blob: ca9e7e353279167b8d4c0369088667db9219e36a [file] [log] [blame]
Jenkinsb9abeae2018-11-22 11:58:08 +00001///
2/// Copyright (c) 2017-2018 ARM Limited.
3///
4/// SPDX-License-Identifier: MIT
5///
6/// Permission is hereby granted, free of charge, to any person obtaining a copy
7/// of this software and associated documentation files (the "Software"), to
8/// deal in the Software without restriction, including without limitation the
9/// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10/// sell copies of the Software, and to permit persons to whom the Software is
11/// furnished to do so, subject to the following conditions:
12///
13/// The above copyright notice and this permission notice shall be included in all
14/// copies or substantial portions of the Software.
15///
16/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22/// SOFTWARE.
23///
Jenkinsc3f34a42018-03-02 12:38:09 +000024namespace arm_compute
25{
Anthony Barbierdbdab852017-06-23 15:42:00 +010026/** @mainpage Introduction
27
28@tableofcontents
29
30The Computer Vision and Machine Learning library is a set of functions optimised for both ARM CPUs and GPUs using SIMD technologies.
31
32Several builds of the library are available using various configurations:
33 - OS: Linux, Android or bare metal.
34 - Architecture: armv7a (32bit) or arm64-v8a (64bit)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000035 - Technology: NEON / OpenCL / GLES_COMPUTE / NEON and OpenCL and GLES_COMPUTE
Anthony Barbierdbdab852017-06-23 15:42:00 +010036 - Debug / Asserts / Release: Use a build with asserts enabled to debug your application and enable extra validation. Once you are sure your application works as expected you can switch to a release build of the library for maximum performance.
37
38@section S0_1_contact Contact / Support
39
40Please email developer@arm.com
41
42In order to facilitate the work of the support team please provide the build information of the library you are using. To get the version of the library you are using simply run:
43
44 $ strings android-armv7a-cl-asserts/libarm_compute.so | grep arm_compute_version
45 arm_compute_version=v16.12 Build options: {'embed_kernels': '1', 'opencl': '1', 'arch': 'armv7a', 'neon': '0', 'asserts': '1', 'debug': '0', 'os': 'android', 'Werror': '1'} Git hash=f51a545d4ea12a9059fe4e598a092f1fd06dc858
46
Anthony Barbier8140e1e2017-12-14 23:48:46 +000047@section S0_2_prebuilt_binaries Pre-built binaries
48
49For each release we provide some pre-built binaries of the library [here](https://github.com/ARM-software/ComputeLibrary/releases)
50
51These binaries have been built using the following toolchains:
Jenkinsb9abeae2018-11-22 11:58:08 +000052 - Linux armv7a: gcc-linaro-4.9-2016.02-x86_64_arm-linux-gnueabihf
Anthony Barbier8140e1e2017-12-14 23:48:46 +000053 - Linux arm64-v8a: gcc-linaro-4.9-2016.02-x86_64_aarch64-linux-gnu
Jenkins52ba29e2018-08-29 15:32:11 +000054 - Android armv7a: clang++ / libc++ NDK r17b
55 - Android am64-v8a: clang++ / libc++ NDK r17b
Anthony Barbier8140e1e2017-12-14 23:48:46 +000056
57@warning Make sure to use a compatible toolchain to build your application or you will get some std::bad_alloc errors at runtime.
58
Anthony Barbierdbdab852017-06-23 15:42:00 +010059@section S1_file_organisation File organisation
60
61This archive contains:
62 - The arm_compute header and source files
63 - The latest Khronos OpenCL 1.2 C headers from the <a href="https://www.khronos.org/registry/cl/">Khronos OpenCL registry</a>
64 - The latest Khronos cl2.hpp from the <a href="https://www.khronos.org/registry/cl/">Khronos OpenCL registry</a> (API version 2.1 when this document was written)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000065 - The latest Khronos OpenGL ES 3.1 C headers from the <a href="https://www.khronos.org/registry/gles/">Khronos OpenGL ES registry</a>
66 - The latest Khronos EGL 1.5 C headers from the <a href="https://www.khronos.org/registry/gles/">Khronos EGL registry</a>
67 - The sources for a stub version of libOpenCL.so, libGLESv1_CM.so, libGLESv2.so and libEGL.so to help you build your application.
Anthony Barbierdbdab852017-06-23 15:42:00 +010068 - An examples folder containing a few examples to compile and link against the library.
69 - A @ref utils folder containing headers with some boiler plate code used by the examples.
70 - This documentation.
71
72You should have the following file organisation:
73
74 .
75 ├── arm_compute --> All the arm_compute headers
Jenkins4ba87db2019-05-23 17:11:51 +010076 │ ├── graph.h --> Includes all the Graph headers at once.
Anthony Barbierdbdab852017-06-23 15:42:00 +010077 │   ├── core
78 │   │   ├── CL
Kaizen8938bd32017-09-28 14:38:23 +010079 │   │   │   ├── CLKernelLibrary.h --> Manages all the OpenCL kernels compilation and caching, provides accessors for the OpenCL Context.
Anthony Barbierdbdab852017-06-23 15:42:00 +010080 │   │   │   ├── CLKernels.h --> Includes all the OpenCL kernels at once
81 │   │   │   ├── CL specialisation of all the generic objects interfaces (ICLTensor, ICLImage, etc.)
82 │   │   │   ├── kernels --> Folder containing all the OpenCL kernels
83 │   │   │   │   └── CL*Kernel.h
84 │   │   │   └── OpenCL.h --> Wrapper to configure the Khronos OpenCL C++ header
85 │   │ ├── CPP
Kaizen8938bd32017-09-28 14:38:23 +010086 │   │   │   ├── CPPKernels.h --> Includes all the CPP kernels at once
Anthony Barbierdbdab852017-06-23 15:42:00 +010087 │   │ │   └── kernels --> Folder containing all the CPP kernels
Kaizen8938bd32017-09-28 14:38:23 +010088 │   │   │      └── CPP*Kernel.h
Anthony Barbier8140e1e2017-12-14 23:48:46 +000089 │   │   ├── GLES_COMPUTE
90 │   │   │   ├── GCKernelLibrary.h --> Manages all the GLES kernels compilation and caching, provides accessors for the GLES Context.
91 │   │   │   ├── GCKernels.h --> Includes all the GLES kernels at once
92 │   │   │   ├── GLES specialisation of all the generic objects interfaces (IGCTensor, IGCImage, etc.)
93 │   │   │   ├── kernels --> Folder containing all the GLES kernels
94 │   │   │   │   └── GC*Kernel.h
95 │   │   │   └── OpenGLES.h --> Wrapper to configure the Khronos EGL and OpenGL ES C header
Anthony Barbierdbdab852017-06-23 15:42:00 +010096 │   │   ├── NEON
97 │   │   │   ├── kernels --> Folder containing all the NEON kernels
Jenkinsb3a371b2018-05-23 11:36:53 +010098 │   │   │   │ ├── assembly --> headers for assembly optimised NEON kernels.
99 │   │   │   │ ├── convolution --> headers for convolution assembly optimised NEON kernels.
100 │   │   │   │   │   ├── common --> headers for code which is common to several convolution implementations.
101 │   │   │   │   │   ├── depthwise --> headers for Depthwise convolultion assembly implementation
102 │   │   │   │   │   └── winograd --> headers for Winograd convolution assembly implementation
103 │   │   │   │ ├── detail --> Common code for several intrinsics implementations.
Anthony Barbierdbdab852017-06-23 15:42:00 +0100104 │   │   │   │   └── NE*Kernel.h
105 │   │   │   └── NEKernels.h --> Includes all the NEON kernels at once
106 │   │   ├── All common basic types (Types.h, Window, Coordinates, Iterator, etc.)
107 │   │   ├── All generic objects interfaces (ITensor, IImage, etc.)
108 │   │   └── Objects metadata classes (ImageInfo, TensorInfo, MultiImageInfo)
Kaizen8938bd32017-09-28 14:38:23 +0100109 │   ├── graph
Jenkinsb3a371b2018-05-23 11:36:53 +0100110 │   │   ├── algorithms
111 │   │   │   └── Generic algorithms used by the graph backend (e.g Order of traversal)
112 │   │   ├── backends --> The backend specific code
113 │   │   │   ├── CL --> OpenCL specific operations
114 │   │   │   ├── GLES --> OpenGLES Compute Shaders specific operations
115 │   │   │   └── NEON --> NEON specific operations
116 │   │   ├── detail
117 │   │   │   └── Collection of internal utilities.
118 │   │   ├── frontend
119 │   │   │   └── Code related to the stream frontend interface.
120 │   │   ├── mutators
121 │   │   │   └── Used to modify / optimise the Graph intermediate representation(Operator fusion, in place operations, etc.)
Kaizen8938bd32017-09-28 14:38:23 +0100122 │   │   ├── nodes
123 │   │   │   └── The various nodes supported by the graph API
Jenkinsb3a371b2018-05-23 11:36:53 +0100124 │   │   ├── printers
125 │   │   │   └── Debug printers
Kaizen8938bd32017-09-28 14:38:23 +0100126 │   │   └── Graph objects ( INode, ITensorAccessor, Graph, etc.)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100127 │   └── runtime
128 │   ├── CL
129 │   │   ├── CL objects & allocators (CLArray, CLImage, CLTensor, etc.)
130 │   │   ├── functions --> Folder containing all the OpenCL functions
131 │   │   │   └── CL*.h
Kaizen8938bd32017-09-28 14:38:23 +0100132 │   │   ├── CLScheduler.h --> Interface to enqueue OpenCL kernels and get/set the OpenCL CommandQueue and ICLTuner.
Jenkinsb3a371b2018-05-23 11:36:53 +0100133 │   │   ├── CLFunctions.h --> Includes all the OpenCL functions at once
134 │   │   └── tuners
135 │   │      └── Local workgroup size tuners for specific architectures / GPUs
Anthony Barbierdbdab852017-06-23 15:42:00 +0100136 │   ├── CPP
Kaizen8938bd32017-09-28 14:38:23 +0100137 │      │   ├── CPPKernels.h --> Includes all the CPP functions at once.
Jenkinsb3a371b2018-05-23 11:36:53 +0100138 │   │   ├── CPPScheduler.h --> Basic pool of threads to execute CPP/NEON code on several cores in parallel
139 │   │   └── functions --> Folder containing all the CPP functions
140 │   │      └── CPP*.h
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000141 │   ├── GLES_COMPUTE
142 │   │   ├── GLES objects & allocators (GCArray, GCImage, GCTensor, etc.)
143 │   │   ├── functions --> Folder containing all the GLES functions
144 │   │   │   └── GC*.h
145 │   │   ├── GCScheduler.h --> Interface to enqueue GLES kernels and get/set the GLES CommandQueue.
146 │   │   └── GCFunctions.h --> Includes all the GLES functions at once
Anthony Barbierdbdab852017-06-23 15:42:00 +0100147 │   ├── NEON
148 │   │ ├── functions --> Folder containing all the NEON functions
149 │   │ │   └── NE*.h
150 │   │ └── NEFunctions.h --> Includes all the NEON functions at once
Kaizen8938bd32017-09-28 14:38:23 +0100151 │   ├── OMP
152 │   │   └── OMPScheduler.h --> OpenMP scheduler (Alternative to the CPPScheduler)
153 │ ├── Memory manager files (LifetimeManager, PoolManager, etc.)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100154 │   └── Basic implementations of the generic object interfaces (Array, Image, Tensor, etc.)
Jenkinsc3f34a42018-03-02 12:38:09 +0000155 ├── data -> Contains test images and reference data dumps used by validation tests
156 ├── docs -> Contains Doxyfile and Doxygen sources used to generate the HTML pages in the documentation folder.
Anthony Barbierdbdab852017-06-23 15:42:00 +0100157 ├── documentation
158 │   ├── index.xhtml
159 │   └── ...
160 ├── documentation.xhtml -> documentation/index.xhtml
161 ├── examples
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000162 │   ├── cl_*.cpp --> OpenCL examples
163 │   ├── gc_*.cpp --> GLES compute shaders examples
164 │   ├── graph_*.cpp --> Graph examples
165 │   ├── neoncl_*.cpp --> NEON / OpenCL interoperability examples
166 │   └── neon_*.cpp --> NEON examples
Anthony Barbierdbdab852017-06-23 15:42:00 +0100167 ├── include
Kaizen8938bd32017-09-28 14:38:23 +0100168 │   ├── CL
169 │   │ └── Khronos OpenCL C headers and C++ wrapper
170 │   ├── half --> FP16 library available from http://half.sourceforge.net
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000171 │   ├── libnpy --> Library to load / write npy buffers, available from https://github.com/llohse/libnpy
172 │  └── linux --> Headers only needed for Linux builds
173 │   └── Khronos EGL and OpenGLES headers
Anthony Barbierdbdab852017-06-23 15:42:00 +0100174 ├── opencl-1.2-stubs
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000175 │ └── opencl_stubs.c --> OpenCL stubs implementation
176 ├── opengles-3.1-stubs
177 │   ├── EGL.c --> EGL stubs implementation
178 │   └── GLESv2.c --> GLESv2 stubs implementation
Kaizen8938bd32017-09-28 14:38:23 +0100179 ├── scripts
180 │   ├── caffe_data_extractor.py --> Basic script to export weights from Caffe to npy files
181 │   └── tensorflow_data_extractor.py --> Basic script to export weights from Tensor Flow to npy files
Anthony Barbierdbdab852017-06-23 15:42:00 +0100182 ├── src
183 │   ├── core
184 │ │ └── ... (Same structure as headers)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000185 │   │ ├── CL
186 │   │ │ └── cl_kernels --> All the OpenCL kernels
187 │   │ └── GLES_COMPUTE
188 │   │ └── cs_shaders --> All the OpenGL ES Compute Shaders
Kaizen8938bd32017-09-28 14:38:23 +0100189 │   ├── graph
190 │ │ └── ... (Same structure as headers)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100191 │ └── runtime
192 │ └── ... (Same structure as headers)
Kaizen8938bd32017-09-28 14:38:23 +0100193 ├── support
194 │ └── Various headers to work around toolchains / platform issues.
