blob: 69b3a9d955791b102208c5faeb3f63c356631c88 [file] [log] [blame]
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001/*
Anthony Barbier06ea0482018-02-22 15:45:35 +00002 * Copyright (c) 2017-2018 ARM Limited.
Anthony Barbier8140e1e2017-12-14 23:48:46 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Jenkinsb3a371b2018-05-23 11:36:53 +010024#include "arm_compute/graph.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000025#include "support/ToolchainSupport.h"
Jenkins52ba29e2018-08-29 15:32:11 +000026#include "utils/CommonGraphOptions.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000027#include "utils/GraphUtils.h"
28#include "utils/Utils.h"
29
Anthony Barbierf45d5a92018-01-24 16:23:15 +000030using namespace arm_compute::utils;
Jenkinsb3a371b2018-05-23 11:36:53 +010031using namespace arm_compute::graph::frontend;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000032using namespace arm_compute::graph_utils;
33
34/** Example demonstrating how to implement VGG16's network using the Compute Library's graph API
35 *
36 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +000037 * @param[in] argv Arguments
Anthony Barbier8140e1e2017-12-14 23:48:46 +000038 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +000039class GraphVGG16Example : public Example
Anthony Barbier8140e1e2017-12-14 23:48:46 +000040{
Anthony Barbierf45d5a92018-01-24 16:23:15 +000041public:
Jenkins52ba29e2018-08-29 15:32:11 +000042 GraphVGG16Example()
43 : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "VGG16")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000044 {
Jenkins52ba29e2018-08-29 15:32:11 +000045 }
46 bool do_setup(int argc, char **argv) override
47 {
48 // Parse arguments
49 cmd_parser.parse(argc, argv);
50
51 // Consume common parameters
52 common_params = consume_common_graph_parameters(common_opts);
53
54 // Return when help menu is requested
55 if(common_params.help)
56 {
57 cmd_parser.print_help(argv[0]);
58 return false;
59 }
60
61 // Checks
62 ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
63
64 // Print parameter values
65 std::cout << common_params << std::endl;
66
67 // Get trainable parameters data path
68 std::string data_path = common_params.data_path;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000069
Anthony Barbier06ea0482018-02-22 15:45:35 +000070 // Create a preprocessor object
71 const std::array<float, 3> mean_rgb{ { 123.68f, 116.779f, 103.939f } };
72 std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
Anthony Barbier8140e1e2017-12-14 23:48:46 +000073
Jenkins52ba29e2018-08-29 15:32:11 +000074 // Create input descriptor
75 const TensorShape tensor_shape = permute_shape(TensorShape(224U, 224U, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
76 TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
Anthony Barbier06ea0482018-02-22 15:45:35 +000077
Jenkins52ba29e2018-08-29 15:32:11 +000078 // Set weights trained layout
79 const DataLayout weights_layout = DataLayout::NCHW;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000080
Jenkins52ba29e2018-08-29 15:32:11 +000081 // Create graph
82 graph << common_params.target
83 << common_params.fast_math_hint
84 << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +000085 // Layer 1
86 << ConvolutionLayer(
87 3U, 3U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +000088 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv1_1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000089 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv1_1_b.npy"),
90 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +010091 .set_name("conv1_1")
92 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_1/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000093 // Layer 2
94 << ConvolutionLayer(
95 3U, 3U, 64U,
Jenkins52ba29e2018-08-29 15:32:11 +000096 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv1_2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000097 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv1_2_b.npy"),
98 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +010099 .set_name("conv1_2")
100 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_2/Relu")
101 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000102 // Layer 3
103 << ConvolutionLayer(
104 3U, 3U, 128U,
Jenkins52ba29e2018-08-29 15:32:11 +0000105 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv2_1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000106 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv2_1_b.npy"),
107 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100108 .set_name("conv2_1")
109 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_1/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000110 // Layer 4
111 << ConvolutionLayer(
112 3U, 3U, 128U,
Jenkins52ba29e2018-08-29 15:32:11 +0000113 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv2_2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000114 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv2_2_b.npy"),
115 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100116 .set_name("conv2_2")
117 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_2/Relu")
118 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000119 // Layer 5
120 << ConvolutionLayer(
121 3U, 3U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +0000122 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000123 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_1_b.npy"),
124 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100125 .set_name("conv3_1")
126 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_1/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000127 // Layer 6
128 << ConvolutionLayer(
129 3U, 3U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +0000130 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000131 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_2_b.npy"),
132 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100133 .set_name("conv3_2")
134 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_2/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000135 // Layer 7
136 << ConvolutionLayer(
137 3U, 3U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +0000138 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000139 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_3_b.npy"),
140 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100141 .set_name("conv3_3")
