blob: 5779d8334f03cb38ce2a4b35738930cf818e8126 [file] [log] [blame]
Kaizenbf8b01d2017-10-12 14:26:51 +01001<!-- HTML header for doxygen 1.8.9.1-->
2<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
3<html xmlns="http://www.w3.org/1999/xhtml">
4<head>
5<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
6<meta http-equiv="X-UA-Compatible" content="IE=9"/>
Anthony Barbier8140e1e2017-12-14 23:48:46 +00007<meta name="generator" content="Doxygen 1.8.11"/>
Kaizenbf8b01d2017-10-12 14:26:51 +01008<meta name="robots" content="NOINDEX, NOFOLLOW" /> <!-- Prevent indexing by search engines -->
9<title>Compute Library: examples/graph_alexnet.cpp Source File</title>
10<link href="tabs.css" rel="stylesheet" type="text/css"/>
11<script type="text/javascript" src="jquery.js"></script>
12<script type="text/javascript" src="dynsections.js"></script>
13<link href="navtree.css" rel="stylesheet" type="text/css"/>
14<script type="text/javascript" src="resize.js"></script>
Anthony Barbier8140e1e2017-12-14 23:48:46 +000015<script type="text/javascript" src="navtreedata.js"></script>
Kaizenbf8b01d2017-10-12 14:26:51 +010016<script type="text/javascript" src="navtree.js"></script>
17<script type="text/javascript">
18 $(document).ready(initResizable);
19 $(window).load(resizeHeight);
20</script>
21<link href="search/search.css" rel="stylesheet" type="text/css"/>
Anthony Barbier8140e1e2017-12-14 23:48:46 +000022<script type="text/javascript" src="search/searchdata.js"></script>
Kaizenbf8b01d2017-10-12 14:26:51 +010023<script type="text/javascript" src="search/search.js"></script>
24<script type="text/javascript">
Anthony Barbier8140e1e2017-12-14 23:48:46 +000025 $(document).ready(function() { init_search(); });
Kaizenbf8b01d2017-10-12 14:26:51 +010026</script>
27<script type="text/x-mathjax-config">
28 MathJax.Hub.Config({
29 extensions: ["tex2jax.js"],
30 jax: ["input/TeX","output/HTML-CSS"],
31});
Anthony Barbier8140e1e2017-12-14 23:48:46 +000032</script><script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js"></script>
Kaizenbf8b01d2017-10-12 14:26:51 +010033<link href="doxygen.css" rel="stylesheet" type="text/css" />
34</head>
35<body>
36<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
37<div id="titlearea">
38<table cellspacing="0" cellpadding="0">
39 <tbody>
40 <tr style="height: 56px;">
41 <td style="padding-left: 0.5em;">
42 <div id="projectname">Compute Library
Jenkinsb3a371b2018-05-23 11:36:53 +010043 &#160;<span id="projectnumber">18.05</span>
Kaizenbf8b01d2017-10-12 14:26:51 +010044 </div>
45 </td>
46 </tr>
47 </tbody>
48</table>
49</div>
50<!-- end header part -->
Anthony Barbier8140e1e2017-12-14 23:48:46 +000051<!-- Generated by Doxygen 1.8.11 -->
Kaizenbf8b01d2017-10-12 14:26:51 +010052<script type="text/javascript">
53var searchBox = new SearchBox("searchBox", "search",false,'Search');
54</script>
55 <div id="navrow1" class="tabs">
56 <ul class="tablist">
57 <li><a href="index.xhtml"><span>Main&#160;Page</span></a></li>
58 <li><a href="pages.xhtml"><span>Related&#160;Pages</span></a></li>
59 <li><a href="namespaces.xhtml"><span>Namespaces</span></a></li>
60 <li><a href="annotated.xhtml"><span>Data&#160;Structures</span></a></li>
61 <li class="current"><a href="files.xhtml"><span>Files</span></a></li>
62 <li>
63 <div id="MSearchBox" class="MSearchBoxInactive">
64 <span class="left">
65 <img id="MSearchSelect" src="search/mag_sel.png"
66 onmouseover="return searchBox.OnSearchSelectShow()"
67 onmouseout="return searchBox.OnSearchSelectHide()"
68 alt=""/>
69 <input type="text" id="MSearchField" value="Search" accesskey="S"
70 onfocus="searchBox.OnSearchFieldFocus(true)"
71 onblur="searchBox.OnSearchFieldFocus(false)"
72 onkeyup="searchBox.OnSearchFieldChange(event)"/>
73 </span><span class="right">
74 <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
75 </span>
76 </div>
77 </li>
78 </ul>
79 </div>
80 <div id="navrow2" class="tabs2">
81 <ul class="tablist">
82 <li><a href="files.xhtml"><span>File&#160;List</span></a></li>
83 <li><a href="globals.xhtml"><span>Globals</span></a></li>
84 </ul>
85 </div>
86</div><!-- top -->
87<div id="side-nav" class="ui-resizable side-nav-resizable">
88 <div id="nav-tree">
89 <div id="nav-tree-contents">
90 <div id="nav-sync" class="sync"></div>
91 </div>
92 </div>
93 <div id="splitbar" style="-moz-user-select:none;"
94 class="ui-resizable-handle">
95 </div>
96</div>
97<script type="text/javascript">
98$(document).ready(function(){initNavTree('graph__alexnet_8cpp_source.xhtml','');});
99</script>
100<div id="doc-content">
101<!-- window showing the filter options -->
102<div id="MSearchSelectWindow"
103 onmouseover="return searchBox.OnSearchSelectShow()"
104 onmouseout="return searchBox.OnSearchSelectHide()"
105 onkeydown="return searchBox.OnSearchSelectKey(event)">
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000106</div>
Kaizenbf8b01d2017-10-12 14:26:51 +0100107
108<!-- iframe showing the search results (closed by default) -->
109<div id="MSearchResultsWindow">
110<iframe src="javascript:void(0)" frameborder="0"
111 name="MSearchResults" id="MSearchResults">
112</iframe>
113</div>
114
115<div class="header">
116 <div class="headertitle">
117<div class="title">graph_alexnet.cpp</div> </div>
118</div><!--header-->
119<div class="contents">