Anthony Barbierdbdab852017-06-23 15:42:00 +0100195 ├── tests
196 │   ├── All test related files shared between validation and benchmark
Jenkinsb3a371b2018-05-23 11:36:53 +0100197 │   ├── benchmark --> Sources for benchmarking
198 │ │ ├── Benchmark specific files
199 │   │ ├── fixtures
200 │ │ │ └── Backend agnostic fixtures to initialise and run the functions to test.
201 │ │ ├── CL --> OpenCL benchmarking tests
202 │ │ ├── GLES_COMPUTE --> GLES benchmarking tests
203 │ │ └── NEON --> NEON benchmarking tests
Kaizen8938bd32017-09-28 14:38:23 +0100204 │   ├── CL --> OpenCL accessors
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000205 │   ├── GLES_COMPUTE --> GLES accessors
Kaizen8938bd32017-09-28 14:38:23 +0100206 │   ├── NEON --> NEON accessors
Kaizen8938bd32017-09-28 14:38:23 +0100207 │   ├── datasets
208 │ │ └── Datasets for all the validation / benchmark tests, layer configurations for various networks, etc.
209 │   ├── framework
210 │ │ └── Boiler plate code for both validation and benchmark test suites (Command line parsers, instruments, output loggers, etc.)
Jenkinsb3a371b2018-05-23 11:36:53 +0100211 │   └── validation --> Sources for validation
212 │ ├── Validation specific files
213 │   ├── fixtures
214 │ │ └── Backend agnostic fixtures to initialise and run the functions to test.
215 │   ├── reference
216 │ │ └── Reference implementation used to validate the results of the various backends.
217 │ ├── CL --> OpenCL validation tests
218 │ ├── GLES_COMPUTE --> GLES validation tests
219 │ ├── CPP --> C++ reference implementations
220 │ └── NEON --> NEON validation tests
Anthony Barbierdbdab852017-06-23 15:42:00 +0100221 └── utils --> Boiler plate code used by examples
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000222 └── Various utilities to print types, load / store assets, etc.
Anthony Barbierdbdab852017-06-23 15:42:00 +0100223
224@section S2_versions_changelog Release versions and changelog
225
226@subsection S2_1_versions Release versions
227
228All releases are numbered vYY.MM Where YY are the last two digits of the year, and MM the month number.
229If there is more than one release in a month then an extra sequential number is appended at the end:
230
231 v17.03 (First release of March 2017)
232 v17.03.1 (Second release of March 2017)
233 v17.04 (First release of April 2017)
234
235@note We're aiming at releasing one major public release with new features per quarter. All releases in between will only contain bug fixes.
236
237@subsection S2_2_changelog Changelog
238
Jenkins975dfe12019-09-02 11:47:54 +0100239v19.08 Public major release
240 - Various bug fixes.
241 - Various optimisations.
242 - Deprecated NEON functions
243 - NEDepthConcatenateLayer
244 - NEWidthConcatenateLayer
245 - Deprecated OpenCL kernels / functions
246 - CLDepthConcatenateLayer
247 - CLGEMMInterleave4x4Kernel / CLGEMMInterleave4x4
248 - CLGEMMTranspose1xWKernel / CLGEMMTranspose1xW
249 - CLWidthConcatenateLayer
250 - New NEON kernels / functions:
251 - @ref NEAbsLayer
252 - @ref NECast
253 - @ref NEElementwisePower
254 - @ref NELogLayer
255 - @ref NELSTMLayerQuantized
256 - @ref NENegLayer
257 - @ref NEPReluLayer
258 - @ref NESinLayer
259 - @ref NEBatchConcatenateLayerKernel
260 - @ref NEDepthToSpaceLayerKernel / @ref NEDepthToSpaceLayer
261 - @ref NEDepthwiseConvolutionLayerNativeKernel
262 - @ref NEGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel
263 - @ref NEMeanStdDevNormalizationKernel / @ref NEMeanStdDevNormalizationLayer
264 - @ref NESpaceToDepthLayerKernel / @ref NESpaceToDepthLayer
265 - New OpenCL kernels / functions:
266 - @ref CLAbsLayer
267 - @ref CLElementwisePower
268 - @ref CLLogLayer
269 - @ref CLLSTMLayerQuantized
270 - @ref CLNegLayer
271 - @ref CLPReluLayer
272 - @ref CLSinLayer
273 - @ref CLBatchConcatenateLayerKernel
274 - @ref CLDepthToSpaceLayerKernel / @ref CLDepthToSpaceLayer
275 - @ref CLGEMMLowpMatrixMultiplyNativeKernel
276 - @ref CLGEMMLowpQuantizeDownInt32ToInt16ScaleByFixedPointKernel
277 - @ref CLGEMMMatrixMultiplyNativeKernel
278 - @ref CLMeanStdDevNormalizationKernel / @ref CLMeanStdDevNormalizationLayer
279 - @ref CLSpaceToDepthLayerKernel / @ref CLSpaceToDepthLayer
280 - New examples:
281 - neon_opticalflow
282 - cl_cache
283 - neon_permute
284 - Added support for FP16 in @ref NEDeconvolutionLayer
285 - Added support for FP16 in @ref CLDeconvolutionLayer
286 - Added support for REDUCE_MIN and REDUCE_MAX in @ref ReductionOperation
287 - Enable the fusion of batch normalization with convolution and depthwise convolution layer for FP32 in the graph API (OpenCL only)
288 - Added support for fusing activation function and broadcast addition with the matrix multiplication for FP32 (OpenCL only)
289 - Re-factored the depthwise convolution layer kernel on NEON for generic cases
290 - Added an optimized depthwise convolution layer kernel for 5x5 filters (NEON only)
291 - Added support to enable OpenCL kernel cache. Added example showing how to load the prebuilt OpenCL kernels from a binary cache file
292 - Altered @ref QuantizationInfo interface to support per-channel quantization.
293 - The @ref NEDepthwiseConvolutionLayer3x3 will be replaced by @ref NEDepthwiseConvolutionLayerOptimized to accommodate for future optimizations.
294 - Removed inner_border_right and inner_border_top parameters from @ref CLDeconvolutionLayer interface
295 - Removed inner_border_right and inner_border_top parameters from @ref NEDeconvolutionLayer interface
296 - Optimized the NEON assembly kernel for GEMMLowp. The new implementation fuses the output stage and quantization with the matrix multiplication kernel
297
Jenkins4ba87db2019-05-23 17:11:51 +0100298v19.05 Public major release
299 - Various bug fixes.
300 - Various optimisations.
301 - New Neon kernels / functions:
302 - @ref NEBatchToSpaceLayerKernel / @ref NEBatchToSpaceLayer
303 - @ref NEComplexPixelWiseMultiplicationKernel / @ref NEComplexPixelWiseMultiplication
304 - @ref NECropKernel / @ref NECropResize
305 - @ref NEDepthwiseConvolutionAssemblyDispatch
306 - @ref NEFFTDigitReverseKernel
307 - @ref NEFFTRadixStageKernel
308 - @ref NEFFTScaleKernel
309 - @ref NEGEMMLowpOffsetContributionOutputStageKernel
310 - @ref NEHeightConcatenateLayerKernel
311 - @ref NESpaceToBatchLayerKernel / @ref NESpaceToBatchLayer
312 - @ref NEFFT1D
313 - @ref NEFFT2D
314 - @ref NEFFTConvolutionLayer
315 - New OpenCL kernels / functions:
316 - @ref CLComplexPixelWiseMultiplicationKernel / @ref CLComplexPixelWiseMultiplication
317 - @ref CLCropKernel / @ref CLCropResize
318 - @ref CLDeconvolutionReshapeOutputKernel
319 - @ref CLFFTDigitReverseKernel
320 - @ref CLFFTRadixStageKernel
321 - @ref CLFFTScaleKernel
322 - @ref CLGEMMLowpMatrixMultiplyReshapedOnlyRHSKernel
323 - @ref CLGEMMMatrixMultiplyReshapedOnlyRHSKernel
324 - @ref CLHeightConcatenateLayerKernel
325 - @ref CLDirectDeconvolutionLayer
326 - @ref CLFFT1D
327 - @ref CLFFT2D
328 - @ref CLFFTConvolutionLayer
329 - @ref CLGEMMDeconvolutionLayer
330 - New OpenGLES kernels / functions:
331 - @ref GCConcatenateLayer
332 - Deprecated functions/interfaces
Jenkins975dfe12019-09-02 11:47:54 +0100333 - GCDepthConcatenateLayer
334 - NEWidthConcatenateLayer
335 - NEDepthConcatenateLayer
336 - CLWidthConcatenateLayer
337 - CLDepthConcatenateLayer
338 - CLGEMMInterleave4x4
339 - CLGEMMTranspose1xW
Jenkins4ba87db2019-05-23 17:11:51 +0100340 - Support different quantization info in CLConcatLayer.
341 - Add checks on different input/output quantization info were not supported.
342 - Tensors have different quantization information.
343 - Add FP16 support checks.
344 - Fix output quantization CLDeptwiseConv3x3 when activation is fused.
345 - New graph examples:
346 - graph_convolution
347 - graph_fully_connected
348 - graph_depthwise_convolution
349 - Deepspeech v0.4.1
350 - Add support for QASYMM8 in NEArithmeticSubtractionKernel.
351 - Add support for QASYMM8 in NEPixelWiseMultiplicationKernel.
352 - Add support for QASYMM8 NEDeconvolution.
353 - Add support for DequantizationLayer for NEON/CL.
354 - Add support for dilation in CLDepthwiseConvolution.
355 - Fuse offset contribution with the output stage when we use NEGEMMLowpMatrixMultiplyCore.
356 - Optimize CLDeconvolution.
357 - Add StackLayer to the graph API.
358 - Add support for "reflect" padding mode in NEPad.
359 - Winograd 7x7 NHWC on OpenCL.
360 - Rework CL ML layers to run exclusively on CL.
361 - Support different quantization info in PoolingLayer.
362 - Implement and test import memory interfaces.
363 - Added new tests and removed old ones.
364 - Various clang-tidy fixes.
365
Jenkins514be652019-02-28 12:25:18 +0000366v19.02 Public major release
367 - Various bug fixes.
368 - Various optimisations.