142 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_3/Relu")
143 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0))).set_name("pool3")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000144 // Layer 8
145 << ConvolutionLayer(
146 3U, 3U, 512U,
Jenkins52ba29e2018-08-29 15:32:11 +0000147 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000148 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_1_b.npy"),
149 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100150 .set_name("conv4_1")
151 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_1/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000152 // Layer 9
153 << ConvolutionLayer(
154 3U, 3U, 512U,
Jenkins52ba29e2018-08-29 15:32:11 +0000155 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000156 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_2_b.npy"),
157 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100158 .set_name("conv4_2")
159 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_2/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000160 // Layer 10
161 << ConvolutionLayer(
162 3U, 3U, 512U,
Jenkins52ba29e2018-08-29 15:32:11 +0000163 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000164 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_3_b.npy"),
165 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100166 .set_name("conv4_3")
167 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_3/Relu")
168 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0))).set_name("pool4")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000169 // Layer 11
170 << ConvolutionLayer(
171 3U, 3U, 512U,
Jenkins52ba29e2018-08-29 15:32:11 +0000172 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000173 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_1_b.npy"),
174 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100175 .set_name("conv5_1")
176 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_1/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000177 // Layer 12
178 << ConvolutionLayer(
179 3U, 3U, 512U,
Jenkins52ba29e2018-08-29 15:32:11 +0000180 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000181 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_2_b.npy"),
182 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100183 .set_name("conv5_2")
184 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_2/Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000185 // Layer 13
186 << ConvolutionLayer(
187 3U, 3U, 512U,
Jenkins52ba29e2018-08-29 15:32:11 +0000188 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000189 get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_3_b.npy"),
190 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100191 .set_name("conv5_3")
192 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_3/Relu")
193 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0))).set_name("pool5")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000194 // Layer 14
195 << FullyConnectedLayer(
196 4096U,
Jenkins52ba29e2018-08-29 15:32:11 +0000197 get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc6_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000198 get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc6_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100199 .set_name("fc6")
200 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Relu")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000201 // Layer 15
202 << FullyConnectedLayer(
203 4096U,
Jenkins52ba29e2018-08-29 15:32:11 +0000204 get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc7_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000205 get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc7_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100206 .set_name("fc7")
207 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Relu_1")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000208 // Layer 16
209 << FullyConnectedLayer(
210 1000U,
Jenkins52ba29e2018-08-29 15:32:11 +0000211 get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc8_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000212 get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc8_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100213 .set_name("fc8")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000214 // Softmax
Jenkinsb3a371b2018-05-23 11:36:53 +0100215 << SoftmaxLayer().set_name("prob")
Jenkins52ba29e2018-08-29 15:32:11 +0000216 << OutputLayer(get_output_accessor(common_params, 5));
Anthony Barbier06ea0482018-02-22 15:45:35 +0000217
Jenkinsb3a371b2018-05-23 11:36:53 +0100218 // Finalize graph
219 GraphConfig config;
Jenkins52ba29e2018-08-29 15:32:11 +0000220 config.num_threads = common_params.threads;
221 config.use_tuner = common_params.enable_tuner;
222 config.tuner_file = common_params.tuner_file;
223
224 graph.finalize(common_params.target, config);
225
226 return true;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000227 }
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000228 void do_run() override
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000229 {
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000230 // Run graph
231 graph.run();
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000232 }
233
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000234private:
Jenkins52ba29e2018-08-29 15:32:11 +0000235 CommandLineParser cmd_parser;
236 CommonGraphOptions common_opts;
237 CommonGraphParams common_params;
238 Stream graph;
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000239};
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000240
241/** Main program for VGG16
242 *
Jenkins52ba29e2018-08-29 15:32:11 +0000243 * @note To list all the possible arguments execute the binary appended with the --help option
244 *
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000245 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +0000246 * @param[in] argv Arguments
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000247 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000248int main(int argc, char **argv)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000249{
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000250 return arm_compute::utils::run_example<GraphVGG16Example>(argc, argv);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000251}