h_source.xhtml#l00043">ConvolutionLayerFixture&lt; TensorType, Function, Accessor &gt;::setup()</a>, <a class="el" href="benchmark_2fixtures_2_g_e_m_m_fixture_8h_source.xhtml#l00043">GEMMFixture&lt; TensorType, Function, Accessor &gt;::setup()</a>, <a class="el" href="benchmark_2fixtures_2_floor_fixture_8h_source.xhtml#l00043">FloorFixture&lt; TensorType, Function, Accessor &gt;::setup()</a>, <a class="el" href="benchmark_2fixtures_2_normalization_layer_fixture_8h_source.xhtml#l00043">NormalizationLayerFixture&lt; TensorType, Function, Accessor &gt;::setup()</a>, <a class="el" href="benchmark_2fixtures_2_depthwise_separable_convolution_layer_fixture_8h_source.xhtml#l00043">DepthwiseSeparableConvolutionLayerFixture&lt; TensorType, Function, Accessor &gt;::setup()</a>, <a class="el" href="benchmark_2fixtures_2_pooling_layer_fixture_8h_source.xhtml#l00043">PoolingLayerFixture&lt; TensorType, Function, Accessor &gt;::setup()</a>, <a class="el" href="benchmark_2fixtures_2_depthwise_convolution_fixture_8h_source.xhtml#l00043">DepthwiseConvolutionFixture&lt; TensorType, Function, Accessor &gt;::setup()</a>, <a class="el" href="benchmark_2fixtures_2_batch_normalization_layer_fixture_8h_source.xhtml#l00043">BatchNormalizationLayerFixture&lt; TensorType, Function, Accessor &gt;::setup()</a>, <a class="el" href="_r_o_i_pooling_layer_fixture_8h_source.xhtml#l00045">ROIPoolingLayerFixture&lt; TensorType, Function, Accessor, Array_T, ArrayAccessor &gt;::setup()</a>, <a class="el" href="_scale_fixture_8h_source.xhtml#l00047">ScaleValidationFixture&lt; TensorType, AccessorType, FunctionType, T &gt;::setup()</a>, <a class="el" href="_non_linear_filter_fixture_8h_source.xhtml#l00048">NonLinearFilterValidationFixture&lt; TensorType, AccessorType, FunctionType, T &gt;::setup()</a>, <a class="el" href="_gaussian3x3_fixture_8h_source.xhtml#l00049">Gaussian3x3ValidationFixture&lt; TensorType, AccessorType, FunctionType, T &gt;::setup()</a>, <a class="el" href="_gaussian5x5_fixture_8h_source.xhtml#l00049">Gaussian5x5ValidationFixture&lt; TensorType, AccessorType, FunctionType, T &gt;::setup()</a>, <a class="el" href="_box3x3_fixture_8h_source.xhtml#l00049">Box3x3ValidationFixture&lt; TensorType, AccessorType, FunctionType, T &gt;::setup()</a>, <a class="el" href="_depth_concatenate_layer_fixture_8h_source.xhtml#l00050">DepthConcatenateValidationFixture&lt; TensorType, ITensorType, AccessorType, FunctionType, T &gt;::setup()</a>, and <a class="el" href="_sobel_fixture_8h_source.xhtml#l00105">SobelValidationFixture&lt; TensorType, AccessorType, FunctionType, T, U &gt;::setup()</a>.</p>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007697
7698</div>
7699</div>
7700</div><!-- contents -->
7701</div><!-- doc-content -->
7702<!-- start footer part -->
7703<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
7704 <ul>
7705 <li class="navelem"><a class="el" href="namespacearm__compute.xhtml">arm_compute</a></li><li class="navelem"><a class="el" href="namespacearm__compute_1_1test.xhtml">test</a></li>
Kaizen8938bd32017-09-28 14:38:23 +01007706 <li class="footer">Generated on Thu Sep 28 2017 14:37:58 for Compute Library by
Anthony Barbierdbdab852017-06-23 15:42:00 +01007707 <a href="http://www.doxygen.org/index.html">
Kaizen8938bd32017-09-28 14:38:23 +01007708 <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.6 </li>
Anthony Barbierdbdab852017-06-23 15:42:00 +01007709 </ul>
7710</div>
7711</body>
7712</html>