Kaizen | 8938bd3 | 2017-09-28 14:38:23 +0100 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright (c) 2017 ARM Limited. |
| 3 | * |
| 4 | * SPDX-License-Identifier: MIT |
| 5 | * |
| 6 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 7 | * of this software and associated documentation files (the "Software"), to |
| 8 | * deal in the Software without restriction, including without limitation the |
| 9 | * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or |
| 10 | * sell copies of the Software, and to permit persons to whom the Software is |
| 11 | * furnished to do so, subject to the following conditions: |
| 12 | * |
| 13 | * The above copyright notice and this permission notice shall be included in all |
| 14 | * copies or substantial portions of the Software. |
| 15 | * |
| 16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 19 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 22 | * SOFTWARE. |
| 23 | */ |
| 24 | #include "ConvolutionLayer.h" |
| 25 | |
| 26 | #include "tests/validation/FixedPoint.h" |
| 27 | #include "tests/validation/Helpers.h" |
| 28 | |
| 29 | namespace arm_compute |
| 30 | { |
| 31 | namespace test |
| 32 | { |
| 33 | namespace validation |
| 34 | { |
| 35 | namespace reference |
| 36 | { |
| 37 | namespace |
| 38 | { |
| 39 | inline bool is_valid_pixel(int i, int min, int max) |
| 40 | { |
| 41 | return (i >= min && i < max); |
| 42 | } |
| 43 | |
| 44 | // 3D convolution for floating point type |
| 45 | template <typename T, typename std::enable_if<is_floating_point<T>::value, int>::type = 0> |
| 46 | void convolution3d(const T *in, const T *weights, const T *bias, T *out, int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights, int fixed_point_position) |
| 47 | { |
| 48 | ARM_COMPUTE_UNUSED(fixed_point_position); |
| 49 | |
| 50 | const int half_width_weights = width_weights / 2; |
| 51 | const int half_height_weights = height_weights / 2; |
| 52 | |
| 53 | // Reset accumulator |
| 54 | T acc(0); |
| 55 | |
| 56 | // Compute a 2D convolution for each IFM and accumulate the result |
| 57 | for(int ifm = 0; ifm < depth_in; ++ifm) |
| 58 | { |
| 59 | // Compute the offset for the input slice |
| 60 | const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in; |
| 61 | |
| 62 | // Compute 2D convolution |
| 63 | for(int yk = -half_height_weights; yk <= half_height_weights; ++yk) |
| 64 | { |
| 65 | for(int xk = -half_width_weights; xk <= half_width_weights; ++xk) |
| 66 | { |
| 67 | // Check if the pixel is out-of-bound |
| 68 | if(is_valid_pixel(xi + xk, 0, width_in) && is_valid_pixel(yi + yk, 0, height_in)) |
| 69 | { |
| 70 | const int idx = xk + half_width_weights; |
| 71 | const int idy = yk + half_height_weights; |
| 72 | |
| 73 | const T i_value = in[offset_slice_in + xk + yk * width_in]; |
| 74 | const T w_value = weights[idx + idy * width_weights + ifm * width_weights * height_weights]; |
| 75 | |
| 76 | acc += i_value * w_value; |
| 77 | } |
| 78 | } |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | // Accumulate the bias and store the result |
| 83 | *out = acc + (*bias); |
| 84 | } |
| 85 | |
| 86 | // 3D convolution for fixed point type |
| 87 | template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type = 0> |
| 88 | void convolution3d(const T *in, const T *weights, const T *bias, T *out, int xi, int yi, int width_in, int height_in, int depth_in, int width_weights, int height_weights, |
| 89 | int fixed_point_position) |
| 90 | { |
| 91 | const int half_width_weights = width_weights / 2; |
| 92 | const int half_height_weights = height_weights / 2; |
| 93 | |
| 94 | using namespace fixed_point_arithmetic; |
| 95 | using promoted_type = fixed_point_arithmetic::traits::promote_t<T>; |
| 96 | |
| 97 | // Reset accumulator |
| 98 | fixed_point<promoted_type> acc(0, fixed_point_position); |
| 99 | |
| 100 | // Compute a 2D convolution for each IFM and accumulate the result |
| 101 | for(int ifm = 0; ifm < depth_in; ++ifm) |
| 102 | { |
| 103 | // Compute the offset for the input slice |
| 104 | const int offset_slice_in = xi + yi * width_in + ifm * width_in * height_in; |
| 105 | |
| 106 | // Compute 2D convolution |
| 107 | for(int yk = -half_height_weights; yk <= half_height_weights; ++yk) |
| 108 | { |
| 109 | for(int xk = -half_width_weights; xk <= half_width_weights; ++xk) |
| 110 | { |
| 111 | // Check if the pixel is out-of-bound |
| 112 | if(is_valid_pixel(xi + xk, 0, width_in) && is_valid_pixel(yi + yk, 0, height_in)) |
| 113 | { |