369 - New Neon kernels / functions:
370 - @ref NETileKernel / @ref NETile
371 - @ref NEFuseBatchNormalizationKernel / @ref NEFuseBatchNormalization
372 - @ref NEElementwiseOperationKernel
373 - @ref NEElementwiseMax
374 - @ref NEElementwiseMin
375 - @ref NEElementwiseSquaredDiff
376 - @ref NESelectKernel / @ref NESelect
377 - @ref NESplit
378 - @ref NESlice
379 - @ref NEUnstack
380 - @ref NEStridedSliceKernel / @ref NEStridedSlice
381 - @ref NEElementwiseUnaryKernel
382 - @ref NERsqrtLayer
383 - @ref NEExpLayer
384 - @ref NEReverseKernel / @ref NEReverse
385 - @ref NEArgMinMaxLayer
386 - @ref NEStackLayerKernel / @ref NEStackLayer
387 - @ref NERangeKernel / @ref NERange
388 - @ref NEPadLayer
389 - @ref NEMemsetKernel
390 - @ref NEGatherKernel / @ref NEGather
391 - @ref NEElementwiseComparison
392 - @ref NEElementwiseComparisonStatic
393 - @ref NEComparisonOperationKernel
394 - @ref NEElementwiseDivision
395 - New OpenCL kernels / functions:
396 - @ref CLSelectKernel / @ref CLSelect
397 - @ref CLTileKernel / @ref CLTile
398 - @ref CLComparisonKernel / @ref CLComparison
399 - @ref CLArgMinMaxLayer
400 - @ref CLElementwiseMax
401 - @ref CLElementwiseMin
402 - @ref CLElementwiseSquaredDiff
403 - @ref CLStackLayerKernel / @ref CLStackLayer
404 - @ref CLReverse / @ref CLReverseKernel
405 - @ref CLRsqrtLayer
406 - @ref CLExpLayer
407 - @ref CLElementWiseUnaryLayerKernel
408 - @ref CLGEMMReshapeLHSMatrixKernel
409 - @ref CLGEMMReshapeRHSMatrixKernel
410 - @ref CLGEMMMatrixMultiplyReshapedKernel
411 - @ref CLRangeKernel / @ref CLRange
412 - @ref CLUnstack
413 - @ref CLGatherKernel / @ref CLGather
414 - @ref CLGEMMLowpMatrixMultiplyReshapedKernel
415 - New CPP kernels / functions:
416 - @ref CPPDetectionOutputLayer
417 - @ref CPPTopKV / @ref CPPTopKVKernel
418 - Added new examples:
419 - graph_ssd_mobilenet.cpp
420 - graph_mobilenet_v2.cpp
421 - graph_resnet12.cpp
422 - graph_srcnn955.cpp
423 - graph_vgg_vdsr.cpp
424 - graph_inception_resnet_v1.cpp
425 - Add 4D tensors support to
426 - @ref NESoftmaxLayer
427 - Fused activation in @ref CLWinogradConvolutionLayer
428 - Extented @ref NEPermute to support more cases
429 - Added NEON/SVE GEMM Hybrid kernels
430 - Added u8 and s8 hybrid assembly kernels
431 - Introduced GEMM strategy name in NEGEMMAssemblyWrapper
432 - Improved @ref CLTuner
433 - Fused the bias addition within @ref CLGEMM
434 - Added support for QASYMM8 LOGISTIC activation in @ref NEActivationLayer
435 - Added NHWC data layout support to:
436 - @ref NEScale for F16
437 - @ref CLNormalizationLayer IN_MAP_2D for FP32/FP16
438 - @ref NEL2NormalizeLayer for FP32/FP16
439 - @ref NENormalizationLayer IN_MAP_2D for FP32/FP16
440 - @ref CLROIAlignLayer
441 - @ref CLGenerateProposalsLayer
442 - Added QASYMM8 support to the following kernels:
443 - @ref NEArithmeticAdditionKernel
444 - @ref NEScale
445 - Added new tests and improved validation and benchmarking suites.
446 - Deprecated functions/interfaces
447 - Usage of inner_border_right and inner_border_top has been deprecated in @ref CLDeconvolutionLayer and @ref NEDeconvolutionLayer
448
Jenkinsb9abeae2018-11-22 11:58:08 +0000449v18.11 Public major release
450 - Various bug fixes.
451 - Various optimisations.
452 - New Neon kernels / functions:
453 - @ref NEChannelShuffleLayer / @ref NEChannelShuffleLayerKernel
454 - @ref NEReduceMean
455 - @ref NEReorgLayer / @ref NEReorgLayerKernel
456 - @ref NEPriorBoxLayer / @ref NEPriorBoxLayerKernel
457 - @ref NEUpsampleLayer / @ref NEUpsampleLayerKernel
458 - @ref NEYOLOLayer / @ref NEYOLOLayerKernel
459 - New OpenCL kernels / functions:
460 - @ref CLBatchToSpaceLayer / @ref CLBatchToSpaceLayerKernel
461 - @ref CLBoundingBoxTransform / @ref CLBoundingBoxTransformKernel
462 - @ref CLComputeAllAnchorsKernel
463 - @ref CLGenerateProposalsLayer
464 - @ref CLNormalizePlanarYUVLayer / @ref CLNormalizePlanarYUVLayerKernel
465 - @ref CLReorgLayer / @ref CLReorgLayerKernel
466 - @ref CLSpaceToBatchLayer / @ref CLSpaceToBatchLayerKernel
467 - @ref CLPadLayer
468 - @ref CLReduceMean
469 - @ref CLPriorBoxLayer / @ref CLPriorBoxLayerKernel
470 - @ref CLROIAlignLayer / @ref CLROIAlignLayerKernel
471 - @ref CLSlice
472 - @ref CLSplit
473 - @ref CLStridedSlice / @ref CLStridedSliceKernel
474 - @ref CLUpsampleLayer / @ref CLUpsampleLayerKernel
475 - @ref CLYOLOLayer / @ref CLYOLOLayerKernel
476 - New CPP kernels / functions:
477 - @ref CPPBoxWithNonMaximaSuppressionLimit / @ref CPPBoxWithNonMaximaSuppressionLimitKernel
478 - Added the validate method in:
479 - @ref NEDepthConvertLayer
480 - @ref NEFloor / @ref CLFloor
481 - @ref NEGEMMMatrixAdditionKernel
482 - @ref NEReshapeLayer / @ref CLReshapeLayer
483 - @ref CLScale
484 - Added new examples:
485 - graph_shufflenet.cpp
486 - graph_yolov3.cpp
487 - Added documentation for add a new function or kernel.
488 - Improved doxygen documentation adding a list of the existing functions.
489 - Add 4D tensors support to
Jenkins975dfe12019-09-02 11:47:54 +0100490 - CLWidthConcatenateLayer
Jenkinsb9abeae2018-11-22 11:58:08 +0000491 - @ref CLFlattenLayer
492 - @ref CLSoftmaxLayer
493 - Add dot product support for @ref CLDepthwiseConvolutionLayer3x3NHWCKernel non-unit stride
494 - Add SVE support
495 - Fused batch normalization into convolution layer weights in @ref CLFuseBatchNormalization
496 - Fuses activation in @ref CLDepthwiseConvolutionLayer3x3NCHWKernel, @ref CLDepthwiseConvolutionLayer3x3NHWCKernel and @ref NEGEMMConvolutionLayer
497 - Added NHWC data layout support to:
498 - @ref CLChannelShuffleLayer
499 - @ref CLDeconvolutionLayer
500 - @ref CLL2NormalizeLayer
501 - Added QASYMM8 support to the following kernels:
502 - @ref CLScaleKernel
503 - @ref NEDepthwiseConvolutionLayer3x3Kernel
504 - @ref CLPixelWiseMultiplicationKernel
505 - Added FP16 support to the following kernels:
506 - @ref CLDepthwiseConvolutionLayer3x3NHWCKernel
507 - @ref NEDepthwiseConvolutionLayer3x3Kernel
508 - @ref CLNormalizePlanarYUVLayerKernel
509 - @ref CLWinogradConvolutionLayer (5x5 kernel)
510 - More tests added to both validation and benchmarking suites.
511
Jenkins52ba29e2018-08-29 15:32:11 +0000512v18.08 Public major release
513 - Various bug fixes.
514 - Various optimisations.
515 - Updated recommended NDK version to r17b.
516 - Removed support for QS8/QS16 data types.
517 - Added support for grouped convolution in @ref CLConvolutionLayer.
518 - Added NHWC data layout support to:
Jenkins975dfe12019-09-02 11:47:54 +0100519 - NEDepthConcatenateLayer / CLDepthConcatenateLayer
Jenkins52ba29e2018-08-29 15:32:11 +0000520 - @ref NEWinogradConvolutionLayer / @ref CLWinogradConvolutionLayer
521 - @ref CLDepthwiseConvolutionLayer
522 - @ref CLDirectConvolutionLayer
523 - @ref CLConvolutionLayer
524 - @ref CLScale
525 - @ref CLIm2ColKernel
526 - New Neon kernels / functions:
527 - @ref NERNNLayer
528 - New OpenCL kernels / functions:
529 - @ref CLArithmeticDivision
530 - Introduced prepare() stage support in the graph API for GLES.
531 - Added support for memory reusage when trying to allocate smaller CLTensors.
532 - Enabled NHWC execution on graph examples.
533 - Added JPEG accessor for validation purposes.
534 - Added validate methods to some kernels / functions.
535
536v18.05 Public major release
Jenkinsb3a371b2018-05-23 11:36:53 +0100537 - Various bug fixes.
538 - Various optimisations.
539 - Major redesign in the interface for the neon kernels implemented in assembly.
540 - Removed arm_compute::NEGEMMLowpAArch64A53Kernel / arm_compute::NEGEMMLowpAArch64Kernel / arm_compute::NEGEMMLowpAArch64V8P4Kernel / arm_compute::NEGEMMInterleavedBlockedKernel / arm_compute::NEGEMMLowpAssemblyMatrixMultiplyCore / arm_compute::NEHGEMMAArch64FP16Kernel
541 - Added NEGEMMAssemblyWrapper and AssemblyKernelGlue which are used to execute assembly kernels in neon functions.
542 - Minor changes to the CPUInfo type to make it compatible with the new assembly gemm interface.
543 - Moved neon assembly kernels to the folder src/core/NEON/kernels/arm_gemm.
544 - Improved doxygen documentation.
545 - Improved memory management for layer's transitions.
546 - Added support for NHWC data layout in tensors.
547 - Added NHWC data layout support to:
548 - @ref NEGEMMConvolutionLayer
549 - @ref NEDirectConvolutionLayer
550 - @ref NEPoolingLayer / @ref CLPoolingLayer
551 - @ref NEBatchNormalizationLayer / @ref CLBatchNormalizationLayer
552 - @ref NEDepthwiseConvolutionLayer
553 - @ref NEScale
554 - @ref NEIm2Col
555 - Added support for dilated convolutions in @ref NEConvolutionLayer and @ref CLConvolutionLayer.
556 - New OpenCL kernels / functions:
557 - @ref CLChannelShuffleLayer / @ref CLChannelShuffleLayerKernel
558 - @ref CLConvertFullyConnectedWeightsKernel / @ref CLConvertFullyConnectedWeights
559 - @ref CLCopy / @ref CLCopyKernel
560 - @ref CLLSTMLayer
561 - @ref CLRNNLayer
Jenkins975dfe12019-09-02 11:47:54 +0100562 - CLWidthConcatenateLayer / @ref CLWidthConcatenateLayerKernel
Jenkinsb3a371b2018-05-23 11:36:53 +0100563 - @ref CLWinogradFilterTransformKernel / @ref CLWinogradInputTransformKernel / @ref CLWinogradConvolutionLayer
564 - @ref CLWinogradInputTransformKernel / @ref CLWinogradInputTransform
565 - New Neon kernels / functions:
Jenkinsb3a371b2018-05-23 11:36:53 +0100566 - @ref NEConvertFullyConnectedWeightsKernel / @ref NEConvertFullyConnectedWeights.
567 - Created the validate method in @ref CLDepthwiseConvolutionLayer.
568 - Beta and gamma are no longer mandatory arguments in @ref NEBatchNormalizationLayer and @ref CLBatchNormalizationLayer.
569 - Added depth multiplier support in @ref NEDepthwiseConvolutionLayer and @ref CLDepthwiseConvolutionLayer.
570 - Added broadcast multiply support in @ref NEPixelWiseMultiplication / @ref NEPixelWiseMultiplicationKernel.
571 - Port mobilenet example to NHWC data layout.
572 - Enabled Winograd method in @ref CLConvolutionLayer.
573 - Renamed NEWinogradLayer to @ref NEWinogradConvolutionLayer.
574 - Updated @ref NEWinogradConvolutionLayer to use highly optimised assembly kernels in src/core/NEON/kernels/arm_gemm.
575 - Added memory manager support in GLES functions.
576 - Major refactoring of the graph API.
577 - Added GLES backend in the graph API.
578 - Added support for the memory manager in the graph API.
579 - Enabled Winograd Convolution method in the graph API.
580 - Added support for grouped convolutions in the graph API.
581 - Replaced NEDeconvolutionLayerUpsampleKernel with @ref NEScaleKernel in @ref NEDeconvolutionLayer.
582 - Added fast maths flag in @ref CLConvolutionLayer.
583 - Added new tests and benchmarks in validation and benchmark frameworks
584 - Merge Activation layer with Convolution Layer (NEON. CL, GLES)
585 - Added support to OpenCL 2.0 SVM
586 - Added support to import memory in OpenCL tensors.
587 - Added the prepare() method to perform any one off pre-processing before running the function.
588 - Added new examples:
589 - graph_inception_v4.cpp
590 - graph_resnext50.cpp
591 - Added memory measurement instrument for CL.
592
Jenkinsc3f34a42018-03-02 12:38:09 +0000593v18.03 Public maintenance release
594 - Various bug fixes.
595 - Fixed bug in @ref NEActivationLayer
596 - Fix in @ref CLTuner when using batches.
597 - Updated recommended NDK version to r16b (And fixed warnings).
598 - Fixed bug in validation code.
599 - Added Inception v4 graph example.
Jenkinsb3a371b2018-05-23 11:36:53 +0100600 - Renamed NEWinogradLayer.cpp to @ref NEWinogradConvolutionLayer
Jenkinsc3f34a42018-03-02 12:38:09 +0000601
Anthony Barbier06ea0482018-02-22 15:45:35 +0000602v18.02 Public major release
603 - Various NEON / OpenCL / GLES optimisations.
604 - Various bug fixes.
605 - Changed default number of threads on big LITTLE systems.