Jenkinsb3a371b2018-05-23 11:36:53 +0100120<a href="graph__alexnet_8cpp.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span>&#160;<span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno"> 2</span>&#160;<span class="comment"> * Copyright (c) 2017-2018 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno"> 3</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno"> 4</span>&#160;<span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno"> 5</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno"> 6</span>&#160;<span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno"> 7</span>&#160;<span class="comment"> * of this software and associated documentation files (the &quot;Software&quot;), to</span></div><div class="line"><a name="l00008"></a><span class="lineno"> 8</span>&#160;<span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno"> 9</span>&#160;<span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno"> 10</span>&#160;<span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno"> 11</span>&#160;<span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno"> 12</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno"> 13</span>&#160;<span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno"> 14</span>&#160;<span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno"> 15</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno"> 16</span>&#160;<span class="comment"> * THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno"> 17</span>&#160;<span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno"> 18</span>&#160;<span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno"> 19</span>&#160;<span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno"> 20</span>&#160;<span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno"> 21</span>&#160;<span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno"> 22</span>&#160;<span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno"> 23</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno"> 24</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="graph_8h.xhtml">arm_compute/graph.h</a>&quot;</span></div><div class="line"><a name="l00025"></a><span class="lineno"> 25</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="_toolchain_support_8h.xhtml">support/ToolchainSupport.h</a>&quot;</span></div><div class="line"><a name="l00026"></a><span class="lineno"> 26</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="_graph_utils_8h.xhtml">utils/GraphUtils.h</a>&quot;</span></div><div class="line"><a name="l00027"></a><span class="lineno"> 27</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="utils_2_utils_8h.xhtml">utils/Utils.h</a>&quot;</span></div><div class="line"><a name="l00028"></a><span class="lineno"> 28</span>&#160;</div><div class="line"><a name="l00029"></a><span class="lineno"> 29</span>&#160;<span class="preprocessor">#include &lt;cstdlib&gt;</span></div><div class="line"><a name="l00030"></a><span class="lineno"> 30</span>&#160;<span class="preprocessor">#include &lt;iostream&gt;</span></div><div class="line"><a name="l00031"></a><span class="lineno"> 31</span>&#160;<span class="preprocessor">#include &lt;memory&gt;</span></div><div class="line"><a name="l00032"></a><span class="lineno"> 32</span>&#160;</div><div class="line"><a name="l00033"></a><span class="lineno"> 33</span>&#160;<span class="keyword">using namespace </span><a class="code" href="namespacearm__compute_1_1utils.xhtml">arm_compute::utils</a>;</div><div class="line"><a name="l00034"></a><span class="lineno"> 34</span>&#160;<span class="keyword">using namespace </span><a class="code" href="namespacearm__compute_1_1graph_1_1frontend.xhtml">arm_compute::graph::frontend</a>;</div><div class="line"><a name="l00035"></a><span class="lineno"> 35</span>&#160;<span class="keyword">using namespace </span><a class="code" href="namespacearm__compute_1_1graph__utils.xhtml">arm_compute::graph_utils</a>;</div><div class="line"><a name="l00036"></a><span class="lineno"> 36</span>&#160;</div><div class="line"><a name="l00042"></a><span class="lineno"> 42</span>&#160;<span class="keyword">class </span>GraphAlexnetExample : <span class="keyword">public</span> <a class="code" href="classarm__compute_1_1utils_1_1_example.xhtml">Example</a></div><div class="line"><a name="l00043"></a><span class="lineno"> 43</span>&#160;{</div><div class="line"><a name="l00044"></a><span class="lineno"> 44</span>&#160;<span class="keyword">public</span>:</div><div class="line"><a name="l00045"></a><span class="lineno"> 45</span>&#160; <span class="keywordtype">void</span> do_setup(<span class="keywordtype">int</span> argc, <span class="keywordtype">char</span> **argv)<span class="keyword"> override</span></div><div class="line"><a name="l00046"></a><span class="lineno"> 46</span>&#160;<span class="keyword"> </span>{</div><div class="line"><a name="l00047"></a><span class="lineno"> 47</span>&#160; std::string data_path; <span class="comment">/* Path to the trainable data */</span></div><div class="line"><a name="l00048"></a><span class="lineno"> 48</span>&#160; std::string image; <span class="comment">/* Image data */</span></div><div class="line"><a name="l00049"></a><span class="lineno"> 49</span>&#160; std::string label; <span class="comment">/* Label data */</span></div><div class="line"><a name="l00050"></a><span class="lineno"> 50</span>&#160;</div><div class="line"><a name="l00051"></a><span class="lineno"> 51</span>&#160; <span class="comment">// Create a preprocessor object</span></div><div class="line"><a name="l00052"></a><span class="lineno"> 52</span>&#160; <span class="keyword">const</span> std::array&lt;float, 3&gt; mean_rgb{ { 122.68f, 116.67f, 104.01f } };</div><div class="line"><a name="l00053"></a><span class="lineno"> 53</span>&#160; std::unique_ptr&lt;IPreprocessor&gt; preprocessor = arm_compute::support::cpp14::make_unique&lt;CaffePreproccessor&gt;(mean_rgb);</div><div class="line"><a name="l00054"></a><span class="lineno"> 54</span>&#160;</div><div class="line"><a name="l00055"></a><span class="lineno"> 55</span>&#160; <span class="comment">// Set target. 