| 114 | const int idx = xk + half_width_weights; |
| 115 | const int idy = yk + half_height_weights; |
| 116 | |
| 117 | const fixed_point<promoted_type> i_value(in[offset_slice_in + xk + yk * width_in], fixed_point_position, true); |
| 118 | const fixed_point<promoted_type> w_value(weights[idx + idy * width_weights + ifm * width_weights * height_weights], fixed_point_position, true); |
| 119 | const fixed_point<promoted_type> iw = i_value * w_value; |
| 120 | acc = iw + acc; |
| 121 | } |
| 122 | } |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | // Get the bias |
| 127 | const fixed_point<promoted_type> b(*bias, fixed_point_position, true); |
| 128 | |
| 129 | // Accumulate the bias and covert back |
| 130 | acc = acc + b; |
| 131 | fixed_point<T> res(acc); |
| 132 | *out = res.raw(); |
| 133 | } |
| 134 | } // namespace |
| 135 | |
| 136 | template <typename T> |
| 137 | SimpleTensor<T> convolution_layer(const SimpleTensor<T> &src, const SimpleTensor<T> &weights, const SimpleTensor<T> &bias, const TensorShape &output_shape, const PadStrideInfo &info) |
| 138 | { |
| 139 | // Create reference |
| 140 | SimpleTensor<T> dst{ output_shape, src.data_type(), 1, src.fixed_point_position() }; |
| 141 | |
| 142 | // Compute reference |
| 143 | const int width_in = src.shape().x(); |
| 144 | const int height_in = src.shape().y(); |
| 145 | const int depth_in = src.shape().z(); |
| 146 | const int width_out = dst.shape().x(); |
| 147 | const int height_out = dst.shape().y(); |
| 148 | const int depth_out = dst.shape().z(); |
| 149 | const int width_weights = weights.shape().x(); |
| 150 | const int height_weights = weights.shape().y(); |
| 151 | const int depth_weights = weights.shape().z(); |
| 152 | const int pad_xi = std::min(static_cast<int>(info.pad().first), width_weights / 2); |
| 153 | const int pad_yi = std::min(static_cast<int>(info.pad().second), height_weights / 2); |
| 154 | const int start_xi = width_weights / 2 - pad_xi; |
| 155 | const int start_yi = height_weights / 2 - pad_yi; |
| 156 | const int end_xi = width_in - start_xi; |
| 157 | const int end_yi = height_in - start_yi; |
| 158 | const int stride_xi = info.stride().first; |
| 159 | const int stride_yi = info.stride().second; |
| 160 | const int num_batches = src.shape().total_size() / (width_in * height_in * depth_in); |
| 161 | |
| 162 | for(int r = 0; r < num_batches; ++r) |
| 163 | { |
| 164 | for(int yi = start_yi; yi < end_yi; yi += stride_yi) |
| 165 | { |
| 166 | for(int xi = start_xi; xi < end_xi; xi += stride_xi) |
| 167 | { |
| 168 | for(int ofm = 0; ofm < depth_out; ++ofm) |
| 169 | { |
| 170 | // Compute input and output offsets |
| 171 | const int offset_in = r * width_in * height_in * depth_in; |
| 172 | const int xo = (xi - start_xi) / stride_xi; |
| 173 | const int yo = (yi - start_yi) / stride_yi; |
| 174 | const int offset_out = xo + yo * width_out + ofm * width_out * height_out + r * width_out * height_out * depth_out; |
| 175 | |
| 176 | // Compute 3D convolution |
| 177 | convolution3d(src.data() + offset_in, |
| 178 | weights.data() + ofm * width_weights * height_weights * depth_weights, |
| 179 | bias.data() + ofm, |
| 180 | dst.data() + offset_out, |
| 181 | xi, yi, |
| 182 | width_in, height_in, depth_in, |
| 183 | width_weights, height_weights, |
| 184 | src.fixed_point_position()); |
| 185 | } |
| 186 | } |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | return dst; |
| 191 | } |
| 192 | |
| 193 | template SimpleTensor<float> convolution_layer(const SimpleTensor<float> &src, const SimpleTensor<float> &weights, const SimpleTensor<float> &bias, const TensorShape &output_shape, |
| 194 | const PadStrideInfo &info); |
| 195 | template SimpleTensor<half> convolution_layer(const SimpleTensor<half> &src, const SimpleTensor<half> &weights, const SimpleTensor<half> &bias, const TensorShape &output_shape, |
| 196 | const PadStrideInfo &info); |
| 197 | template SimpleTensor<qint8_t> convolution_layer(const SimpleTensor<qint8_t> &src, const SimpleTensor<qint8_t> &weights, const SimpleTensor<qint8_t> &bias, const TensorShape &output_shape, |
| 198 | const PadStrideInfo &info); |
| 199 | template SimpleTensor<qint16_t> convolution_layer(const SimpleTensor<qint16_t> &src, const SimpleTensor<qint16_t> &weights, const SimpleTensor<qint16_t> &bias, const TensorShape &output_shape, |
| 200 | const PadStrideInfo &info); |
| 201 | } // namespace reference |
| 202 | } // namespace validation |
| 203 | } // namespace test |
| 204 | } // namespace arm_compute |