606 - Refactored examples and added:
607 - graph_mobilenet_qassym8
608 - graph_resnet
609 - graph_squeezenet_v1_1
Jenkinsc3f34a42018-03-02 12:38:09 +0000610 - Renamed @ref CLConvolutionLayer into @ref CLGEMMConvolutionLayer and created a new @ref CLConvolutionLayer to select the fastest convolution method.
611 - Renamed @ref NEConvolutionLayer into @ref NEGEMMConvolutionLayer and created a new @ref NEConvolutionLayer to select the fastest convolution method.
Anthony Barbier06ea0482018-02-22 15:45:35 +0000612 - Added in place support to:
Jenkinsc3f34a42018-03-02 12:38:09 +0000613 - @ref CLActivationLayer
614 - @ref CLBatchNormalizationLayer
Anthony Barbier06ea0482018-02-22 15:45:35 +0000615 - Added QASYMM8 support to:
Jenkinsc3f34a42018-03-02 12:38:09 +0000616 - @ref CLActivationLayer
617 - @ref CLDepthwiseConvolutionLayer
618 - @ref NEDepthwiseConvolutionLayer
619 - @ref NESoftmaxLayer
Anthony Barbier06ea0482018-02-22 15:45:35 +0000620 - Added FP16 support to:
Jenkinsc3f34a42018-03-02 12:38:09 +0000621 - @ref CLDepthwiseConvolutionLayer3x3
622 - @ref CLDepthwiseConvolutionLayer
623 - Added broadcasting support to @ref NEArithmeticAddition / @ref CLArithmeticAddition / @ref CLPixelWiseMultiplication
624 - Added fused batched normalization and activation to @ref CLBatchNormalizationLayer and @ref NEBatchNormalizationLayer
625 - Added support for non-square pooling to @ref NEPoolingLayer and @ref CLPoolingLayer
Anthony Barbier06ea0482018-02-22 15:45:35 +0000626 - New OpenCL kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000627 - @ref CLDirectConvolutionLayerOutputStageKernel
Anthony Barbier06ea0482018-02-22 15:45:35 +0000628 - New NEON kernels / functions
629 - Added name() method to all kernels.
630 - Added support for Winograd 5x5.
Jenkinsc3f34a42018-03-02 12:38:09 +0000631 - @ref NEPermuteKernel / @ref NEPermute
Jenkinsb3a371b2018-05-23 11:36:53 +0100632 - @ref NEWinogradLayerTransformInputKernel / NEWinogradLayer
633 - @ref NEWinogradLayerTransformOutputKernel / NEWinogradLayer
634 - @ref NEWinogradLayerTransformWeightsKernel / NEWinogradLayer
Jenkins52ba29e2018-08-29 15:32:11 +0000635 - Renamed NEWinogradLayerKernel into NEWinogradLayerBatchedGEMMKernel
Anthony Barbier06ea0482018-02-22 15:45:35 +0000636 - New GLES kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000637 - @ref GCTensorShiftKernel / @ref GCTensorShift
Anthony Barbier06ea0482018-02-22 15:45:35 +0000638
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000639v18.01 Public maintenance release
640 - Various bug fixes
641 - Added some of the missing validate() methods
Jenkinsc3f34a42018-03-02 12:38:09 +0000642 - Added @ref CLDeconvolutionLayerUpsampleKernel / @ref CLDeconvolutionLayer @ref CLDeconvolutionLayerUpsample
643 - Added @ref CLPermuteKernel / @ref CLPermute
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000644 - Added method to clean the programs cache in the CL Kernel library.
Jenkinsc3f34a42018-03-02 12:38:09 +0000645 - Added @ref GCArithmeticAdditionKernel / @ref GCArithmeticAddition
646 - Added @ref GCDepthwiseConvolutionLayer3x3Kernel / @ref GCDepthwiseConvolutionLayer3x3
647 - Added @ref GCNormalizePlanarYUVLayerKernel / @ref GCNormalizePlanarYUVLayer
648 - Added @ref GCScaleKernel / @ref GCScale
649 - Added @ref GCWeightsReshapeKernel / @ref GCConvolutionLayer
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000650 - Added FP16 support to the following GLES compute kernels:
Jenkinsc3f34a42018-03-02 12:38:09 +0000651 - @ref GCCol2ImKernel
652 - @ref GCGEMMInterleave4x4Kernel
653 - @ref GCGEMMTranspose1xWKernel
654 - @ref GCIm2ColKernel
655 - Refactored NEON Winograd (NEWinogradLayerKernel)
656 - Added @ref NEDirectConvolutionLayerOutputStageKernel
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000657 - Added QASYMM8 support to the following NEON kernels:
Jenkinsc3f34a42018-03-02 12:38:09 +0000658 - @ref NEDepthwiseConvolutionLayer3x3Kernel
659 - @ref NEFillBorderKernel
660 - @ref NEPoolingLayerKernel
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000661 - Added new examples:
662 - graph_cl_mobilenet_qasymm8.cpp
663 - graph_inception_v3.cpp
664 - gc_dc.cpp
665 - More tests added to both validation and benchmarking suites.
666
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000667v17.12 Public major release
668 - Most machine learning functions on OpenCL support the new data type QASYMM8
669 - Introduced logging interface
670 - Introduced opencl timer
671 - Reworked GEMMLowp interface
672 - Added new NEON assembly kernels for GEMMLowp, SGEMM and HGEMM
673 - Added validation method for most Machine Learning kernels / functions
674 - Added new graph examples such as googlenet, mobilenet, squeezenet, vgg16 and vgg19
675 - Added sgemm example for OpenCL
676 - Added absolute difference example for GLES compute
677 - Added new tests and benchmarks in validation and benchmark frameworks
678 - Added new kernels / functions for GLES compute
679
680 - New OpenGL ES kernels / functions
Jenkinsc3f34a42018-03-02 12:38:09 +0000681 - @ref GCAbsoluteDifferenceKernel / @ref GCAbsoluteDifference
682 - @ref GCActivationLayerKernel / @ref GCActivationLayer
683 - @ref GCBatchNormalizationLayerKernel / @ref GCBatchNormalizationLayer
684 - @ref GCCol2ImKernel
Jenkins975dfe12019-09-02 11:47:54 +0100685 - @ref GCDepthConcatenateLayerKernel / GCDepthConcatenateLayer
Jenkinsc3f34a42018-03-02 12:38:09 +0000686 - @ref GCDirectConvolutionLayerKernel / @ref GCDirectConvolutionLayer
687 - @ref GCDropoutLayerKernel / @ref GCDropoutLayer
688 - @ref GCFillBorderKernel / @ref GCFillBorder
689 - @ref GCGEMMInterleave4x4Kernel / @ref GCGEMMInterleave4x4
690 - @ref GCGEMMMatrixAccumulateBiasesKernel / @ref GCGEMMMatrixAdditionKernel / @ref GCGEMMMatrixMultiplyKernel / @ref GCGEMM
691 - @ref GCGEMMTranspose1xWKernel / @ref GCGEMMTranspose1xW
692 - @ref GCIm2ColKernel
693 - @ref GCNormalizationLayerKernel / @ref GCNormalizationLayer
694 - @ref GCPixelWiseMultiplicationKernel / @ref GCPixelWiseMultiplication
695 - @ref GCPoolingLayerKernel / @ref GCPoolingLayer
696 - @ref GCLogits1DMaxKernel / @ref GCLogits1DShiftExpSumKernel / @ref GCLogits1DNormKernel / @ref GCSoftmaxLayer
697 - @ref GCTransposeKernel / @ref GCTranspose
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000698
699 - New NEON kernels / functions
Jenkinsb3a371b2018-05-23 11:36:53 +0100700 - arm_compute::NEGEMMLowpAArch64A53Kernel / arm_compute::NEGEMMLowpAArch64Kernel / arm_compute::NEGEMMLowpAArch64V8P4Kernel / arm_compute::NEGEMMInterleavedBlockedKernel / arm_compute::NEGEMMLowpAssemblyMatrixMultiplyCore
701 - arm_compute::NEHGEMMAArch64FP16Kernel
Jenkinsc3f34a42018-03-02 12:38:09 +0000702 - @ref NEDepthwiseConvolutionLayer3x3Kernel / @ref NEDepthwiseIm2ColKernel / @ref NEGEMMMatrixVectorMultiplyKernel / @ref NEDepthwiseVectorToTensorKernel / @ref NEDepthwiseConvolutionLayer
703 - @ref NEGEMMLowpOffsetContributionKernel / @ref NEGEMMLowpMatrixAReductionKernel / @ref NEGEMMLowpMatrixBReductionKernel / @ref NEGEMMLowpMatrixMultiplyCore
704 - @ref NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel / @ref NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint
705 - @ref NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel / @ref NEGEMMLowpQuantizeDownInt32ToUint8Scale
Jenkinsb3a371b2018-05-23 11:36:53 +0100706 - NEWinogradLayer / NEWinogradLayerKernel
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000707
708 - New OpenCL kernels / functions
Jenkinsc3f34a42018-03-02 12:38:09 +0000709 - @ref CLGEMMLowpOffsetContributionKernel / @ref CLGEMMLowpMatrixAReductionKernel / @ref CLGEMMLowpMatrixBReductionKernel / @ref CLGEMMLowpMatrixMultiplyCore
710 - @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel / @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint
711 - @ref CLGEMMLowpQuantizeDownInt32ToUint8ScaleKernel / @ref CLGEMMLowpQuantizeDownInt32ToUint8Scale
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000712
713 - New graph nodes for NEON and OpenCL
Jenkinsb3a371b2018-05-23 11:36:53 +0100714 - graph::BranchLayer
715 - graph::DepthConvertLayer
716 - graph::DepthwiseConvolutionLayer
717 - graph::DequantizationLayer
718 - graph::FlattenLayer
719 - graph::QuantizationLayer
720 - graph::ReshapeLayer
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000721
Kaizenbf8b01d2017-10-12 14:26:51 +0100722v17.10 Public maintenance release
723 - Bug fixes:
724 - Check the maximum local workgroup size supported by OpenCL devices
725 - Minor documentation updates (Fixed instructions to build the examples)
Jenkinsc3f34a42018-03-02 12:38:09 +0000726 - Introduced a graph::GraphContext
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000727 - Added a few new Graph nodes, support for branches and grouping.
Kaizenbf8b01d2017-10-12 14:26:51 +0100728 - Automatically enable cl_printf in debug builds
729 - Fixed bare metal builds for armv7a
730 - Added AlexNet and cartoon effect examples
731 - Fixed library builds: libraries are no longer built as supersets of each other.(It means application using the Runtime part of the library now need to link against both libarm_compute_core and libarm_compute)
732
Kaizen8938bd32017-09-28 14:38:23 +0100733v17.09 Public major release
734 - Experimental Graph support: initial implementation of a simple stream API to easily chain machine learning layers.
Jenkinsc3f34a42018-03-02 12:38:09 +0000735 - Memory Manager (@ref BlobLifetimeManager, @ref BlobMemoryPool, @ref ILifetimeManager, @ref IMemoryGroup, @ref IMemoryManager, @ref IMemoryPool, @ref IPoolManager, @ref MemoryManagerOnDemand, @ref PoolManager)
Kaizen8938bd32017-09-28 14:38:23 +0100736 - New validation and benchmark frameworks (Boost and Google frameworks replaced by homemade framework).
737 - Most machine learning functions support both fixed point 8 and 16 bit (QS8, QS16) for both NEON and OpenCL.
738 - New NEON kernels / functions:
Jenkinsb3a371b2018-05-23 11:36:53 +0100739 - arm_compute::NEGEMMAssemblyBaseKernel arm_compute::NEGEMMAArch64Kernel
Jenkinsc3f34a42018-03-02 12:38:09 +0000740 - @ref NEDequantizationLayerKernel / @ref NEDequantizationLayer
741 - @ref NEFloorKernel / @ref NEFloor
742 - @ref NEL2NormalizeLayerKernel / @ref NEL2NormalizeLayer
743 - @ref NEQuantizationLayerKernel @ref NEMinMaxLayerKernel / @ref NEQuantizationLayer
744 - @ref NEROIPoolingLayerKernel / @ref NEROIPoolingLayer
745 - @ref NEReductionOperationKernel / @ref NEReductionOperation
746 - @ref NEReshapeLayerKernel / @ref NEReshapeLayer
Kaizen8938bd32017-09-28 14:38:23 +0100747
748 - New OpenCL kernels / functions:
Jenkins514be652019-02-28 12:25:18 +0000749 - @ref CLDepthwiseConvolutionLayer3x3NCHWKernel @ref CLDepthwiseConvolutionLayer3x3NHWCKernel @ref CLDepthwiseIm2ColKernel @ref CLDepthwiseVectorToTensorKernel CLDepthwiseWeightsReshapeKernel / @ref CLDepthwiseConvolutionLayer3x3 @ref CLDepthwiseConvolutionLayer @ref CLDepthwiseSeparableConvolutionLayer
Jenkinsc3f34a42018-03-02 12:38:09 +0000750 - @ref CLDequantizationLayerKernel / @ref CLDequantizationLayer
751 - @ref CLDirectConvolutionLayerKernel / @ref CLDirectConvolutionLayer
752 - @ref CLFlattenLayer
753 - @ref CLFloorKernel / @ref CLFloor
Jenkins975dfe12019-09-02 11:47:54 +0100754 - CLGEMMTranspose1xW
Jenkinsc3f34a42018-03-02 12:38:09 +0000755 - @ref CLGEMMMatrixVectorMultiplyKernel
756 - @ref CLL2NormalizeLayerKernel / @ref CLL2NormalizeLayer
757 - @ref CLQuantizationLayerKernel @ref CLMinMaxLayerKernel / @ref CLQuantizationLayer
758 - @ref CLROIPoolingLayerKernel / @ref CLROIPoolingLayer
759 - @ref CLReductionOperationKernel / @ref CLReductionOperation
760 - @ref CLReshapeLayerKernel / @ref CLReshapeLayer
Kaizen8938bd32017-09-28 14:38:23 +0100761
Anthony Barbierdbdab852017-06-23 15:42:00 +0100762v17.06 Public major release
763 - Various bug fixes
764 - Added support for fixed point 8 bit (QS8) to the various NEON machine learning kernels.