0 (NEON), 1 (OpenCL), 2 (OpenCL with Tuner). By default it is NEON</span></div><div class="line"><a name="l00056"></a><span class="lineno"> 56</span>&#160; <span class="keyword">const</span> <span class="keywordtype">int</span> target = argc &gt; 1 ? std::strtol(argv[1], <span class="keyword">nullptr</span>, 10) : 0;</div><div class="line"><a name="l00057"></a><span class="lineno"> 57</span>&#160; <a class="code" href="namespacearm__compute_1_1graph.xhtml#a31488d29805a596498c0234ae392d35d">Target</a> target_hint = <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#ab6dc388200717b5fae17342af13f5e41">set_target_hint</a>(target);</div><div class="line"><a name="l00058"></a><span class="lineno"> 58</span>&#160;</div><div class="line"><a name="l00059"></a><span class="lineno"> 59</span>&#160; <span class="keyword">const</span> <span class="keywordtype">bool</span> is_neon = (target_hint == Target::NEON);</div><div class="line"><a name="l00060"></a><span class="lineno"> 60</span>&#160; <a class="code" href="namespacearm__compute.xhtml#a683661ae75dcb7aef16b9c9bde31517d">ConvolutionMethod</a> convolution_5x5_hint = is_neon ? <a class="code" href="namespacearm__compute.xhtml#a683661ae75dcb7aef16b9c9bde31517da5174aac3927faa9ee34befb7fc87a9e3">ConvolutionMethod::GEMM</a> : <a class="code" href="namespacearm__compute.xhtml#a683661ae75dcb7aef16b9c9bde31517da4c5d06b02c97731aaa976179c62dcf76">ConvolutionMethod::DIRECT</a>;</div><div class="line"><a name="l00061"></a><span class="lineno"> 61</span>&#160; <a class="code" href="namespacearm__compute.xhtml#a683661ae75dcb7aef16b9c9bde31517d">ConvolutionMethod</a> convolution_3x3_hint = ConvolutionMethod::DEFAULT;</div><div class="line"><a name="l00062"></a><span class="lineno"> 62</span>&#160; <a class="code" href="namespacearm__compute_1_1graph.xhtml#ac85a46f3ebd3ab09f576a994ac2dce11">FastMathHint</a> fast_math_hint = FastMathHint::DISABLED;</div><div class="line"><a name="l00063"></a><span class="lineno"> 63</span>&#160;</div><div class="line"><a name="l00064"></a><span class="lineno"> 64</span>&#160; <span class="comment">// Parse arguments</span></div><div class="line"><a name="l00065"></a><span class="lineno"> 65</span>&#160; <span class="keywordflow">if</span>(argc &lt; 2)</div><div class="line"><a name="l00066"></a><span class="lineno"> 66</span>&#160; {</div><div class="line"><a name="l00067"></a><span class="lineno"> 67</span>&#160; <span class="comment">// Print help</span></div><div class="line"><a name="l00068"></a><span class="lineno"> 68</span>&#160; std::cout &lt;&lt; <span class="stringliteral">&quot;Usage: &quot;</span> &lt;&lt; argv[0] &lt;&lt; <span class="stringliteral">&quot; [target] [path_to_data] [image] [labels] [fast_math_hint]\n\n&quot;</span>;</div><div class="line"><a name="l00069"></a><span class="lineno"> 69</span>&#160; std::cout &lt;&lt; <span class="stringliteral">&quot;No data folder provided: using random values\n\n&quot;</span>;</div><div class="line"><a name="l00070"></a><span class="lineno"> 70</span>&#160; }</div><div class="line"><a name="l00071"></a><span class="lineno"> 71</span>&#160; <span class="keywordflow">else</span> <span class="keywordflow">if</span>(argc == 2)</div><div class="line"><a name="l00072"></a><span class="lineno"> 72</span>&#160; {</div><div class="line"><a name="l00073"></a><span class="lineno"> 73</span>&#160; std::cout &lt;&lt; <span class="stringliteral">&quot;Usage: &quot;</span> &lt;&lt; argv[0] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[1] &lt;&lt; <span class="stringliteral">&quot; [path_to_data] [image] [labels] [fast_math_hint]\n\n&quot;</span>;</div><div class="line"><a name="l00074"></a><span class="lineno"> 74</span>&#160; std::cout &lt;&lt; <span class="stringliteral">&quot;No data folder provided: using random values\n\n&quot;</span>;</div><div class="line"><a name="l00075"></a><span class="lineno"> 75</span>&#160; }</div><div class="line"><a name="l00076"></a><span class="lineno"> 76</span>&#160; <span class="keywordflow">else</span> <span class="keywordflow">if</span>(argc == 3)</div><div class="line"><a name="l00077"></a><span class="lineno"> 77</span>&#160; {</div><div class="line"><a name="l00078"></a><span class="lineno"> 78</span>&#160; data_path = argv[2];</div><div class="line"><a name="l00079"></a><span class="lineno"> 79</span>&#160; std::cout &lt;&lt; <span class="stringliteral">&quot;Usage: &quot;</span> &lt;&lt; argv[0] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[1] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[2] &lt;&lt; <span class="stringliteral">&quot; [image] [labels] [fast_math_hint]\n\n&quot;</span>;</div><div class="line"><a name="l00080"></a><span class="lineno"> 80</span>&#160; std::cout &lt;&lt; <span class="stringliteral">&quot;No image provided: using random values\n\n&quot;</span>;</div><div class="line"><a name="l00081"></a><span class="lineno"> 81</span>&#160; }</div><div class="line"><a name="l00082"></a><span class="lineno"> 82</span>&#160; <span class="keywordflow">else</span> <span class="keywordflow">if</span>(argc == 4)</div><div class="line"><a name="l00083"></a><span class="lineno"> 83</span>&#160; {</div><div class="line"><a name="l00084"></a><span class="lineno"> 84</span>&#160; data_path = argv[2];</div><div class="line"><a name="l00085"></a><span class="lineno"> 85</span>&#160; image = argv[3];</div><div class="line"><a name="l00086"></a><span class="lineno"> 86</span>&#160; std::cout &lt;&lt; <span class="stringliteral">&quot;Usage: &quot;</span> &lt;&lt; argv[0] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[1] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[2] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[3] &lt;&lt; <span class="stringliteral">&quot; [labels] [fast_math_hint]\n\n&quot;</span>;</div><div class="line"><a name="l00087"></a><span class="lineno"> 87</span>&#160; std::cout &lt;&lt; <span class="stringliteral">&quot;No text file with labels provided: skipping output accessor\n\n&quot;</span>;</div><div class="line"><a name="l00088"></a><span class="lineno"> 88</span>&#160; }</div><div class="line"><a name="l00089"></a><span class="lineno"> 89</span>&#160; <span class="keywordflow">else</span> <span class="keywordflow">if</span>(argc == 5)</div><div class="line"><a name="l00090"></a><span