765 - Added unit tests and benchmarks (AlexNet, LeNet)
766 - Added support for sub tensors.
767 - Added infrastructure to provide GPU specific optimisation for some OpenCL kernels.
Jenkinsc3f34a42018-03-02 12:38:09 +0000768 - Added @ref OMPScheduler (OpenMP) scheduler for NEON
769 - Added @ref SingleThreadScheduler scheduler for NEON (For bare metal)
770 - User can specify his own scheduler by implementing the @ref IScheduler interface.
Anthony Barbierdbdab852017-06-23 15:42:00 +0100771 - New OpenCL kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000772 - @ref CLBatchNormalizationLayerKernel / @ref CLBatchNormalizationLayer
Jenkins975dfe12019-09-02 11:47:54 +0100773 - @ref CLDepthConcatenateLayerKernel / CLDepthConcatenateLayer
Jenkinsc3f34a42018-03-02 12:38:09 +0000774 - @ref CLHOGOrientationBinningKernel @ref CLHOGBlockNormalizationKernel, @ref CLHOGDetectorKernel / @ref CLHOGDescriptor @ref CLHOGDetector @ref CLHOGGradient @ref CLHOGMultiDetection
775 - @ref CLLocallyConnectedMatrixMultiplyKernel / @ref CLLocallyConnectedLayer
776 - @ref CLWeightsReshapeKernel / @ref CLConvolutionLayerReshapeWeights
Anthony Barbierdbdab852017-06-23 15:42:00 +0100777 - New C++ kernels:
Jenkinsc3f34a42018-03-02 12:38:09 +0000778 - @ref CPPDetectionWindowNonMaximaSuppressionKernel
Anthony Barbierdbdab852017-06-23 15:42:00 +0100779 - New NEON kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000780 - @ref NEBatchNormalizationLayerKernel / @ref NEBatchNormalizationLayer
Jenkins975dfe12019-09-02 11:47:54 +0100781 - @ref NEDepthConcatenateLayerKernel / NEDepthConcatenateLayer
Jenkinsc3f34a42018-03-02 12:38:09 +0000782 - @ref NEDirectConvolutionLayerKernel / @ref NEDirectConvolutionLayer
783 - @ref NELocallyConnectedMatrixMultiplyKernel / @ref NELocallyConnectedLayer
784 - @ref NEWeightsReshapeKernel / @ref NEConvolutionLayerReshapeWeights
Anthony Barbierdbdab852017-06-23 15:42:00 +0100785
786v17.05 Public bug fixes release
787 - Various bug fixes
788 - Remaining of the functions ported to use accurate padding.
789 - Library does not link against OpenCL anymore (It uses dlopen / dlsym at runtime instead to determine whether or not OpenCL is available).
790 - Added "free" method to allocator.
791 - Minimum version of g++ required for armv7 Linux changed from 4.8 to 4.9
792
793v17.04 Public bug fixes release
794
795 The following functions have been ported to use the new accurate padding:
Jenkinsc3f34a42018-03-02 12:38:09 +0000796 - @ref CLColorConvertKernel
797 - @ref CLEdgeNonMaxSuppressionKernel
798 - @ref CLEdgeTraceKernel
799 - @ref CLGaussianPyramidHorKernel
800 - @ref CLGaussianPyramidVertKernel
801 - @ref CLGradientKernel
802 - @ref NEChannelCombineKernel
803 - @ref NEFillArrayKernel
804 - @ref NEGaussianPyramidHorKernel
805 - @ref NEGaussianPyramidVertKernel
Jenkinsb9abeae2018-11-22 11:58:08 +0000806 - NEHarrisScoreFP16Kernel
Jenkinsc3f34a42018-03-02 12:38:09 +0000807 - @ref NEHarrisScoreKernel
808 - @ref NEHOGDetectorKernel
809 - @ref NELogits1DMaxKernel
810 - NELogits1DShiftExpSumKernel
811 - NELogits1DNormKernel
812 - @ref NENonMaximaSuppression3x3FP16Kernel
813 - @ref NENonMaximaSuppression3x3Kernel
Anthony Barbierdbdab852017-06-23 15:42:00 +0100814
Anthony Barbierdbdab852017-06-23 15:42:00 +0100815v17.03.1 First Major public release of the sources
816 - Renamed the library to arm_compute
817 - New CPP target introduced for C++ kernels shared between NEON and CL functions.
818 - New padding calculation interface introduced and ported most kernels / functions to use it.
819 - New OpenCL kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000820 - @ref CLGEMMLowpMatrixMultiplyKernel / CLGEMMLowp
Anthony Barbierdbdab852017-06-23 15:42:00 +0100821 - New NEON kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000822 - @ref NENormalizationLayerKernel / @ref NENormalizationLayer
823 - @ref NETransposeKernel / @ref NETranspose
824 - @ref NELogits1DMaxKernel, NELogits1DShiftExpSumKernel, NELogits1DNormKernel / @ref NESoftmaxLayer
825 - @ref NEIm2ColKernel, @ref NECol2ImKernel, NEConvolutionLayerWeightsReshapeKernel / @ref NEConvolutionLayer
826 - @ref NEGEMMMatrixAccumulateBiasesKernel / @ref NEFullyConnectedLayer
827 - @ref NEGEMMLowpMatrixMultiplyKernel / NEGEMMLowp
Anthony Barbierdbdab852017-06-23 15:42:00 +0100828
829v17.03 Sources preview
830 - New OpenCL kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000831 - @ref CLGradientKernel, @ref CLEdgeNonMaxSuppressionKernel, @ref CLEdgeTraceKernel / @ref CLCannyEdge
Jenkins975dfe12019-09-02 11:47:54 +0100832 - GEMM refactoring + FP16 support: CLGEMMInterleave4x4Kernel, CLGEMMTranspose1xWKernel, @ref CLGEMMMatrixMultiplyKernel, @ref CLGEMMMatrixAdditionKernel / @ref CLGEMM
Jenkinsc3f34a42018-03-02 12:38:09 +0000833 - @ref CLGEMMMatrixAccumulateBiasesKernel / @ref CLFullyConnectedLayer
834 - @ref CLTransposeKernel / @ref CLTranspose
835 - @ref CLLKTrackerInitKernel, @ref CLLKTrackerStage0Kernel, @ref CLLKTrackerStage1Kernel, @ref CLLKTrackerFinalizeKernel / @ref CLOpticalFlow
836 - @ref CLNormalizationLayerKernel / @ref CLNormalizationLayer
837 - @ref CLLaplacianPyramid, @ref CLLaplacianReconstruct
Anthony Barbierdbdab852017-06-23 15:42:00 +0100838 - New NEON kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000839 - @ref NEActivationLayerKernel / @ref NEActivationLayer
840 - GEMM refactoring + FP16 support (Requires armv8.2 CPU): @ref NEGEMMInterleave4x4Kernel, @ref NEGEMMTranspose1xWKernel, @ref NEGEMMMatrixMultiplyKernel, @ref NEGEMMMatrixAdditionKernel / @ref NEGEMM
841 - @ref NEPoolingLayerKernel / @ref NEPoolingLayer
Anthony Barbierdbdab852017-06-23 15:42:00 +0100842
843v17.02.1 Sources preview
844 - New OpenCL kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000845 - @ref CLLogits1DMaxKernel, @ref CLLogits1DShiftExpSumKernel, @ref CLLogits1DNormKernel / @ref CLSoftmaxLayer
846 - @ref CLPoolingLayerKernel / @ref CLPoolingLayer
847 - @ref CLIm2ColKernel, @ref CLCol2ImKernel, CLConvolutionLayerWeightsReshapeKernel / @ref CLConvolutionLayer
848 - @ref CLRemapKernel / @ref CLRemap
849 - @ref CLGaussianPyramidHorKernel, @ref CLGaussianPyramidVertKernel / @ref CLGaussianPyramid, @ref CLGaussianPyramidHalf, @ref CLGaussianPyramidOrb
850 - @ref CLMinMaxKernel, @ref CLMinMaxLocationKernel / @ref CLMinMaxLocation
851 - @ref CLNonLinearFilterKernel / @ref CLNonLinearFilter
Anthony Barbierdbdab852017-06-23 15:42:00 +0100852 - New NEON FP16 kernels (Requires armv8.2 CPU)
Jenkinsc3f34a42018-03-02 12:38:09 +0000853 - @ref NEAccumulateWeightedFP16Kernel
854 - @ref NEBox3x3FP16Kernel
855 - @ref NENonMaximaSuppression3x3FP16Kernel
Anthony Barbierdbdab852017-06-23 15:42:00 +0100856
857v17.02 Sources preview
858 - New OpenCL kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000859 - @ref CLActivationLayerKernel / @ref CLActivationLayer
860 - @ref CLChannelCombineKernel / @ref CLChannelCombine
861 - @ref CLDerivativeKernel / @ref CLChannelExtract
862 - @ref CLFastCornersKernel / @ref CLFastCorners
863 - @ref CLMeanStdDevKernel / @ref CLMeanStdDev
Anthony Barbierdbdab852017-06-23 15:42:00 +0100864 - New NEON kernels / functions:
Jenkinsc3f34a42018-03-02 12:38:09 +0000865 - HOG / SVM: @ref NEHOGOrientationBinningKernel, @ref NEHOGBlockNormalizationKernel, @ref NEHOGDetectorKernel, NEHOGNonMaximaSuppressionKernel / @ref NEHOGDescriptor, @ref NEHOGDetector, @ref NEHOGGradient, @ref NEHOGMultiDetection
866 - @ref NENonLinearFilterKernel / @ref NENonLinearFilter
Anthony Barbierdbdab852017-06-23 15:42:00 +0100867 - Introduced a CLScheduler to manage the default context and command queue used by the runtime library and create synchronisation events.
868 - Switched all the kernels / functions to use tensors instead of images.
869 - Updated documentation to include instructions to build the library from sources.
870
871v16.12 Binary preview release
872 - Original release
873
874@section S3_how_to_build How to build the library and the examples
875
876@subsection S3_1_build_options Build options
877
878scons 2.3 or above is required to build the library.
879To see the build options available simply run ```scons -h```:
880
881 debug: Debug (yes|no)
882 default: False
883 actual: False
884
885 asserts: Enable asserts (this flag is forced to 1 for debug=1) (yes|no)
886 default: False
887 actual: False
888
889 arch: Target Architecture (armv7a|arm64-v8a|arm64-v8.2-a|x86_32|x86_64)
890 default: armv7a
891 actual: armv7a
892
893 os: Target OS (linux|android|bare_metal)
894 default: linux
895 actual: linux
896
Anthony Barbier06ea0482018-02-22 15:45:35 +0000897 build: Build type (native|cross_compile|embed_only)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100898 default: cross_compile
899 actual: cross_compile
900
901 examples: Build example programs (yes|no)
902 default: True
903 actual: True
904
905 Werror: Enable/disable the -Werror compilation flag (yes|no)
906 default: True
907 actual: True
908
909 opencl: Enable OpenCL support (yes|no)
910 default: True
911 actual: True
912
913 neon: Enable Neon support (yes|no)
914 default: False
915 actual: False
916
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000917 gles_compute: Enable OpenGL ES Compute Shader support (yes|no)
918 default: False
919 actual: False
920
921 embed_kernels: Embed OpenCL kernels and OpenGL ES compute shader in library binary (yes|no)
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000922 default: True
923 actual: True
Anthony Barbierdbdab852017-06-23 15:42:00 +0100924
925 set_soname: Set the library's soname and shlibversion (requires SCons 2.4 or above) (yes|no)
926 default: False
927 actual: False
928
929 openmp: Enable OpenMP backend (yes|no)
930 default: False
931 actual: False
932
933 cppthreads: Enable C++11 threads backend (yes|no)
934 default: True
935 actual: True
936
937 build_dir: Specify sub-folder for the build ( /path/to/build_dir )
938 default: .
939 actual: .
940
941 extra_cxx_flags: Extra CXX flags to be appended to the build command
942 default:
943 actual:
944
945 pmu: Enable PMU counters (yes|no)
946 default: False
947 actual: False
948
Kaizen8938bd32017-09-28 14:38:23 +0100949 mali: Enable Mali hardware counters (yes|no)
950 default: False
951 actual: False
952
Anthony Barbierdbdab852017-06-23 15:42:00 +0100953 validation_tests: Build validation test programs (yes|no)
954 default: False
955 actual: False
956
957 benchmark_tests: Build benchmark test programs (yes|no)
958 default: False
959 actual: False
960
961@b debug / @b asserts:
962 - With debug=1 asserts are enabled, and the library is built with symbols and no optimisations enabled.
963 - With debug=0 and asserts=1: Optimisations are enabled and symbols are removed, however all the asserts are still present (This is about 20% slower than the release build)
964 - With debug=0 and asserts=0: All optimisations are enable and no validation is performed, if the application misuses the library it is likely to result in a crash. (Only use this mode once you are sure your application is working as expected).
965
966@b arch: The x86_32 and x86_64 targets can only be used with neon=0 and opencl=1.
967
968@b os: Choose the operating system you are targeting: Linux, Android or bare metal.
969@note bare metal can only be used for NEON (not OpenCL), only static libraries get built and NEON's multi-threading support is disabled.
970
971@b build: you can either build directly on your device (native) or cross compile from your desktop machine (cross-compile). In both cases make sure the compiler is available in your path.
972
973@note If you want to natively compile for 32bit on a 64bit ARM device running a 64bit OS then you will have to use cross-compile too.
974
Anthony Barbier06ea0482018-02-22 15:45:35 +0000975There is also an 'embed_only' option which will generate all the .embed files for the OpenCL kernels and / or OpenGLES compute shaders. This might be useful if using a different build system to compile the library.
976
Anthony Barbierdbdab852017-06-23 15:42:00 +0100977@b Werror: If you are compiling using the same toolchains as the ones used in this guide then there shouldn't be any warning and therefore you should be able to keep Werror=1. If with a different compiler version the library fails to build because of warnings interpreted as errors then, if you are sure the warnings are not important, you might want to try to build with Werror=0 (But please do report the issue either on Github or by an email to developer@arm.com so that the issue can be addressed).
978
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000979@b opencl / @b neon / @b gles_compute: Choose which SIMD technology you want to target. (NEON for ARM Cortex-A CPUs or OpenCL / GLES_COMPUTE for ARM Mali GPUs)
Anthony Barbierdbdab852017-06-23 15:42:00 +0100980
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000981@b embed_kernels: For OpenCL / GLES_COMPUTE only: set embed_kernels=1 if you want the OpenCL / GLES_COMPUTE kernels to be built in the library's binaries instead of being read from separate ".cl" / ".cs" files. If embed_kernels is set to 0 then the application can set the path to the folder containing the OpenCL / GLES_COMPUTE kernel files by calling CLKernelLibrary::init() / GCKernelLibrary::init(). By default the path is set to "./cl_kernels" / "./cs_shaders".
Anthony Barbierdbdab852017-06-23 15:42:00 +0100982
983@b set_soname: Do you want to build the versioned version of the library ?
984
985If enabled the library will contain a SONAME and SHLIBVERSION and some symlinks will automatically be created between the objects.
986Example:
987 libarm_compute_core.so -> libarm_compute_core.so.1.0.0
988 libarm_compute_core.so.1 -> libarm_compute_core.so.1.0.0
989 libarm_compute_core.so.1.0.0
990
991@note This options is disabled by default as it requires SCons version 2.4 or above.
992
993@b extra_cxx_flags: Custom CXX flags which will be appended to the end of the build command.
994
995@b build_dir: Build the library in a subfolder of the "build" folder. (Allows to build several configurations in parallel).
996
997@b examples: Build or not the examples
998
999@b validation_tests: Enable the build of the validation suite.
1000
Anthony Barbierdbdab852017-06-23 15:42:00 +01001001@b benchmark_tests: Enable the build of the benchmark tests
1002
1003@b pmu: Enable the PMU cycle counter to measure execution time in benchmark tests. (Your device needs to support it)
1004
Kaizen8938bd32017-09-28 14:38:23 +01001005@b mali: Enable the collection of Mali hardware counters to measure execution time in benchmark tests. (Your device needs to have a Mali driver that supports it)
Anthony Barbierdbdab852017-06-23 15:42:00 +01001006
1007@b openmp Build in the OpenMP scheduler for NEON.
1008
1009@note Only works when building with g++ not clang++
1010
1011@b cppthreads Build in the C++11 scheduler for NEON.
1012
Jenkinsc3f34a42018-03-02 12:38:09 +00001013@sa Scheduler::set
Anthony Barbierdbdab852017-06-23 15:42:00 +01001014
Kaizen8938bd32017-09-28 14:38:23 +01001015@subsection S3_2_linux Building for Linux
Anthony Barbierdbdab852017-06-23 15:42:00 +01001016
1017@subsubsection S3_2_1_library How to build the library ?
1018
1019For Linux, the library was successfully built and tested using the following Linaro GCC toolchain:
1020
Jenkins52ba29e2018-08-29 15:32:11 +00001021 - gcc-linaro-4.9-2016.02-x86_64_arm-linux-gnueabihf
Anthony Barbierdbdab852017-06-23 15:42:00 +01001022 - gcc-linaro-4.9-2016.02-x86_64_aarch64-linux-gnu
Anthony Barbierdbdab852017-06-23 15:42:00 +01001023
Anthony Barbierdbdab852017-06-23 15:42:00 +01001024To cross-compile the library in debug mode, with NEON only support, for Linux 32bit:
1025
1026 scons Werror=1 -j8 debug=1 neon=1 opencl=0 os=linux arch=armv7a
1027
1028To cross-compile the library in asserts mode, with OpenCL only support, for Linux 64bit:
1029
1030 scons Werror=1 -j8 debug=0 asserts=1 neon=0 opencl=1 embed_kernels=1 os=linux arch=arm64-v8a
1031
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001032To cross-compile the library in asserts mode, with GLES_COMPUTE only support, for Linux 64bit:
1033
1034 scons Werror=1 -j8 debug=0 asserts=1 neon=0 opencl=0 gles_compute=1 embed_kernels=1 os=linux arch=arm64-v8a
1035
Anthony Barbierdbdab852017-06-23 15:42:00 +01001036You can also compile the library natively on an ARM device by using <b>build=native</b>:
1037
1038 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=arm64-v8a build=native
1039 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=armv7a build=native
1040
1041@note g++ for ARM is mono-arch, therefore if you want to compile for Linux 32bit on a Linux 64bit platform you will have to use a cross compiler.
1042
1043For example on a 64bit Debian based system you would have to install <b>g++-arm-linux-gnueabihf</b>
1044
1045 apt-get install g++-arm-linux-gnueabihf
1046
1047Then run
1048
1049 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=armv7a build=cross_compile
1050
1051or simply remove the build parameter as build=cross_compile is the default value:
1052
1053 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=linux arch=armv7a
1054
1055@attention To cross compile with opencl=1 you need to make sure to have a version of libOpenCL matching your target architecture.
1056
1057@subsubsection S3_2_2_examples How to manually build the examples ?
1058
1059The examples get automatically built by scons as part of the build process of the library described above. This section just describes how you can build and link your own application against our library.
1060
Jenkinsb3a371b2018-05-23 11:36:53 +01001061@note The following command lines assume the arm_compute binaries are present in the current directory or in the system library path. If this is not the case you can specify the location of the pre-built library with the compiler option -L. When building the OpenCL example the commands below assume that the CL headers are located in the include folder where the command is executed.
Anthony Barbierdbdab852017-06-23 15:42:00 +01001062
1063To cross compile a NEON example for Linux 32bit:
1064
Kaizenbf8b01d2017-10-12 14:26:51 +01001065 arm-linux-gnueabihf-g++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -mfpu=neon -L. -larm_compute -larm_compute_core -o neon_convolution
Anthony Barbierdbdab852017-06-23 15:42:00 +01001066
1067To cross compile a NEON example for Linux 64bit:
1068
Kaizenbf8b01d2017-10-12 14:26:51 +01001069 aarch64-linux-gnu-g++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -L. -larm_compute -larm_compute_core -o neon_convolution
Anthony Barbierdbdab852017-06-23 15:42:00 +01001070
1071(notice the only difference with the 32 bit command is that we don't need the -mfpu option and the compiler's name is different)
1072
1073To cross compile an OpenCL example for Linux 32bit:
1074
Jenkinsb3a371b2018-05-23 11:36:53 +01001075 arm-linux-gnueabihf-g++ examples/cl_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -mfpu=neon -L. -larm_compute -larm_compute_core -o cl_convolution -DARM_COMPUTE_CL
Anthony Barbierdbdab852017-06-23 15:42:00 +01001076
1077To cross compile an OpenCL example for Linux 64bit:
1078
Jenkinsb3a371b2018-05-23 11:36:53 +01001079 aarch64-linux-gnu-g++ examples/cl_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -L. -larm_compute -larm_compute_core -o cl_convolution -DARM_COMPUTE_CL
Kaizenbf8b01d2017-10-12 14:26:51 +01001080
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001081To cross compile a GLES example for Linux 32bit:
1082
1083 arm-linux-gnueabihf-g++ examples/gc_absdiff.cpp utils/Utils.cpp -I. -Iinclude/ -L. -larm_compute -larm_compute_core -std=c++11 -mfpu=neon -DARM_COMPUTE_GC -Iinclude/linux/ -o gc_absdiff
1084
1085To cross compile a GLES example for Linux 64bit:
1086
1087 aarch64-linux-gnu-g++ examples/gc_absdiff.cpp utils/Utils.cpp -I. -Iinclude/ -L. -larm_compute -larm_compute_core -std=c++11 -DARM_COMPUTE_GC -Iinclude/linux/ -o gc_absdiff
1088
Kaizenbf8b01d2017-10-12 14:26:51 +01001089(notice the only difference with the 32 bit command is that we don't need the -mfpu option and the compiler's name is different)
1090
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001091To cross compile the examples with the Graph API, such as graph_lenet.cpp, you need to link the examples against arm_compute_graph.so too.
1092
1093@note The compute library must currently be built with both neon and opencl enabled - neon=1 and opencl=1
Kaizenbf8b01d2017-10-12 14:26:51 +01001094
1095i.e. to cross compile the "graph_lenet" example for Linux 32bit:
1096
Jenkins52ba29e2018-08-29 15:32:11 +00001097 arm-linux-gnueabihf-g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -mfpu=neon -L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
Kaizenbf8b01d2017-10-12 14:26:51 +01001098
1099i.e. to cross compile the "graph_lenet" example for Linux 64bit:
1100
Jenkins52ba29e2018-08-29 15:32:11 +00001101 aarch64-linux-gnu-g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
Anthony Barbierdbdab852017-06-23 15:42:00 +01001102
1103(notice the only difference with the 32 bit command is that we don't need the -mfpu option and the compiler's name is different)
1104
giorgio-arena869d4242017-10-23 16:58:59 +01001105@note If compiling using static libraries, this order must be followed when linking: arm_compute_graph_static, arm_compute, arm_compute_core
1106
Anthony Barbierdbdab852017-06-23 15:42:00 +01001107To compile natively (i.e directly on an ARM device) for NEON for Linux 32bit:
1108
Kaizenbf8b01d2017-10-12 14:26:51 +01001109 g++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -mfpu=neon -larm_compute -larm_compute_core -o neon_convolution
Anthony Barbierdbdab852017-06-23 15:42:00 +01001110
1111To compile natively (i.e directly on an ARM device) for NEON for Linux 64bit:
1112
Kaizenbf8b01d2017-10-12 14:26:51 +01001113 g++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute -larm_compute_core -o neon_convolution
Anthony Barbierdbdab852017-06-23 15:42:00 +01001114
1115(notice the only difference with the 32 bit command is that we don't need the -mfpu option)
1116
1117To compile natively (i.e directly on an ARM device) for OpenCL for Linux 32bit or Linux 64bit:
1118
Jenkinsb3a371b2018-05-23 11:36:53 +01001119 g++ examples/cl_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute -larm_compute_core -o cl_convolution -DARM_COMPUTE_CL
Anthony Barbierdbdab852017-06-23 15:42:00 +01001120
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001121To compile natively (i.e directly on an ARM device) for GLES for Linux 32bit or Linux 64bit:
Kaizenbf8b01d2017-10-12 14:26:51 +01001122
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001123 g++ examples/gc_absdiff.cpp utils/Utils.cpp -I. -Iinclude/ -L. -larm_compute -larm_compute_core -std=c++11 -DARM_COMPUTE_GC -Iinclude/linux/ -o gc_absdiff
Kaizenbf8b01d2017-10-12 14:26:51 +01001124
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001125To compile natively the examples with the Graph API, such as graph_lenet.cpp, you need to link the examples against arm_compute_graph.so too.