class="lineno"> 90</span>&#160; {</div><div class="line"><a name="l00091"></a><span class="lineno"> 91</span>&#160; data_path = argv[2];</div><div class="line"><a name="l00092"></a><span class="lineno"> 92</span>&#160; image = argv[3];</div><div class="line"><a name="l00093"></a><span class="lineno"> 93</span>&#160; label = argv[4];</div><div class="line"><a name="l00094"></a><span class="lineno"> 94</span>&#160; std::cout &lt;&lt; <span class="stringliteral">&quot;Usage: &quot;</span> &lt;&lt; argv[0] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[1] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[2] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[3] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[4] &lt;&lt; <span class="stringliteral">&quot; [fast_math_hint]\n\n&quot;</span>;</div><div class="line"><a name="l00095"></a><span class="lineno"> 95</span>&#160; std::cout &lt;&lt; <span class="stringliteral">&quot;No fast math info provided: disabling fast math\n\n&quot;</span>;</div><div class="line"><a name="l00096"></a><span class="lineno"> 96</span>&#160; }</div><div class="line"><a name="l00097"></a><span class="lineno"> 97</span>&#160; <span class="keywordflow">else</span></div><div class="line"><a name="l00098"></a><span class="lineno"> 98</span>&#160; {</div><div class="line"><a name="l00099"></a><span class="lineno"> 99</span>&#160; data_path = argv[2];</div><div class="line"><a name="l00100"></a><span class="lineno"> 100</span>&#160; image = argv[3];</div><div class="line"><a name="l00101"></a><span class="lineno"> 101</span>&#160; label = argv[4];</div><div class="line"><a name="l00102"></a><span class="lineno"> 102</span>&#160; fast_math_hint = (std::strtol(argv[5], <span class="keyword">nullptr</span>, 1) == 0) ? FastMathHint::DISABLED : FastMathHint::ENABLED;</div><div class="line"><a name="l00103"></a><span class="lineno"> 103</span>&#160; }</div><div class="line"><a name="l00104"></a><span class="lineno"> 104</span>&#160;</div><div class="line"><a name="l00105"></a><span class="lineno"> 105</span>&#160; graph &lt;&lt; target_hint</div><div class="line"><a name="l00106"></a><span class="lineno"> 106</span>&#160; &lt;&lt; fast_math_hint</div><div class="line"><a name="l00107"></a><span class="lineno"> 107</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_input_layer.xhtml">InputLayer</a>(TensorDescriptor(TensorShape(227U, 227U, 3U, 1U), <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">DataType::F32</a>),</div><div class="line"><a name="l00108"></a><span class="lineno"> 108</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a9984cc47279cdb732b7b83caf0627de6">get_input_accessor</a>(image, std::move(preprocessor)))</div><div class="line"><a name="l00109"></a><span class="lineno"> 109</span>&#160; <span class="comment">// Layer 1</span></div><div class="line"><a name="l00110"></a><span class="lineno"> 110</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00111"></a><span class="lineno"> 111</span>&#160; 11U, 11U, 96U,</div><div class="line"><a name="l00112"></a><span class="lineno"> 112</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/conv1_w.npy&quot;</span>),</div><div class="line"><a name="l00113"></a><span class="lineno"> 113</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/conv1_b.npy&quot;</span>),</div><div class="line"><a name="l00114"></a><span class="lineno"> 114</span>&#160; PadStrideInfo(4, 4, 0, 0))</div><div class="line"><a name="l00115"></a><span class="lineno"> 115</span>&#160; .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv1&quot;</span>)</div><div class="line"><a name="l00116"></a><span class="lineno"> 116</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaad346bb4679d29be241279f15d7795c1c">ActivationLayerInfo::ActivationFunction::RELU</a>)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;relu1&quot;</span>)</div><div class="line"><a name="l00117"></a><span class="lineno"> 117</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_normalization_layer.xhtml">NormalizationLayer</a>(NormalizationLayerInfo(<a class="code" href="namespacearm__compute.xhtml#ad4bb8dabdbf8ad75e34220cc666b59caa980fef040549733973683b1a868f96e5">NormType::CROSS_MAP</a>, 5, 0.0001f, 0.75f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;norm1&quot;</span>)</div><div class="line"><a name="l00118"></a><span class="lineno"> 118</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_pooling_layer.xhtml">PoolingLayer</a>(PoolingLayerInfo(<a class="code" href="namespacearm__compute.xhtml#adf2ced65e536375a1c96425d9fced858a26a4b44a837bf97b972628509912b4a5">PoolingType::MAX</a>, 3, PadStrideInfo(2, 2, 0, 0))).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;pool1&quot;</span>)</div><div class="line"><a name="l00119"></a><span class="lineno"> 119</span>&#160; <span class="comment">// Layer 2</span></div><div class="line"><a name="l00120"></a><span class="lineno"> 120</span>&#160; &lt;&lt; convolution_5x5_hint</div><div class="line"><a name="l00121"></a><span class="lineno"> 121</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00122"></a><span class="lineno"> 122</span>&#160; 5U, 5U, 256U,</div><div class="line"><a name="l00123"></a><span class="lineno"> 123</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/conv2_w.npy&quot;</span>),</div><div class="line"><a name="l00124"></a><span class="lineno"> 124</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/conv2_b.npy&quot;</span>),</div><div class="line"><a name="l00125"></a><span class="lineno"> 125</span>&#160; PadStrideInfo(1, 1, 2, 2), 2)</div><div class="line"><a name="l00126"></a><span class="lineno"> 126</span>&#160; .