1126@note The compute library must currently be built with both neon and opencl enabled - neon=1 and opencl=1
Kaizenbf8b01d2017-10-12 14:26:51 +01001127
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001128i.e. to natively compile the "graph_lenet" example for Linux 32bit:
Kaizenbf8b01d2017-10-12 14:26:51 +01001129
Jenkins52ba29e2018-08-29 15:32:11 +00001130 g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -mfpu=neon -L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001131
1132i.e. to natively compile the "graph_lenet" example for Linux 64bit:
1133
Jenkins52ba29e2018-08-29 15:32:11 +00001134 g++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 L. -larm_compute_graph -larm_compute -larm_compute_core -Wl,--allow-shlib-undefined -o graph_lenet
Kaizenbf8b01d2017-10-12 14:26:51 +01001135
1136(notice the only difference with the 32 bit command is that we don't need the -mfpu option)
Anthony Barbierdbdab852017-06-23 15:42:00 +01001137
giorgio-arena869d4242017-10-23 16:58:59 +01001138@note If compiling using static libraries, this order must be followed when linking: arm_compute_graph_static, arm_compute, arm_compute_core
1139
Anthony Barbierdbdab852017-06-23 15:42:00 +01001140@note These two commands assume libarm_compute.so is available in your library path, if not add the path to it using -L
1141
1142To run the built executable simply run:
1143
1144 LD_LIBRARY_PATH=build ./neon_convolution
1145
1146or
1147
1148 LD_LIBRARY_PATH=build ./cl_convolution
1149
Jenkins52ba29e2018-08-29 15:32:11 +00001150@note Examples accept different types of arguments, to find out what they are run the example with \a --help as an argument. If no arguments are specified then random values will be used to execute the graph.
Jenkinsc3f34a42018-03-02 12:38:09 +00001151
1152For example:
Jenkinsb3a371b2018-05-23 11:36:53 +01001153
Jenkins52ba29e2018-08-29 15:32:11 +00001154 LD_LIBRARY_PATH=. ./graph_lenet --help
Jenkinsc3f34a42018-03-02 12:38:09 +00001155
Jenkins52ba29e2018-08-29 15:32:11 +00001156Below is a list of the common parameters among the graph examples :
1157@snippet utils/CommonGraphOptions.h Common graph examples parameters
Jenkinsc3f34a42018-03-02 12:38:09 +00001158
Kaizen8938bd32017-09-28 14:38:23 +01001159@subsection S3_3_android Building for Android
Anthony Barbierdbdab852017-06-23 15:42:00 +01001160
1161For Android, the library was successfully built and tested using Google's standalone toolchains:
Jenkins52ba29e2018-08-29 15:32:11 +00001162 - clang++ from NDK r17b for armv7a
1163 - clang++ from NDK r17b for arm64-v8a
1164 - clang++ from NDK r18-beta1 for arm64-v8.2-a with FP16 support
Anthony Barbierdbdab852017-06-23 15:42:00 +01001165
1166Here is a guide to <a href="https://developer.android.com/ndk/guides/standalone_toolchain.html">create your Android standalone toolchains from the NDK</a>
1167
Jenkins52ba29e2018-08-29 15:32:11 +00001168- Download the NDK r17b from here: https://developer.android.com/ndk/downloads/index.html
Jenkins4ba87db2019-05-23 17:11:51 +01001169- Make sure you have Python 2.7 installed on your machine.
Anthony Barbierdbdab852017-06-23 15:42:00 +01001170- Generate the 32 and/or 64 toolchains by running the following commands:
1171
Jenkinsb3a371b2018-05-23 11:36:53 +01001172
Jenkins52ba29e2018-08-29 15:32:11 +00001173 $NDK/build/tools/make_standalone_toolchain.py --arch arm64 --install-dir $MY_TOOLCHAINS/aarch64-linux-android-ndk-r17b --stl libc++ --api 21
1174 $NDK/build/tools/make_standalone_toolchain.py --arch arm --install-dir $MY_TOOLCHAINS/arm-linux-android-ndk-r17b --stl libc++ --api 21
Anthony Barbierdbdab852017-06-23 15:42:00 +01001175
Jenkins52ba29e2018-08-29 15:32:11 +00001176@attention We used to use gnustl but as of NDK r17 it is deprecated so we switched to libc++
Anthony Barbierdbdab852017-06-23 15:42:00 +01001177
Jenkinsb3a371b2018-05-23 11:36:53 +01001178@note Make sure to add the toolchains to your PATH:
1179
Jenkins52ba29e2018-08-29 15:32:11 +00001180 export PATH=$PATH:$MY_TOOLCHAINS/aarch64-linux-android-ndk-r17b/bin:$MY_TOOLCHAINS/arm-linux-android-ndk-r17b/bin
Anthony Barbierdbdab852017-06-23 15:42:00 +01001181
1182@subsubsection S3_3_1_library How to build the library ?
1183
Anthony Barbierdbdab852017-06-23 15:42:00 +01001184To cross-compile the library in debug mode, with NEON only support, for Android 32bit:
1185
1186 CXX=clang++ CC=clang scons Werror=1 -j8 debug=1 neon=1 opencl=0 os=android arch=armv7a
1187
1188To cross-compile the library in asserts mode, with OpenCL only support, for Android 64bit:
1189
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001190 CXX=clang++ CC=clang scons Werror=1 -j8 debug=0 asserts=1 neon=0 opencl=1 embed_kernels=1 os=android arch=arm64-v8a
1191
1192To cross-compile the library in asserts mode, with GLES_COMPUTE only support, for Android 64bit:
1193
1194 CXX=clang++ CC=clang scons Werror=1 -j8 debug=0 asserts=1 neon=0 opencl=0 gles_compute=1 embed_kernels=1 os=android arch=arm64-v8a
Anthony Barbierdbdab852017-06-23 15:42:00 +01001195
1196@subsubsection S3_3_2_examples How to manually build the examples ?
1197
1198The examples get automatically built by scons as part of the build process of the library described above. This section just describes how you can build and link your own application against our library.
1199
Jenkinsb3a371b2018-05-23 11:36:53 +01001200@note The following command lines assume the arm_compute binaries are present in the current directory or in the system library path. If this is not the case you can specify the location of the pre-built library with the compiler option -L. When building the OpenCL example the commands below assume that the CL headers are located in the include folder where the command is executed.
Anthony Barbierdbdab852017-06-23 15:42:00 +01001201
1202Once you've got your Android standalone toolchain built and added to your path you can do the following:
1203
1204To cross compile a NEON example:
1205
1206 #32 bit:
Kaizenbf8b01d2017-10-12 14:26:51 +01001207 arm-linux-androideabi-clang++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o neon_convolution_arm -static-libstdc++ -pie
Anthony Barbierdbdab852017-06-23 15:42:00 +01001208 #64 bit:
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001209 aarch64-linux-android-clang++ examples/neon_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o neon_convolution_aarch64 -static-libstdc++ -pie
Anthony Barbierdbdab852017-06-23 15:42:00 +01001210
1211To cross compile an OpenCL example:
1212
1213 #32 bit:
Jenkinsb3a371b2018-05-23 11:36:53 +01001214 arm-linux-androideabi-clang++ examples/cl_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o cl_convolution_arm -static-libstdc++ -pie -DARM_COMPUTE_CL
Anthony Barbierdbdab852017-06-23 15:42:00 +01001215 #64 bit:
Jenkinsb3a371b2018-05-23 11:36:53 +01001216 aarch64-linux-android-clang++ examples/cl_convolution.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o cl_convolution_aarch64 -static-libstdc++ -pie -DARM_COMPUTE_CL
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001217
1218To cross compile a GLES example:
Anthony Barbierf45d5a92018-01-24 16:23:15 +00001219
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001220 #32 bit:
1221 arm-linux-androideabi-clang++ examples/gc_absdiff.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o gc_absdiff_arm -static-libstdc++ -pie -DARM_COMPUTE_GC
1222 #64 bit:
1223 aarch64-linux-android-clang++ examples/gc_absdiff.cpp utils/Utils.cpp -I. -Iinclude -std=c++11 -larm_compute-static -larm_compute_core-static -L. -o gc_absdiff_aarch64 -static-libstdc++ -pie -DARM_COMPUTE_GC
Kaizenbf8b01d2017-10-12 14:26:51 +01001224
1225To cross compile the examples with the Graph API, such as graph_lenet.cpp, you need to link the library arm_compute_graph also.
1226(notice the compute library has to be built with both neon and opencl enabled - neon=1 and opencl=1)
1227
1228 #32 bit:
Jenkins52ba29e2018-08-29 15:32:11 +00001229 arm-linux-androideabi-clang++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -Wl,--whole-archive -larm_compute_graph-static -Wl,--no-whole-archive -larm_compute-static -larm_compute_core-static -L. -o graph_lenet_arm -static-libstdc++ -pie -DARM_COMPUTE_CL
Kaizenbf8b01d2017-10-12 14:26:51 +01001230 #64 bit:
Jenkins52ba29e2018-08-29 15:32:11 +00001231 aarch64-linux-android-clang++ examples/graph_lenet.cpp utils/Utils.cpp utils/GraphUtils.cpp utils/CommonGraphOptions.cpp -I. -Iinclude -std=c++11 -Wl,--whole-archive -larm_compute_graph-static -Wl,--no-whole-archive -larm_compute-static -larm_compute_core-static -L. -o graph_lenet_aarch64 -static-libstdc++ -pie -DARM_COMPUTE_CL
Anthony Barbierdbdab852017-06-23 15:42:00 +01001232
1233@note Due to some issues in older versions of the Mali OpenCL DDK (<= r13p0), we recommend to link arm_compute statically on Android.
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001234@note When linked statically the arm_compute_graph library currently needs the --whole-archive linker flag in order to work properly
Anthony Barbierdbdab852017-06-23 15:42:00 +01001235
1236Then you need to do is upload the executable and the shared library to the device using ADB:
1237
1238 adb push neon_convolution_arm /data/local/tmp/
1239 adb push cl_convolution_arm /data/local/tmp/
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001240 adb push gc_absdiff_arm /data/local/tmp/
Anthony Barbierdbdab852017-06-23 15:42:00 +01001241 adb shell chmod 777 -R /data/local/tmp/
1242
1243And finally to run the example:
1244
1245 adb shell /data/local/tmp/neon_convolution_arm
1246 adb shell /data/local/tmp/cl_convolution_arm
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001247 adb shell /data/local/tmp/gc_absdiff_arm
Anthony Barbierdbdab852017-06-23 15:42:00 +01001248
1249For 64bit:
1250
1251 adb push neon_convolution_aarch64 /data/local/tmp/
1252 adb push cl_convolution_aarch64 /data/local/tmp/
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001253 adb push gc_absdiff_aarch64 /data/local/tmp/
Anthony Barbierdbdab852017-06-23 15:42:00 +01001254 adb shell chmod 777 -R /data/local/tmp/
1255
1256And finally to run the example:
1257
1258 adb shell /data/local/tmp/neon_convolution_aarch64
1259 adb shell /data/local/tmp/cl_convolution_aarch64
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001260 adb shell /data/local/tmp/gc_absdiff_aarch64
Anthony Barbierdbdab852017-06-23 15:42:00 +01001261
Jenkins52ba29e2018-08-29 15:32:11 +00001262@note Examples accept different types of arguments, to find out what they are run the example with \a --help as an argument. If no arguments are specified then random values will be used to execute the graph.
Jenkinsc3f34a42018-03-02 12:38:09 +00001263
1264For example:
Jenkins52ba29e2018-08-29 15:32:11 +00001265 adb shell /data/local/tmp/graph_lenet --help
Jenkinsc3f34a42018-03-02 12:38:09 +00001266
1267In this case the first argument of LeNet (like all the graph examples) is the target (i.e 0 to run on NEON, 1 to run on OpenCL if available, 2 to run on OpenCL using the CLTuner), the second argument is the path to the folder containing the npy files for the weights and finally the third argument is the number of batches to run.
1268
Kaizenbf8b01d2017-10-12 14:26:51 +01001269@subsection S3_4_bare_metal Building for bare metal
1270
1271For bare metal, the library was successfully built using linaros's latest (gcc-linaro-6.3.1-2017.05) bare metal toolchains:
1272 - arm-eabi for armv7a
1273 - aarch64-elf for arm64-v8a
1274
1275Download linaro for <a href="https://releases.linaro.org/components/toolchain/binaries/6.3-2017.05/arm-eabi/">armv7a</a> and <a href="https://releases.linaro.org/components/toolchain/binaries/6.3-2017.05/aarch64-elf/">arm64-v8a</a>.
1276
1277@note Make sure to add the toolchains to your PATH: export PATH=$PATH:$MY_TOOLCHAINS/gcc-linaro-6.3.1-2017.05-x86_64_aarch64-elf/bin:$MY_TOOLCHAINS/gcc-linaro-6.3.1-2017.05-x86_64_arm-eabi/bin
1278
1279@subsubsection S3_4_1_library How to build the library ?