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2&quot;</span>)</div><div class="line"><a name="l00127"></a><span class="lineno"> 127</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaad346bb4679d29be241279f15d7795c1c">ActivationLayerInfo::ActivationFunction::RELU</a>)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;relu2&quot;</span>)</div><div class="line"><a name="l00128"></a><span class="lineno"> 128</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_normalization_layer.xhtml">NormalizationLayer</a>(NormalizationLayerInfo(<a class="code" href="namespacearm__compute.xhtml#ad4bb8dabdbf8ad75e34220cc666b59caa980fef040549733973683b1a868f96e5">NormType::CROSS_MAP</a>, 5, 0.0001f, 0.75f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;norm2&quot;</span>)</div><div class="line"><a name="l00129"></a><span class="lineno"> 129</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_pooling_layer.xhtml">PoolingLayer</a>(PoolingLayerInfo(<a class="code" href="namespacearm__compute.xhtml#adf2ced65e536375a1c96425d9fced858a26a4b44a837bf97b972628509912b4a5">PoolingType::MAX</a>, 3, PadStrideInfo(2, 2, 0, 0))).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;pool2&quot;</span>)</div><div class="line"><a name="l00130"></a><span class="lineno"> 130</span>&#160; &lt;&lt; convolution_3x3_hint</div><div class="line"><a name="l00131"></a><span class="lineno"> 131</span>&#160; <span class="comment">// Layer 3</span></div><div class="line"><a name="l00132"></a><span class="lineno"> 132</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00133"></a><span class="lineno"> 133</span>&#160; 3U, 3U, 384U,</div><div class="line"><a name="l00134"></a><span class="lineno"> 134</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/conv3_w.npy&quot;</span>),</div><div class="line"><a name="l00135"></a><span class="lineno"> 135</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/conv3_b.npy&quot;</span>),</div><div class="line"><a name="l00136"></a><span class="lineno"> 136</span>&#160; PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00137"></a><span class="lineno"> 137</span>&#160; .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv3&quot;</span>)</div><div class="line"><a name="l00138"></a><span class="lineno"> 138</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaad346bb4679d29be241279f15d7795c1c">ActivationLayerInfo::ActivationFunction::RELU</a>)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;relu3&quot;</span>)</div><div class="line"><a name="l00139"></a><span class="lineno"> 139</span>&#160; <span class="comment">// Layer 4</span></div><div class="line"><a name="l00140"></a><span class="lineno"> 140</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00141"></a><span class="lineno"> 141</span>&#160; 3U, 3U, 384U,</div><div class="line"><a name="l00142"></a><span class="lineno"> 142</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/conv4_w.npy&quot;</span>),</div><div class="line"><a name="l00143"></a><span class="lineno"> 143</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/conv4_b.npy&quot;</span>),</div><div class="line"><a name="l00144"></a><span class="lineno"> 144</span>&#160; PadStrideInfo(1, 1, 1, 1), 2)</div><div class="line"><a name="l00145"></a><span class="lineno"> 145</span>&#160; .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv4&quot;</span>)</div><div class="line"><a name="l00146"></a><span class="lineno"> 146</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaad346bb4679d29be241279f15d7795c1c">ActivationLayerInfo::ActivationFunction::RELU</a>)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;relu4&quot;</span>)</div><div class="line"><a name="l00147"></a><span class="lineno"> 147</span>&#160; <span class="comment">// Layer 5</span></div><div class="line"><a name="l00148"></a><span class="lineno"> 148</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00149"></a><span class="lineno"> 149</span>&#160; 3U, 3U, 256U,</div><div class="line"><a name="l00150"></a><span class="lineno"> 150</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/conv5_w.npy&quot;</span>),</div><div class="line"><a name="l00151"></a><span class="lineno"> 151</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/conv5_b.npy&quot;</span>),</div><div class="line"><a name="l00152"></a><span class="lineno"> 152</span>&#160; PadStrideInfo(1, 1, 1, 1), 2)</div><div class="line"><a name="l00153"></a><span class="lineno"> 153</span>&#160; .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv5&quot;</span>)</div><div class="line"><a name="l00154"></a><span class="lineno"> 154</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaad346bb4679d29be241279f15d7795c1c">ActivationLayerInfo::ActivationFunction::RELU</a>)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;relu5&quot;</span>)</div><div class="line"><a name="l00155"></a><span class="lineno"> 155</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_pooling_layer.xhtml">PoolingLayer</a>(PoolingLayerInfo(<a class="code" href="namespacearm__compute.xhtml#adf2ced65e536375a1c96425d9fced858a26a4b44a837bf97b972628509912b4a5">PoolingType::MAX</a>, 3, PadStrideInfo(2, 2, 0, 0))).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;pool5&quot;</span>)</div><div class="line"><a name="l00156"></a><span class="lineno"> 156</span>&#160; <span class="comment">// Layer 6</span></div><div class="line"><a name="l00157"></a><span class="lineno"> 157</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_fully_connected_layer.xhtml">FullyConnectedLayer</a>(</div><div class="line"><a name="l00158"></a><span class="lineno"> 158</span>&#160; 4096U,</div><div class="line"><a name="l00159"></a><span class="lineno"> 159</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/fc6_w.npy&quot;</span>),</div><div class="line"><a name="l00160"></a><span class="lineno"> 160</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/fc6_b.npy&quot;</span>))</div><div class="line"><a name="l00161"></a><span class="lineno"> 161</span>&#160; .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;fc6&quot;</span>)</div><div class="line"><a name="l00162"></a><span class="lineno"> 162</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaad346bb4679d29be241279f15d7795c1c">ActivationLayerInfo::ActivationFunction::RELU</a>)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;relu6&quot;</span>)</div><div class="line"><a name="l00163"></a><span class="lineno"> 163</span>&#160; <span class="comment">// Layer 7</span></div><div class="line"><a name="l00164"></a><span class="lineno"> 164</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_fully_connected_layer.xhtml">FullyConnectedLayer</a>(</div><div class="line"><a name="l00165"></a><span class="lineno"> 165</span>&#160; 4096U,</div><div class="line"><a name="l00166"></a><span class="lineno"> 166</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/fc7_w.npy&quot;</span>),</div><div class="line"><a name="l00167"></a><span class="lineno"> 167</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/fc7_b.npy&quot;</span>))</div><div class="line"><a name="l00168"></a><span class="lineno"> 168</span>&#160; .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;fc7&quot;</span>)</div><div class="line"><a name="l00169"></a><span class="lineno"> 169</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaad346bb4679d29be241279f15d7795c1c">ActivationLayerInfo::ActivationFunction::RELU</a>)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;relu7&quot;</span>)</div><div class="line"><a name="l00170"></a><span class="lineno"> 170</span>&#160; <span class="comment">// Layer 8</span></div><div class="line"><a name="l00171"></a><span class="lineno"> 171</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_fully_connected_layer.xhtml">FullyConnectedLayer</a>(</div><div class="line"><a name="l00172"></a><span class="lineno"> 172</span>&#160; 1000U,</div><div class="line"><a name="l00173"></a><span class="lineno"> 173</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/fc8_w.npy&quot;</span>),</div><div class="line"><a name="l00174"></a><span class="lineno"> 174</span>&#160; <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/alexnet_model/fc8_b.npy&quot;</span>))</div><div class="line"><a name="l00175"></a><span class="lineno"> 175</span>&#160; .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;fc8&quot;</span>)</div><div class="line"><a name="l00176"></a><span class="lineno"> 176</span>&#160; <span class="comment">// Softmax</span></div><div class="line"><a name="l00177"></a><span class="lineno"> 177</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_softmax_layer.xhtml">SoftmaxLayer</a>().<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;prob&quot;</span>)</div><div class="line"><a name="l00178"></a><span class="lineno"> 178</span>&#160; &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_output_layer.xhtml">OutputLayer</a>(<a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#aaf0c8eff756108c8bb23aecf51d44f79">get_output_accessor</a>(label, 5));</div><div class="line"><a name="l00179"></a><span class="lineno"> 179</span>&#160;</div><div class="line"><a name="l00180"></a><span class="lineno"> 180</span>&#160; <span class="comment">// Finalize graph</span></div><div class="line"><a name="l00181"></a><span class="lineno"> 181</span>&#160; GraphConfig config;</div><div class="line"><a name="l00182"></a><span class="lineno"> 182</span>&#160; config.use_tuner = (target == 2);</div><div class="line"><a name="l00183"></a><span class="lineno"> 183</span>&#160; graph.finalize(target_hint, config);</div><div class="line"><a name="l00184"></a><span class="lineno"> 184</span>&#160; }</div><div class="line"><a name="l00185"></a><span class="lineno"> 185</span>&#160; <span class="keywordtype">void</span> do_run()<span class="keyword"> override</span></div><div class="line"><a name="l00186"></a><span class="lineno"> 186</span>&#160;<span class="keyword"> </span>{</div><div class="line"><a name="l00187"></a><span class="lineno"> 187</span>&#160; <span class="comment">// Run graph</span></div><div class="line"><a name="l00188"></a><span class="lineno"> 188</span>&#160; graph.run();</div><div class="line"><a name="l00189"></a><span class="lineno"> 189</span>&#160; }</div><div class="line"><a name="l00190"></a><span class="lineno"> 190</span>&#160;</div><div class="line"><a name="l00191"></a><span class="lineno"> 191</span>&#160;<span class="keyword">private</span>:</div><div class="line"><a name="l00192"></a><span class="lineno"> 192</span>&#160; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_stream.xhtml">Stream</a> graph{ 0, <span class="stringliteral">&quot;AlexNet&quot;</span> };</div><div class="line"><a name="l00193"></a><span class="lineno"> 193</span>&#160;};</div><div class="line"><a name="l00194"></a><span class="lineno"> 194</span>&#160;</div><div class="line"><a name="l00200"></a><span class="lineno"><a class="line" href="graph__alexnet_8cpp.xhtml#a3c04138a5bfe5d72780bb7e82a18e627"> 200</a></span>&#160;<span class="keywordtype">int</span> <a class="code" href="graph__alexnet_8cpp.xhtml#a3c04138a5bfe5d72780bb7e82a18e627">main</a>(<span class="keywordtype">int</span> argc, <span class="keywordtype">char</span> **argv)</div><div class="line"><a name="l00201"></a><span class="lineno"> 201</span>&#160;{</div><div class="line"><a name="l00202"></a><span class="lineno"> 202</span>&#160; <span class="keywordflow">return</span> arm_compute::utils::run_example&lt;GraphAlexnetExample&gt;(argc, argv);</div><div class="line"><a name="l00203"></a><span class="lineno"> 203</span>&#160;}</div><div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_pooling_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_pooling_layer.xhtml">arm_compute::graph::frontend::PoolingLayer</a></div><div class="ttdoc">Pooling Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00336">Layers.h:336</a></div></div>