1280
1281To cross-compile the library with NEON support for baremetal arm64-v8a:
1282
1283 scons Werror=1 -j8 debug=0 neon=1 opencl=0 os=bare_metal arch=arm64-v8a build=cross_compile cppthreads=0 openmp=0 standalone=1
1284
1285@subsubsection S3_4_2_examples How to manually build the examples ?
1286
1287Examples are disabled when building for bare metal. If you want to build the examples you need to provide a custom bootcode depending on the target architecture and link against the compute library. More information about bare metal bootcode can be found <a href="http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0527a/index.html">here</a>.
1288
1289@subsection S3_5_windows_host Building on a Windows host system
Kaizen8938bd32017-09-28 14:38:23 +01001290
1291Using `scons` directly from the Windows command line is known to cause
1292problems. The reason seems to be that if `scons` is setup for cross-compilation
1293it gets confused about Windows style paths (using backslashes). Thus it is
1294recommended to follow one of the options outlined below.
1295
Kaizenbf8b01d2017-10-12 14:26:51 +01001296@subsubsection S3_5_1_ubuntu_on_windows Bash on Ubuntu on Windows
Kaizen8938bd32017-09-28 14:38:23 +01001297
Jenkins975dfe12019-09-02 11:47:54 +01001298The best and easiest option is to use
1299<a href="https://msdn.microsoft.com/en-gb/commandline/wsl/about">Ubuntu on Windows</a>.
Kaizen8938bd32017-09-28 14:38:23 +01001300This feature is still marked as *beta* and thus might not be available.
1301However, if it is building the library is as simple as opening a *Bash on
1302Ubuntu on Windows* shell and following the general guidelines given above.
1303
Kaizenbf8b01d2017-10-12 14:26:51 +01001304@subsubsection S3_5_2_cygwin Cygwin
Kaizen8938bd32017-09-28 14:38:23 +01001305
Jenkins975dfe12019-09-02 11:47:54 +01001306If the Windows subsystem for Linux is not available <a href="https://www.cygwin.com/">Cygwin</a>
1307can be used to install and run `scons`, the minimum Cygwin version must be 3.0.7 or later. In addition
1308to the default packages installed by Cygwin `scons` has to be selected in the installer. (`git` might
Kaizen8938bd32017-09-28 14:38:23 +01001309also be useful but is not strictly required if you already have got the source
Jenkins975dfe12019-09-02 11:47:54 +01001310code of the library.) Linaro provides pre-built versions of
1311<a href="http://releases.linaro.org/components/toolchain/binaries/">GCC cross-compilers</a>
Kaizen8938bd32017-09-28 14:38:23 +01001312that can be used from the Cygwin terminal. When building for Android the
1313compiler is included in the Android standalone toolchain. After everything has
1314been set up in the Cygwin terminal the general guide on building the library
1315can be followed.
1316
Kaizenbf8b01d2017-10-12 14:26:51 +01001317@subsection S3_6_cl_stub_library The OpenCL stub library
Anthony Barbierdbdab852017-06-23 15:42:00 +01001318
1319In the opencl-1.2-stubs folder you will find the sources to build a stub OpenCL library which then can be used to link your application or arm_compute against.
1320
1321If you preferred you could retrieve the OpenCL library from your device and link against this one but often this library will have dependencies on a range of system libraries forcing you to link your application against those too even though it is not using them.
1322
1323@warning This OpenCL library provided is a stub and *not* a real implementation. You can use it to resolve OpenCL's symbols in arm_compute while building the example but you must make sure the real libOpenCL.so is in your PATH when running the example or it will not work.
1324
1325To cross-compile the stub OpenCL library simply run:
1326
1327 <target-prefix>-gcc -o libOpenCL.so -Iinclude opencl-1.2-stubs/opencl_stubs.c -fPIC -shared
1328
1329For example:
1330
Anthony Barbierdbdab852017-06-23 15:42:00 +01001331 #Linux 32bit
1332 arm-linux-gnueabihf-gcc -o libOpenCL.so -Iinclude opencl-1.2-stubs/opencl_stubs.c -fPIC -shared
1333 #Linux 64bit
1334 aarch64-linux-gnu-gcc -o libOpenCL.so -Iinclude -shared opencl-1.2-stubs/opencl_stubs.c -fPIC
1335 #Android 32bit
1336 arm-linux-androideabi-clang -o libOpenCL.so -Iinclude -shared opencl-1.2-stubs/opencl_stubs.c -fPIC -shared
1337 #Android 64bit
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001338 aarch64-linux-android-clang -o libOpenCL.so -Iinclude -shared opencl-1.2-stubs/opencl_stubs.c -fPIC -shared
1339
1340@subsection S3_7_gles_stub_library The Linux OpenGLES and EGL stub libraries
1341
1342In the opengles-3.1-stubs folder you will find the sources to build stub EGL and OpenGLES libraries which then can be used to link your Linux application of arm_compute against.
1343
1344@note The stub libraries are only needed on Linux. For Android, the NDK toolchains already provide the meta-EGL and meta-GLES libraries.
1345
1346To cross-compile the stub OpenGLES and EGL libraries simply run:
1347
1348 <target-prefix>-gcc -o libEGL.so -Iinclude/linux opengles-3.1-stubs/EGL.c -fPIC -shared
1349 <target-prefix>-gcc -o libGLESv2.so -Iinclude/linux opengles-3.1-stubs/GLESv2.c -fPIC -shared
1350
1351 #Linux 32bit
1352 arm-linux-gnueabihf-gcc -o libEGL.so -Iinclude/linux opengles-3.1-stubs/EGL.c -fPIC -shared
1353 arm-linux-gnueabihf-gcc -o libGLESv2.so -Iinclude/linux opengles-3.1-stubs/GLESv2.c -fPIC -shared
1354
1355 #Linux 64bit
1356 aarch64-linux-gnu-gcc -o libEGL.so -Iinclude/linux opengles-3.1-stubs/EGL.c -fPIC -shared
1357 aarch64-linux-gnu-gcc -o libGLESv2.so -Iinclude/linux opengles-3.1-stubs/GLESv2.c -fPIC -shared
Jenkins52ba29e2018-08-29 15:32:11 +00001358
1359@subsection S3_8_cl_requirements OpenCL DDK Requirements
1360
1361@subsubsection S3_8_1_cl_hard_requirements Hard Requirements
1362
1363Compute Library requires OpenCL 1.1 and above with support of non uniform workgroup sizes, which is officially supported in the Mali OpenCL DDK r8p0 and above as an extension (respective extension flag is \a -cl-arm-non-uniform-work-group-size).
1364
1365Enabling 16-bit floating point calculations require \a cl_khr_fp16 extension to be supported. All Mali GPUs with compute capabilities have native support for half precision floating points.
1366
1367Use of @ref CLMeanStdDev function requires 64-bit atomics support, thus \a cl_khr_int64_base_atomics should be supported in order to use.
1368
1369@subsubsection S3_8_2_cl_performance_requirements Performance improvements
1370
1371Integer dot product built-in function extensions (and therefore optimized kernels) are available with Mali OpenCL DDK r22p0 and above for the following GPUs : G71, G76. The relevant extensions are \a cl_arm_integer_dot_product_int8, \a cl_arm_integer_dot_product_accumulate_int8 and \a cl_arm_integer_dot_product_accumulate_int16.
1372
1373OpenCL kernel level debugging can be simplified with the use of printf, this requires the \a cl_arm_printf extension to be supported.
1374
1375SVM allocations are supported for all the underlying allocations in Compute Library. To enable this OpenCL 2.0 and above is a requirement.
1376
1377@subsection S3_9_cl_tuner OpenCL Tuner
1378
1379The OpenCL tuner, a.k.a. CLTuner, is a module of Arm Compute Library that can improve the performance of the OpenCL kernels tuning the Local-Workgroup-Size (LWS).
1380The optimal LWS for each unique OpenCL kernel configuration is stored in a table. This table can be either imported or exported from/to a file.
Jenkins4ba87db2019-05-23 17:11:51 +01001381The OpenCL tuner runs the same OpenCL kernel for a range of local workgroup sizes and keeps the local workgroup size of the fastest run to use in subsequent calls to the kernel. It supports three modes of tuning with different trade-offs between the time taken to tune and the kernel execution time achieved using the best LWS found. In the Exhaustive mode, it searches all the supported values of LWS. This mode takes the longest time to tune and is the most likely to find the optimal LWS. Normal mode searches a subset of LWS values to yield a good approximation of the optimal LWS. It takes less time to tune than Exhaustive mode. Rapid mode takes the shortest time to tune and finds an LWS value that is at least as good or better than the default LWS value. The mode affects only the search for the optimal LWS and has no effect when the LWS value is imported from a file.
Jenkins52ba29e2018-08-29 15:32:11 +00001382In order for the performance numbers to be meaningful you must disable the GPU power management and set it to a fixed frequency for the entire duration of the tuning phase.
1383
1384If you wish to know more about LWS and the important role on improving the GPU cache utilization, we suggest having a look at the presentation "Even Faster CNNs: Exploring the New Class of Winograd Algorithms available at the following link:
1385
1386https://www.embedded-vision.com/platinum-members/arm/embedded-vision-training/videos/pages/may-2018-embedded-vision-summit-iodice
1387
1388Tuning a network from scratch can be long and affect considerably the execution time for the first run of your network. It is recommended for this reason to store the CLTuner's result in a file to amortize this time when you either re-use the same network or the functions with the same configurations. The tuning is performed only once for each OpenCL kernel.
1389
1390CLTuner looks for the optimal LWS for each unique OpenCL kernel configuration. Since a function (i.e. Convolution Layer, Pooling Layer, Fully Connected Layer ...) can be called multiple times but with different parameters, we associate an "id" (called "config_id") to each kernel to distinguish the unique configurations.
1391
1392 #Example: 2 unique Matrix Multiply configurations
1393@code{.cpp}
1394 TensorShape a0 = TensorShape(32,32);
1395 TensorShape b0 = TensorShape(32,32);
1396 TensorShape c0 = TensorShape(32,32);
1397 TensorShape a1 = TensorShape(64,64);
1398 TensorShape b1 = TensorShape(64,64);
1399 TensorShape c1 = TensorShape(64,64);
1400
1401 Tensor a0_tensor;
1402 Tensor b0_tensor;
1403 Tensor c0_tensor;
1404 Tensor a1_tensor;
1405 Tensor b1_tensor;
1406 Tensor c1_tensor;
1407
1408 a0_tensor.allocator()->init(TensorInfo(a0, 1, DataType::F32));
1409 b0_tensor.allocator()->init(TensorInfo(b0, 1, DataType::F32));
1410 c0_tensor.allocator()->init(TensorInfo(c0, 1, DataType::F32));
1411 a1_tensor.allocator()->init(TensorInfo(a1, 1, DataType::F32));
1412 b1_tensor.allocator()->init(TensorInfo(b1, 1, DataType::F32));
1413 c1_tensor.allocator()->init(TensorInfo(c1 1, DataType::F32));
1414
1415 CLGEMM gemm0;
1416 CLGEMM gemm1;
1417
1418 // Configuration 0
1419 gemm0.configure(&a0, &b0, nullptr, &c0, 1.0f, 0.0f);
1420
1421 // Configuration 1
1422 gemm1.configure(&a1, &b1, nullptr, &c1, 1.0f, 0.0f);
1423@endcode
1424
1425@subsubsection S3_9_1_cl_tuner_how_to How to use it
1426
1427All the graph examples in the ACL's folder "examples" and the arm_compute_benchmark accept an argument to enable the OpenCL tuner and an argument to export/import the LWS values to/from a file
1428
1429 #Enable CL tuner
1430 ./graph_mobilenet --enable-tuner –-target=CL
1431 ./arm_compute_benchmark --enable-tuner
1432
1433 #Export/Import to/from a file
1434 ./graph_mobilenet --enable-tuner --target=CL --tuner-file=acl_tuner.csv
1435 ./arm_compute_benchmark --enable-tuner --tuner-file=acl_tuner.csv
1436
1437If you are importing the CLTuner'results from a file, the new tuned LWS values will be appended to it.
1438
1439Either you are benchmarking the graph examples or the test cases in the arm_compute_benchmark remember to:
1440
1441 -# Disable the power management
1442 -# Keep the GPU frequency constant
1443 -# Run multiple times the network (i.e. 10).
1444
1445If you are not using the graph API or the benchmark infrastructure you will need to manually pass a CLTuner object to CLScheduler before configuring any function.
1446
1447@code{.cpp}
1448CLTuner tuner;
1449
1450// Setup Scheduler
1451CLScheduler::get().default_init(&tuner);
1452@endcode
1453
1454After the first run, the CLTuner's results can be exported to a file using the method "save_to_file()".
1455- tuner.save_to_file("results.csv");
1456
1457This file can be also imported using the method "load_from_file("results.csv")".
1458- tuner.load_from_file("results.csv");
Anthony Barbierdbdab852017-06-23 15:42:00 +01001459*/
Jenkinsc3f34a42018-03-02 12:38:09 +00001460} // namespace arm_compute