121<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_ab6dc388200717b5fae17342af13f5e41"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#ab6dc388200717b5fae17342af13f5e41">arm_compute::graph_utils::set_target_hint</a></div><div class="ttdeci">graph::Target set_target_hint(int target)</div><div class="ttdoc">Utility function to return the TargetHint. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00370">GraphUtils.h:370</a></div></div>
122<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_normalization_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_normalization_layer.xhtml">arm_compute::graph::frontend::NormalizationLayer</a></div><div class="ttdoc">Normalization Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00312">Layers.h:312</a></div></div>
Kaizenbf8b01d2017-10-12 14:26:51 +0100123<div class="ttc" id="_toolchain_support_8h_xhtml"><div class="ttname"><a href="_toolchain_support_8h.xhtml">ToolchainSupport.h</a></div></div>
Kaizenbf8b01d2017-10-12 14:26:51 +0100124<div class="ttc" id="classarm__compute_1_1_activation_layer_info_xhtml_a56297e0f7b215eea46c818cb7528d9eaad346bb4679d29be241279f15d7795c1c"><div class="ttname"><a href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaad346bb4679d29be241279f15d7795c1c">arm_compute::ActivationLayerInfo::ActivationFunction::RELU</a></div><div class="ttdoc">Rectifier ( ) </div></div>
Jenkinsb3a371b2018-05-23 11:36:53 +0100125<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_aaf0c8eff756108c8bb23aecf51d44f79"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#aaf0c8eff756108c8bb23aecf51d44f79">arm_compute::graph_utils::get_output_accessor</a></div><div class="ttdeci">std::unique_ptr&lt; graph::ITensorAccessor &gt; get_output_accessor(const std::string &amp;labels_path, size_t top_n=5, std::ostream &amp;output_stream=std::cout)</div><div class="ttdoc">Generates appropriate output accessor according to the specified labels_path. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00330">GraphUtils.h:330</a></div></div>
Kaizenbf8b01d2017-10-12 14:26:51 +0100126<div class="ttc" id="utils_2_utils_8h_xhtml"><div class="ttname"><a href="utils_2_utils_8h.xhtml">Utils.h</a></div></div>
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000127<div class="ttc" id="namespacearm__compute_xhtml_ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda"><div class="ttname"><a href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">arm_compute::Format::F32</a></div><div class="ttdoc">1 channel, 1 F32 per channel </div></div>
Jenkinsb3a371b2018-05-23 11:36:53 +0100128<div class="ttc" id="namespacearm__compute_xhtml_a683661ae75dcb7aef16b9c9bde31517d"><div class="ttname"><a href="namespacearm__compute.xhtml#a683661ae75dcb7aef16b9c9bde31517d">arm_compute::ConvolutionMethod</a></div><div class="ttdeci">ConvolutionMethod</div><div class="ttdoc">Available ConvolutionMethod. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l01220">Types.h:1220</a></div></div>
129<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_input_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_input_layer.xhtml">arm_compute::graph::frontend::InputLayer</a></div><div class="ttdoc">Input Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00045">Layers.h:45</a></div></div>
Anthony Barbier06ea0482018-02-22 15:45:35 +0000130<div class="ttc" id="namespacearm__compute_xhtml_a683661ae75dcb7aef16b9c9bde31517da4c5d06b02c97731aaa976179c62dcf76"><div class="ttname"><a href="namespacearm__compute.xhtml#a683661ae75dcb7aef16b9c9bde31517da4c5d06b02c97731aaa976179c62dcf76">arm_compute::ConvolutionMethod::DIRECT</a></div><div class="ttdoc">Direct convolution. </div></div>
Kaizenbf8b01d2017-10-12 14:26:51 +0100131<div class="ttc" id="_graph_utils_8h_xhtml"><div class="ttname"><a href="_graph_utils_8h.xhtml">GraphUtils.h</a></div></div>
Jenkinsb3a371b2018-05-23 11:36:53 +0100132<div class="ttc" id="graph_8h_xhtml"><div class="ttname"><a href="graph_8h.xhtml">graph.h</a></div></div>
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000133<div class="ttc" id="classarm__compute_1_1utils_1_1_example_xhtml"><div class="ttname"><a href="classarm__compute_1_1utils_1_1_example.xhtml">arm_compute::utils::Example</a></div><div class="ttdoc">Abstract Example class. </div><div class="ttdef"><b>Definition:</b> <a href="utils_2_utils_8h_source.xhtml#l00062">Utils.h:62</a></div></div>
Jenkinsb3a371b2018-05-23 11:36:53 +0100134<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_a9984cc47279cdb732b7b83caf0627de6"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#a9984cc47279cdb732b7b83caf0627de6">arm_compute::graph_utils::get_input_accessor</a></div><div class="ttdeci">std::unique_ptr&lt; graph::ITensorAccessor &gt; get_input_accessor(const std::string &amp;ppm_path, std::unique_ptr&lt; IPreprocessor &gt; preprocessor=nullptr, bool bgr=true)</div><div class="ttdoc">Generates appropriate input accessor according to the specified ppm_path. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00299">GraphUtils.h:299</a></div></div>
135<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">arm_compute::graph::frontend::ActivationLayer</a></div><div class="ttdoc">Activation Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00094">Layers.h:94</a></div></div>
136<div class="ttc" id="namespacearm__compute_1_1graph_xhtml_a31488d29805a596498c0234ae392d35d"><div class="ttname"><a href="namespacearm__compute_1_1graph.xhtml#a31488d29805a596498c0234ae392d35d">arm_compute::graph::Target</a></div><div class="ttdeci">Target</div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2_types_8h_source.xhtml#l00084">Types.h:84</a></div></div>
137<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">arm_compute::graph::frontend::ConvolutionLayer</a></div><div class="ttdoc">Convolution Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00158">Layers.h:158</a></div></div>
138<div class="ttc" id="namespacearm__compute_1_1graph_xhtml_ac85a46f3ebd3ab09f576a994ac2dce11"><div class="ttname"><a href="namespacearm__compute_1_1graph.xhtml#ac85a46f3ebd3ab09f576a994ac2dce11">arm_compute::graph::FastMathHint</a></div><div class="ttdeci">FastMathHint</div><div class="ttdoc">Enable or disable fast math for Convolution layer. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2_types_8h_source.xhtml#l00118">Types.h:118</a></div></div>
139<div class="ttc" id="namespacearm__compute_1_1utils_xhtml"><div class="ttname"><a href="namespacearm__compute_1_1utils.xhtml">arm_compute::utils</a></div><div class="ttdef"><b>Definition:</b> <a href="_cast_8h_source.xhtml#l00031">Cast.h:31</a></div></div>
140<div class="ttc" id="graph__alexnet_8cpp_xhtml_a3c04138a5bfe5d72780bb7e82a18e627"><div class="ttname"><a href="graph__alexnet_8cpp.xhtml#a3c04138a5bfe5d72780bb7e82a18e627">main</a></div><div class="ttdeci">int main(int argc, char **argv)</div><div class="ttdoc">Main program for AlexNet. </div><div class="ttdef"><b>Definition:</b> <a href="graph__alexnet_8cpp_source.xhtml#l00200">graph_alexnet.cpp:200</a></div></div>
141<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml">arm_compute::graph_utils</a></div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00041">GraphUtils.h:41</a></div></div>
142<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_softmax_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_softmax_layer.xhtml">arm_compute::graph::frontend::SoftmaxLayer</a></div><div class="ttdoc">Softmax Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00411">Layers.h:411</a></div></div>
143<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_output_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_output_layer.xhtml">arm_compute::graph::frontend::OutputLayer</a></div><div class="ttdoc">Output Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00070">Layers.h:70</a></div></div>
144<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_fully_connected_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_fully_connected_layer.xhtml">arm_compute::graph::frontend::FullyConnectedLayer</a></div><div class="ttdoc">Fully Connected Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00281">Layers.h:281</a></div></div>
145<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_a30bee0b52a919bbcb1dc48b1b6546a16"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">arm_compute::graph_utils::get_weights_accessor</a></div><div class="ttdeci">std::unique_ptr&lt; graph::ITensorAccessor &gt; get_weights_accessor(const std::string &amp;path, const std::string &amp;data_file, DataLayout file_layout=DataLayout::NCHW)</div><div class="ttdoc">Generates appropriate weights accessor according to the specified path. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00275">GraphUtils.h:275</a></div></div>
146<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_stream_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_stream.xhtml">arm_compute::graph::frontend::Stream</a></div><div class="ttdoc">Stream frontend class to construct simple graphs in a stream fashion. </div><div class="ttdef"><b>Definition:</b> <a href="_stream_8h_source.xhtml#l00045">Stream.h:45</a></div></div>
147<div class="ttc" id="namespacearm__compute_1_1graph_1_1frontend_xhtml"><div class="ttname"><a href="namespacearm__compute_1_1graph_1_1frontend.xhtml">arm_compute::graph::frontend</a></div><div class="ttdef"><b>Definition:</b> <a href="_i_layer_8h_source.xhtml#l00031">ILayer.h:31</a></div></div>
Kaizenbf8b01d2017-10-12 14:26:51 +0100148<div class="ttc" id="namespacearm__compute_xhtml_adf2ced65e536375a1c96425d9fced858a26a4b44a837bf97b972628509912b4a5"><div class="ttname"><a href="namespacearm__compute.xhtml#adf2ced65e536375a1c96425d9fced858a26a4b44a837bf97b972628509912b4a5">arm_compute::NonLinearFilterFunction::MAX</a></div><div class="ttdoc">Non linear dilate. </div></div>
Kaizenbf8b01d2017-10-12 14:26:51 +0100149<div class="ttc" id="namespacearm__compute_xhtml_ad4bb8dabdbf8ad75e34220cc666b59caa980fef040549733973683b1a868f96e5"><div class="ttname"><a href="namespacearm__compute.xhtml#ad4bb8dabdbf8ad75e34220cc666b59caa980fef040549733973683b1a868f96e5">arm_compute::NormType::CROSS_MAP</a></div><div class="ttdoc">Normalization applied cross maps. </div></div>
Anthony Barbier06ea0482018-02-22 15:45:35 +0000150<div class="ttc" id="namespacearm__compute_xhtml_a683661ae75dcb7aef16b9c9bde31517da5174aac3927faa9ee34befb7fc87a9e3"><div class="ttname"><a href="namespacearm__compute.xhtml#a683661ae75dcb7aef16b9c9bde31517da5174aac3927faa9ee34befb7fc87a9e3">arm_compute::ConvolutionMethod::GEMM</a></div><div class="ttdoc">Convolution using GEMM. </div></div>
Jenkinsb3a371b2018-05-23 11:36:53 +0100151<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_i_layer_xhtml_af664a2598e05f8de28fb9f94e3902886"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">arm_compute::graph::frontend::ILayer::set_name</a></div><div class="ttdeci">ILayer &amp; set_name(std::string name)</div><div class="ttdoc">Sets the name of the layer. </div><div class="ttdef"><b>Definition:</b> <a href="_i_layer_8h_source.xhtml#l00055">ILayer.h:55</a></div></div>
Kaizenbf8b01d2017-10-12 14:26:51 +0100152</div><!-- fragment --></div><!-- contents -->
153</div><!-- doc-content -->
154<!-- start footer part -->
155<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
156 <ul>
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000157 <li class="navelem"><a class="el" href="dir_d28a4824dc47e487b107a5db32ef43c4.xhtml">examples</a></li><li class="navelem"><a class="el" href="graph__alexnet_8cpp.xhtml">graph_alexnet.cpp</a></li>
Jenkinsb3a371b2018-05-23 11:36:53 +0100158 <li class="footer">Generated on Wed May 23 2018 11:36:36 for Compute Library by
Kaizenbf8b01d2017-10-12 14:26:51 +0100159 <a href="http://www.doxygen.org/index.html">
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000160 <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.11 </li>
Kaizenbf8b01d2017-10-12 14:26:51 +0100161 </ul>
162</div>
163</body>
164</html>